1
|
Mohamed AH, Alshammari MB, Aly AA, Sadek KU, Ahmad A, Aziz EA, El-Yazbi AF, El-Agroudy EJ, Abdelaziz ME. New imidazole-2-thiones linked to acenaphythylenone as dual DNA intercalators and topoisomerase II inhibitors: structural optimization, docking, and apoptosis studies. J Enzyme Inhib Med Chem 2024; 39:2311818. [PMID: 38488131 PMCID: PMC10946275 DOI: 10.1080/14756366.2024.2311818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/24/2024] [Indexed: 03/19/2024] Open
Abstract
In this article, a new series of 2-((3,5-disubstituted-2-thioxo-imidazol-1-yl)imino)acenaphthylen-1(2H)-ones were synthesized. Imidazole-2-thione with acenaphthylen-one gave a hybrid scaffold that integrated key structural elements essential for DNA damage via direct DNA intercalation and inhibition of the topoisomerase II enzyme. All the synthesized compounds were screened to detect their DNA damage using a terbium fluorescent probe. Results demonstrated that 4-phenyl-imidazoles 5b and 5e in addition to 4-(4-chlorophenyl)imidazoles 5h and 5j would induce detectable potent damage in ctDNA. The four most potent compounds as DNA intercalators were further evaluated for their antiproliferative activity against HepG2, MCF-7 and HCT-116 utilizing the MTT assay. The highest anticancer activity was recorded with compounds 5b and 5h against the breast cancer cell line MCF-7 which were 1.5- and 3- folds more active than doxorubicin, respectively. Therefore, imidazole-2-thione tethered acenaphthylenone derivatives can be considered as promising scaffold for the development of effective dual DNA intercalators and topoisomerase II inhibitors.
Collapse
Affiliation(s)
- Asmaa H. Mohamed
- Chemistry Department, Faculty of Science, Minia University, El-Minia, Egypt
| | - Mohammed B. Alshammari
- Chemistry Department, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharij, Saudi Arabia
| | - Ashraf A. Aly
- Chemistry Department, Faculty of Science, Minia University, El-Minia, Egypt
| | - Kamal U. Sadek
- Chemistry Department, Faculty of Science, Minia University, El-Minia, Egypt
| | - Akil Ahmad
- Chemistry Department, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharij, Saudi Arabia
| | - Eman A. Aziz
- Chemistry Department, Faculty of Science, Minia University, El-Minia, Egypt
| | - Amira F. El-Yazbi
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Eman J. El-Agroudy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Marwa E. Abdelaziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Zonyfar C, Ngnamsie Njimbouom S, Mosalla S, Kim JD. GTransCYPs: an improved graph transformer neural network with attention pooling for reliably predicting CYP450 inhibitors. J Cheminform 2024; 16:119. [PMID: 39472986 PMCID: PMC11524008 DOI: 10.1186/s13321-024-00915-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/10/2024] [Indexed: 11/02/2024] Open
Abstract
State‑of‑the‑art medical studies proved that predicting CYP450 enzyme inhibitors is beneficial in the early stage of drug discovery. However, accurate machine learning-based (ML) in silico methods for predicting CYP450 inhibitors remains challenging. Here, we introduce GTransCYPs, an improved graph neural network (GNN) with a transformer mechanism for predicting CYP450 inhibitors. This model significantly enhances the discrimination between inhibitors and non-inhibitors for five major CYP450 isozymes: 1A2, 2C9, 2C19, 2D6, and 3A4. GTransCYPs learns information patterns from molecular graphs by aggregating node and edge representations using a transformer. The GTransCYPs model utilizes transformer convolution layers to process features, followed by a global attention-pooling technique to synthesize the graph-level information. This information is then fed through successive linear layers for final output generation. Experimental results demonstrate that the GTransCYPs model achieved high performance, outperforming other state-of-the-art methods in CYP450 prediction.Scientific contributionThe prediction of CYP450 inhibition via computational techniques utilizing biological information has emerged as a cost-effective and highly efficient approach. Here, we presented a deep learning (DL) architecture based on GNN with transformer mechanism and attention pooling (GTransCYPs) to predict CYP450 inhibitors. Four GTransCYPs of different pooling technique were tested on an experimental tasks on the CYP450 prediction problem for the first time. Graph transformer with attention pooling algorithm achieved the best performances. Comparative and ablation experiments provide evidence of the efficacy of our proposed method in predicting CYP450 inhibitors. The source code is publicly available at https://github.com/zonwoo/GTransCYPs .
Collapse
Affiliation(s)
- Candra Zonyfar
- Department of Computer Science and Electronic Engineering, Sun Moon University, Asan, 31460, Republic of Korea
| | | | - Sophia Mosalla
- Division of Computer Science and Engineering, Sun Moon University, Asan, 31460, Republic of Korea
| | - Jeong-Dong Kim
- Department of Computer Science and Electronic Engineering, Sun Moon University, Asan, 31460, Republic of Korea.
- Division of Computer Science and Engineering, Sun Moon University, Asan, 31460, Republic of Korea.
- Genome-based BioIT Convergence Institute, Sun Moon University, Asan, 31460, Republic of Korea.
| |
Collapse
|
3
|
Mosoh DA. Widely-targeted in silico and in vitro evaluation of veratrum alkaloid analogs as FAK inhibitors and dual targeting of FAK and Hh/SMO pathways for cancer therapy: A critical analysis. Int J Biol Macromol 2024; 281:136201. [PMID: 39368576 DOI: 10.1016/j.ijbiomac.2024.136201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
Focal Adhesive Kinase (FAK), a key player in aggressive cancers, mediates signals crucial for progression, invasion, and metastasis. Despite advances in targeted therapies, drug resistance is still a challenge, and survival rates remain low, particularly for late-stage patients, emphasizing the need for innovative cancer therapeutics. Cyclopamine, a veratrum alkaloid, has shown promising anti-tumor properties, but the search for more potent analogs with enhanced affinity for the biological target continues. This study employs a hybrid virtual screening approach combining pharmacophore model-based virtual screening (PB-VS) and docking-based virtual screening (DB-VS) to identify potential inhibitors of the FAK catalytic domain. PB-VS on the PubChem database yielded a set of hits, which were then docked with the FAK catalytic domain in two stages (1st and 2nd DB-VS). Hits were ranked based on docking scores and interactions with the active site. The top three compounds underwent molecular dynamics simulations, alongside two control compounds (SMO inhibitor(s) and FAK inhibitor(s)), to assess stability through RMSD, RMSF, Rg, and SASA analyses. ADMET properties were evaluated, and compounds were filtered based on drug-likeness criteria. Molecular dynamics simulations demonstrated the stability of compounds when complexed with the FAK catalytic domain. Compounds 16 (-25 kcal/mol), 87 (-27.47 kcal/mol), and 88 (-18.94 kcal/mol) exhibited comparable docking scores, interaction profiles, stability, and binding energies, indicating their potential as lead candidates. However, further validation and optimization through quantitative structure-activity relationship (QSAR) studies are essential to refine their efficacy and therapeutic potential. The in vitro cell-based assay demonstrated that compound 101PF, a FAK inhibitor, significantly inhibited the proliferation and migration of A549 cells. However, the results regarding the combined effects of FAK and SMO inhibitors were inconclusive, highlighting the need for further investigation. This study contributes to developing more effective anti-cancer drugs by improving the understanding of potential cyclopamine-based veratrum alkaloid analogs with enhanced interactions with the FAK catalytic domain.
Collapse
Affiliation(s)
- Dexter Achu Mosoh
- Centre for Biodiversity Exploration and Conservation (CBEC), 15, Kundan Residency, 4th Mile Mandla Road, Tilhari, Jabalpur, M.P 482021, India; Indian Institute of Technology Gandhinagar, Palaj Campus, Gujarat 382355, India; School of Sciences, Sanjeev Agrawal Global Educational (SAGE) University, Bhopal, M.P 462022, India; Prof. Wagner A. Vendrame's Laboratory, Environmental Horticulture Department, University of Florida, Institute of Food and Agricultural Sciences, 2550 Hull Rd., Gainesville, FL 32611, USA.
| |
Collapse
|
4
|
Malik MNH, Abid I, Ismail S, Anjum I, Qadir H, Maqbool T, Najam K, Ibenmoussa S, Bourhia M, Salamatullah AM, Wondmie GF. Exploring the hepatoprotective properties of citronellol: In vitro and in silico studies on ethanol-induced damage in HepG2 cells. Open Life Sci 2024; 19:20220950. [PMID: 39290493 PMCID: PMC11406226 DOI: 10.1515/biol-2022-0950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/20/2024] [Accepted: 08/07/2024] [Indexed: 09/19/2024] Open
Abstract
Citronellol (CT) is a monoterpene alcohol present in the essential oil of plants of the genus Cymbopogon and exhibits diverse pharmacological activities. The aim of the current study was to investigate the hepatoprotective potential of CT against ethanol-induced toxicity in HepG2 cell lines. Silymarin (SIL) was used as a standard drug. MTT, crystal violet assay, DAPI, and PI staining were carried out to assess the effect of ethanol and CT on cell viability. RT-PCR determined the molecular mechanisms of hepatoprotective action of CT. CT ameliorated cell viability and restricted ethanol-induced cell death. DAPI and PI staining showed distinct differences in cell number and morphology. Less cell viability was observed in the diseased group obviously from strong PI staining when compared to the CT- and SIL-treated group. Moreover, CT showed downregulation of interleukin (IL-6), transforming growth factor-beta 1 (TGF-β1), collagen type 1 A 1 (COL1A1), matrix metalloproteinase-1 (MMP-1), tissue inhibitor of metalloproteinase-1 (TIMP-1) and glutathione peroxidase-7 (GPX-7) levels. Molecular docking studies supported the biochemical findings. It is concluded that the cytoprotective activity of CT against ethanol-induced toxicity might be explained by its anti-inflammatory, immunomodulatory, and collagen-regulating effects.
Collapse
Affiliation(s)
| | - Iqra Abid
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Sana Ismail
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Irfan Anjum
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Halima Qadir
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Tahir Maqbool
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Komal Najam
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Samir Ibenmoussa
- Laboratory of Therapeutic and Organic Chemistry, Faculty of Pharmacy, University of Montpellier, Montpellier, 34000, France
| | - Mohammed Bourhia
- Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences, Ibn Zohr University, 80060, Agadir, Morocco
| | - Ahmad Mohammad Salamatullah
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, 11 P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | | |
Collapse
|
5
|
Wang T, Taub ME, Chan TS. A novel system to determine activity of individual uridine 5'-diphospho-glucuronosyltransferase (UGT) isoforms: Recombinant UGT-beads. J Biol Chem 2024; 300:107278. [PMID: 38599380 PMCID: PMC11098952 DOI: 10.1016/j.jbc.2024.107278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024] Open
Abstract
Previous work demonstrated that human liver microsomes (HLMs) can spontaneously bind to silica-coated magnetizable beads (HLM-beads) and that these HLM-beads retain uridine 5'-diphospho-glucuronosyltransferase (UGT) activity. However, the contributions of individual UGT isoforms are not directly assessable in this system except through use of model inhibitors. Thus, a preparation wherein recombinant UGT (rUGT) microsomes bound to these same beads to form rUGT-beads of individual UGT isoforms would provide a novel system for measuring the contribution of individual UGT isoforms in a direct manner. To this end, the enzyme activities and kinetic parameter estimates of various rUGT isoforms in rUGT-beads were investigated, as well as the impact of fatty acids (FAs) on enzyme activity. The catalytic efficiencies (Vmax/Km) of the tested rUGTs were twofold to sevenfold higher in rUGT-beads compared with rUGT microsomes, except for rUGT1A6, where Vmax is the maximum product formation rate normalized to milligram of microsomal protein (pmol/min/mg protein). Interestingly, in contrast to traditional rUGT preparations, the sequestration of UGT-inhibitory FA using bovine serum albumin did not alter the catalytic efficiency (Vmax/Km) of the rUGTs in rUGT-beads. Moreover, the increase in catalytic efficiency of rUGT-beads over rUGT microsomes was similar to increases in catalytic efficiency noted with rUGT microsomes (not bound to beads) incubated with bovine serum albumin, suggesting the beads in some way altered the potential for FAs to inhibit activity. The rUGT-bead system may serve as a useful albumin-free tool to determine kinetic constants for UGT substrates, particularly those that exhibit high binding to albumin.
Collapse
Affiliation(s)
- Ting Wang
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut, USA.
| | - Mitchell E Taub
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut, USA
| | - Tom S Chan
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut, USA
| |
Collapse
|
6
|
De Angelis M, Schobesberger S, Selinger F, Sedlmayr VL, Frauenlob M, Corcione O, Dong S, Gilardi G, Ertl P, Sadeghi SJ. A multi-channel microfluidic platform based on human flavin-containing monooxygenase 3 for personalised medicine. RSC Adv 2024; 14:13209-13217. [PMID: 38655484 PMCID: PMC11037025 DOI: 10.1039/d4ra01516a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024] Open
Abstract
Human flavin-containing monooxygenase 3 (FMO3) is a drug-metabolizing enzyme (DME) which is known to be highly polymorphic. Some of its polymorphic variants are associated with inter-individual differences that contribute to drug response. In order to measure these differences, the implementation of a quick and efficient in vitro assay is highly desirable. To this end, in this work a microfluidic immobilized enzyme reactor (μ-IMER) was developed with four separate serpentines where FMO3 and its two common polymorphic variants (V257M and E158K) were covalently immobilized via glutaraldehyde cross-linking in the presence of a polylysine coating. Computational fluid dynamics simulations were performed to calculate the selected substrate retention time in serpentines with different surface areas at various flow rates. The oxidation of tamoxifen, an anti-breast cancer drug, was used as a model reaction to characterize the new device in terms of available surface area for immobilization, channel coating, and applied flow rate. The highest amount of product was obtained when applying a 10 μL min-1 flow rate on polylysine-coated serpentines with a surface area of 90 mm2 each. Moreover, these conditions were used to test the device as a multi-enzymatic platform by simultaneously assessing the conversion of tamoxifen by FMO3 and its two polymorphic variants immobilized on different serpentines of the same chip. The results obtained demonstrate that the differences observed in the conversion of tamoxifen within the chip are similar to those already published (E158K > WT > V257M). Therefore, this microfluidic platform provides a feasible option for fabricating devices for personalised medicine.
Collapse
Affiliation(s)
- Melissa De Angelis
- Department of Life Sciences and Systems Biology, University of Torino via Accademia Albertina 13 10123 Torino Italy
| | | | - Florian Selinger
- TU Wien, Faculty of Technical Chemistry Getreidemarkt 9 1060 Vienna Austria
| | | | - Martin Frauenlob
- TU Wien, Faculty of Technical Chemistry Getreidemarkt 9 1060 Vienna Austria
| | - Orsola Corcione
- Department of Life Sciences and Systems Biology, University of Torino via Accademia Albertina 13 10123 Torino Italy
| | - Shiman Dong
- Department of Life Sciences and Systems Biology, University of Torino via Accademia Albertina 13 10123 Torino Italy
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino via Accademia Albertina 13 10123 Torino Italy
| | - Peter Ertl
- TU Wien, Faculty of Technical Chemistry Getreidemarkt 9 1060 Vienna Austria
| | - Sheila J Sadeghi
- Department of Life Sciences and Systems Biology, University of Torino via Accademia Albertina 13 10123 Torino Italy
| |
Collapse
|
7
|
Bryndal I, Stolarczyk M, Mikołajczyk A, Krupińska M, Pyra A, Mączyński M, Matera-Witkiewicz A. Pyrimidine Schiff Bases: Synthesis, Structural Characterization and Recent Studies on Biological Activities. Int J Mol Sci 2024; 25:2076. [PMID: 38396753 PMCID: PMC10889512 DOI: 10.3390/ijms25042076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Recently, 5-[(4-ethoxyphenyl)imino]methyl-N-(4-fluorophenyl)-6-methyl-2-phenylpyrimidin-4-amine has been synthesized, characterized, and evaluated for its antibacterial activity against Enterococcus faecalis in combination with antineoplastic activity against gastric adenocarcinoma. In this study, new 5-iminomethylpyrimidine compounds were synthesized which differ in the substituent(s) of the aromatic ring attached to the imine group. The structures of newly obtained pyrimidine Schiff bases were established by spectroscopy techniques (ESI-MS, FTIR and 1H NMR). To extend the current knowledge about the features responsible for the biological activity of the new 5-iminomethylpyrimidine derivatives, low-temperature single-crystal X-ray analyses were carried out. For all studied crystals, intramolecular N-H∙∙∙N hydrogen bonds and intermolecular C-H∙∙∙F interactions were observed and seemed to play an essential role in the formation of the structures. Simultaneously, their biological properties based on their cytotoxic features were compared with the activities of the Schiff base (III) published previously. Moreover, computational investigations, such as ADME prediction analysis and molecular docking, were also performed on the most active new Schiff base (compound 4b). These results were compared with the highest active compound III.
Collapse
Affiliation(s)
- Iwona Bryndal
- Department of Organic Chemistry and Drug Technology, Faculty of Pharmacy, Wroclaw Medical University, 211A Borowska, 50-556 Wrocław, Poland; (M.S.); (M.M.)
| | - Marcin Stolarczyk
- Department of Organic Chemistry and Drug Technology, Faculty of Pharmacy, Wroclaw Medical University, 211A Borowska, 50-556 Wrocław, Poland; (M.S.); (M.M.)
| | - Aleksandra Mikołajczyk
- Screening Biological Activity Assays and Collection of Biological Material Laboratory, Wroclaw Medical University, 211A Borowska, 50-556 Wrocław, Poland; (A.M.); (M.K.); (A.M.-W.)
| | - Magdalena Krupińska
- Screening Biological Activity Assays and Collection of Biological Material Laboratory, Wroclaw Medical University, 211A Borowska, 50-556 Wrocław, Poland; (A.M.); (M.K.); (A.M.-W.)
| | - Anna Pyra
- Faculty of Chemistry, University of Wroclaw, 14 Joliot-Curie, 50-383 Wrocław, Poland;
| | - Marcin Mączyński
- Department of Organic Chemistry and Drug Technology, Faculty of Pharmacy, Wroclaw Medical University, 211A Borowska, 50-556 Wrocław, Poland; (M.S.); (M.M.)
| | - Agnieszka Matera-Witkiewicz
- Screening Biological Activity Assays and Collection of Biological Material Laboratory, Wroclaw Medical University, 211A Borowska, 50-556 Wrocław, Poland; (A.M.); (M.K.); (A.M.-W.)
| |
Collapse
|
8
|
Liu H, Tang X, Tam NFY, Li Q, Ruan W, Xu X, Gao Y, Yan Q, Zhang X, Dai Y, Yang Y. Phytodegradation of neonicotinoids in Cyperus papyrus from enzymatic and transcriptomic perspectives. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132715. [PMID: 37844494 DOI: 10.1016/j.jhazmat.2023.132715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/24/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
Neonicotinoids are widely used but environmentally hazardous insecticides. Constructed wetlands offer potential for neonicotinoid removal, but the corresponding metabolic pathways and mechanisms in wetland plants are incompletely understood. This study investigated the fate of six neonicotinoids and their metabolites in Cyperus papyrus, a common wetland plant, and the underlying metabolic mechanisms through enzymatic and transcriptomic analyses. Neonicotinoids were absorbed by roots and translocated upward, causing high levels in shoots. Concentrations of neonicotinoids and their metabolites declined to their minimum at day 28 of exposure. Nitro reduction, hydroxylation, and demethylation were the major metabolic reactions with which C. papyrus responded to neonicotinoids. These reactions may be mediated by cytochrome P450 enzyme, aldehyde oxidase, glutathione-disulfide reductase, and glucuronate reductase. The toxicity of neonicotinoids in C. papyrus was evaluated according to the peroxidase and catalase enzymatic activities. Transcriptomic analysis revealed that differentially expressed genes (DEGs) mainly encoded proteins related to immune processes and cell growth regulation. Co-expression correlation analysis of DEGs revealed that the genes encoding P450s, peroxidase and glutathione S-transferase were the key functional genes. This study elucidates the stress response and degradation mechanism of neonicotinoids in wetland plants, providing new insights into the phytoremediation of organic contaminants in constructed wetlands.
Collapse
Affiliation(s)
- Huanping Liu
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Institute of Hydrobiology, Jinan university, Guangzhou 510632, China; Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Guangzhou 510275, China
| | - Xiaoyan Tang
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Institute of Hydrobiology, Jinan university, Guangzhou 510632, China; Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610068, China.
| | - Nora Fung-Yee Tam
- School of Science and Technology, The Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong Special Administrative Region, China
| | - Qiwen Li
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Institute of Hydrobiology, Jinan university, Guangzhou 510632, China
| | - Weifeng Ruan
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Institute of Hydrobiology, Jinan university, Guangzhou 510632, China
| | - Xiaomin Xu
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Institute of Hydrobiology, Jinan university, Guangzhou 510632, China
| | - Yanxia Gao
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Guangzhou 510275, China
| | - Xiaomeng Zhang
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Institute of Hydrobiology, Jinan university, Guangzhou 510632, China
| | - Yunv Dai
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Institute of Hydrobiology, Jinan university, Guangzhou 510632, China
| | - Yang Yang
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Institute of Hydrobiology, Jinan university, Guangzhou 510632, China.
| |
Collapse
|
9
|
Bakale RD, Sulakhe SM, Kasare SL, Sathe BP, Rathod SS, Choudhari PB, Madhu Rekha E, Sriram D, Haval KP. Design, synthesis and antitubercular assessment of 1, 2, 3-triazole incorporated thiazolylcarboxylate derivatives. Bioorg Med Chem Lett 2024; 97:129551. [PMID: 37979730 DOI: 10.1016/j.bmcl.2023.129551] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/20/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
A library of 1, 2, 3-triazole incorporated thiazolylcarboxylate derivatives (7a-q) and (8a-j) were synthesized and evaluated for their in-vitro antitubercular activity against Mycobacterium tuberculosis H37Rv. The two compounds 7h and 8h have displayed excellent antitubercular activity with MIC values of 3.12 and 1.56 µg/mL respectively (MIC values of standard drugs; Ciprofloxacin 1.56 μg/mL & Ethambutol 3.12 μg/mL). Whereas, the four compounds 7i, 7n, 7p and 8i displayed noticeable antitubercular activity with a MIC value of 6.25 µg/mL. The active compounds of the series were further studied for their cytotoxicity against RAW264.7 cell line using MTT assay. Furthermore, to study the probable mechanism of antitubercular action, physicochemical property profiling, DFT calculation and molecular docking study were executed on mycobacterial cell wall target Decaprenylphosphoryl-β-d-ribose 2'-epimerase 1 (DprE1). Among all the compounds, 7h (-10 kcal/mol) and 8h (-10.1 kcal/mol) exerted the highest negative binding affinity against the targeted DprE1 (PDB: 4NCR) protein.
Collapse
Affiliation(s)
- Rajubai D Bakale
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University SubCampus, Osmanabad 413501, MS, India
| | - Shubham M Sulakhe
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University SubCampus, Osmanabad 413501, MS, India
| | - Sanghratna L Kasare
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University SubCampus, Osmanabad 413501, MS, India
| | - Bhaurao P Sathe
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University SubCampus, Osmanabad 413501, MS, India
| | - Sanket S Rathod
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur 416013, MS, India
| | - Prafulla B Choudhari
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur 416013, MS, India
| | - Estharla Madhu Rekha
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, R. R. District, Hyderabad 500078, India
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, R. R. District, Hyderabad 500078, India
| | - Kishan P Haval
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University SubCampus, Osmanabad 413501, MS, India.
| |
Collapse
|
10
|
El-Miligy MMM, Abdelaziz ME, Fahmy SM, Ibrahim TM, Abu-Serie MM, Mahran MA, Hazzaa AA. Discovery of new pyridine-quinoline hybrids as competitive and non-competitive PIM-1 kinase inhibitors with apoptosis induction and caspase 3/7 activation capabilities. J Enzyme Inhib Med Chem 2023; 38:2152810. [PMID: 36629075 PMCID: PMC9848351 DOI: 10.1080/14756366.2022.2152810] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
New quinoline-pyridine hybrids were designed and synthesised as PIM-1/2 kinase inhibitors. Compounds 5b, 5c, 6e, 13a, 13c, and 14a showed in-vitro low cytotoxicity against normal human lung fibroblast Wi-38 cell line and potent in-vitro anticancer activity against myeloid leukaemia (NFS-60), liver (HepG-2), prostate (PC-3), and colon (Caco-2) cancer cell lines. In addition, 6e, 13a, and 13c significantly induced apoptosis with percentage more than 66%. Moreover, 6e, 13a, and 13c significantly induced caspase 3/7 activation in HepG-2 cell line. Furthermore, 5c, 6e, and 14a showed potent in-vitro PIM-1 kinase inhibitory activity. While, 5b showed potent in-vitro PIM-2 kinase inhibitory activity. Kinetic studies using Lineweaver-Burk double-reciprocal plot indicated that 5b, 5c, 6e, and 14a behaved as competitive inhibitors while 13a behaved as both competitive and non-competitive inhibitor of PIM-1 kinase enzyme. Molecular docking studies indicated that, in-silico affinity came in coherence with the observed in-vitro inhibitory activities against PIM-1/2 kinases.
Collapse
Affiliation(s)
- Mostafa M. M. El-Miligy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt,CONTACT Mostafa M. M. El-Miligy
| | - Marwa E. Abdelaziz
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt,Marwa E. Abdelaziz Pharmaceutical Chemistry Department, Faculty of Pharmacy, Alexandria University, 1st El-khartoum Square, Alexandria, 21521, Egypt
| | - Salwa M. Fahmy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Tamer M. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Marwa M. Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt)
| | - Mona A. Mahran
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Aly A. Hazzaa
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
11
|
Kurbanova MM, Maharramov AM, Sadigova AZ, Gurbanova FZ, Mali SN, Al-Salahi R, El Bakri Y, Lai CH. Synthesis, Characterization, DFT, and In Silico Investigation of Two Newly Synthesized β-Diketone Derivatives as Potent COX-2 Inhibitors. Bioengineering (Basel) 2023; 10:1361. [PMID: 38135952 PMCID: PMC10741009 DOI: 10.3390/bioengineering10121361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
Despite extensive genetic and biochemical characterization, the molecular genetic basis underlying the biosynthesis of β-diketones remains largely unexplored. β-Diketones and their complexes find broad applications as biologically active compounds. In this study, in silico molecular docking results revealed that two β-diketone derivatives, namely 2-(2-(4-fluorophenyl)hydrazono)-5,5-dimethylcyclohexane-1,3-dione and 5,5-dimethyl-2-(2-(2-(trifluoromethyl)phenyl)hydrazono)cyclohexane-1,3-dione, exhibit anti-COX-2 activities. However, recent docking results indicated that the relative anti-COX-2 activity of these two studied β-diketones was influenced by the employed docking programs. For improved design of COX-2 inhibitors from β-diketones, we conducted molecular dynamics simulations, density functional theory (DFT) calculations, Hirshfeld surface analysis, energy framework, and ADMET studies. The goal was to understand the interaction mechanisms and evaluate the inhibitory characteristics. The results indicate that 5,5-dimethyl-2-(2-(2-(trifluoromethyl)phenyl)hydrazono)cyclohexane-1,3-dione shows greater anti-COX-2 activity compared to 2-(2-(4-fluorophenyl)hydrazono)-5,5-dimethylcyclohexane-1,3-dione.
Collapse
Affiliation(s)
- Malahat Musrat Kurbanova
- Organic Chemistry Department, Baku State University, Z. Khalilov 23, Baku 1148, Azerbaijan; (A.M.M.); (A.Z.S.)
| | - Abel Mammadali Maharramov
- Organic Chemistry Department, Baku State University, Z. Khalilov 23, Baku 1148, Azerbaijan; (A.M.M.); (A.Z.S.)
| | - Arzu Zabit Sadigova
- Organic Chemistry Department, Baku State University, Z. Khalilov 23, Baku 1148, Azerbaijan; (A.M.M.); (A.Z.S.)
| | - Fidan Zaur Gurbanova
- Department of Pharmacy and Biotechnology, Bioinformatics, University of Bologna, Via Marsala, 49/A, 40126 Bologna, Italy;
| | - Suraj Narayan Mali
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra 835215, India;
| | - Rashad Al-Salahi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Youness El Bakri
- Department of Theoretical and Applied Chemistry, South Ural State University, Lenin Prospect 76, Chelyabinsk 454080, Russia;
| | - Chin-Hung Lai
- Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung 40241, Taiwan
| |
Collapse
|
12
|
Rinaldi Tosi ME, Palermo V, Giannini FA, Fernández Baldo MA, Díaz JRA, Lima B, Feresin GE, Romanelli GP, Baldoni HA. N-Sulfonyl-1,2,3,4-tetrahydroisoquinoline Derivatives: Synthesis, Antimicrobial Evaluations, and Theoretical Insights. Chem Biodivers 2023; 20:e202300905. [PMID: 37798253 DOI: 10.1002/cbdv.202300905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/07/2023]
Abstract
Microbial contamination remains a significant economic challenge in the food industry, emphasizing the need for innovative antimicrobial solutions. In this study, we synthesized N-sulfonyl-1,2,3,4-tetrahydroisoquinolines (NSTHIQ) derivatives using an environmentally friendly Preyssler heteropolyacid catalyst, obtaining moderate to high yields (35-91 %) under mild conditions. Two derivatives (5 and 6) exhibited significant antifungal properties against various fungal species, including Aspergillus spp, Penicillium spp, and Botrytis cinerea. ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) analysis revealed the absence of hepatic toxicity in all compounds, making derivatives 2, 3, 4, and 5 potential candidates for further development. However, derivatives 6 and 7 exhibited immunotoxicity. In support of our experimental findings, reactivity indices were computed using Density Functional Theory principles, deriving valuable insights into the chemical properties of these derivatives. This study underscores the potential of NSTHIQ compounds as potent antifungal agents, coupled with the importance of employing environmentally friendly catalysts in drug discovery.
Collapse
Affiliation(s)
- Martín E Rinaldi Tosi
- Laboratorio de Biotecnología y Tecnologías Biomédicas, Centro de Estudios para la Innovación y el Desarrollo (CEPID), Facultad de Ciencias Médicas, Universidad Católica de Cuyo, Felipe Velázquez 471 CP, 5700, Ciudad de San Luis, Argentina
| | - Valeria Palermo
- Grupo de Investigación en Síntesis Orgánica Ecoeficiente (GISOE), Centro de Investigación y Desarrollo en Ciencias Aplicadas 'Dr. Jorge J. Ronco' (CINDECA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CIC-CONICET, Calle 47 Nro 257, B1900AJK, La Plata, Argentina
| | - Fernando A Giannini
- Área de Química General e Inorgánica, Departamento de Química, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco 917, D5700BWS, San Luis, Argentina
| | - Martín A Fernández Baldo
- Universidad Nacional de San Luis, Facultad de Química, Bioquímica y Farmacia, Área de Química Analítica - Instituto de Química de San Luis, INQUISAL (UNSL - CONICET), Chacabuco 917, D5700BWS, San Luis, Argentina
| | - Jorge R A Díaz
- Área de Química General e Inorgánica, Departamento de Química, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco 917, D5700BWS, San Luis, Argentina
| | - Beatriz Lima
- Instituto de Biotecnología, Instituto de Ciencias Básicas, Universidad Nacional de San Juan, Av. Libertador General San Martin, 1109 O, San Juan, Argentina
| | - Gabriela E Feresin
- Instituto de Biotecnología, Instituto de Ciencias Básicas, Universidad Nacional de San Juan, Av. Libertador General San Martin, 1109 O, San Juan, Argentina
| | - Gustavo P Romanelli
- Grupo de Investigación en Síntesis Orgánica Ecoeficiente (GISOE), Centro de Investigación y Desarrollo en Ciencias Aplicadas 'Dr. Jorge J. Ronco' (CINDECA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CIC-CONICET, Calle 47 Nro 257, B1900AJK, La Plata, Argentina
- CISAV. Cátedra de Química Orgánica, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, Calles 60 y 119 s/n, B1904AAN, La Plata, Argentina
| | - Héctor A Baldoni
- Área de Química General e Inorgánica, Departamento de Química, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco 917, D5700BWS, San Luis, Argentina
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, IMIBIO-SL, CONICET-UNSL, Av. Ejército de los Andes 950, D5700HHW, San Luis, Argentina
| |
Collapse
|
13
|
Chen YC, Wu HY, Wu WS, Hsu JY, Chang CW, Lee YH, Liao PC. Identification of Xenobiotic Biotransformation Products Using Mass Spectrometry-Based Metabolomics Integrated with a Structural Elucidation Strategy by Assembling Fragment Signatures. Anal Chem 2023; 95:14279-14287. [PMID: 37713273 PMCID: PMC10538286 DOI: 10.1021/acs.analchem.3c02419] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023]
Abstract
The identification of xenobiotic biotransformation products is crucial for delineating toxicity and carcinogenicity that might be caused by xenobiotic exposures and for establishing monitoring systems for public health. However, the lack of available reference standards and spectral data leads to the generation of multiple candidate structures during identification and reduces the confidence in identification. Here, a UHPLC-HRMS-based metabolomics strategy integrated with a metabolite structure elucidation approach, namely, FragAssembler, was proposed to reduce the number of false-positive structure candidates. biotransformation product candidates were filtered by mass defect filtering (MDF) and multiple-group comparison. FragAssembler assembled fragment signatures from the MS/MS spectra and generated the modified moieties corresponding to the identified biotransformation products. The feasibility of this approach was demonstrated by the three biotransformation products of di(2-ethylhexyl)phthalate (DEHP). Comprehensive identification was carried out, and 24 and 13 biotransformation products of two xenobiotics, DEHP and 4'-Methoxy-α-pyrrolidinopentiophenone (4-MeO-α-PVP), were annotated, respectively. The number of 4-MeO-α-PVP biotransformation product candidates in the FragAssembler calculation results was approximately 2.1 times lower than that generated by BioTransformer 3.0. Our study indicates that the proposed approach has great potential for efficiently and reliably identifying xenobiotic biotransformation products, which is attributed to the fact that FragAssembler eliminates false-positive reactions and chemical structures and distinguishes modified moieties on isomeric biotransformation products. The FragAssembler software and associated tutorial are freely available at https://cosbi.ee.ncku.edu.tw/FragAssembler/ and the source code can be found at https://github.com/YuanChihChen/FragAssembler.
Collapse
Affiliation(s)
- Yuan-Chih Chen
- Department
of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Hsin-Yi Wu
- Instrumentation
Center, National Taiwan University, Taipei 106, Taiwan
| | - Wei-Sheng Wu
- Department
of Electrical Engineering, National Cheng
Kung University, Tainan 701, Taiwan
| | - Jen-Yi Hsu
- Department
of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Chih-Wei Chang
- Department
of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Yuan-Han Lee
- Department
of Electrical Engineering, National Cheng
Kung University, Tainan 701, Taiwan
| | - Pao-Chi Liao
- Department
of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| |
Collapse
|
14
|
Zhang J, Qiu Z, Zhang Y, Wang G, Hao H. Intracellular spatiotemporal metabolism in connection to target engagement. Adv Drug Deliv Rev 2023; 200:115024. [PMID: 37516411 DOI: 10.1016/j.addr.2023.115024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/05/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
The metabolism in eukaryotic cells is a highly ordered system involving various cellular compartments, which fluctuates based on physiological rhythms. Organelles, as the smallest independent sub-cell unit, are important contributors to cell metabolism and drug metabolism, collectively designated intracellular metabolism. However, disruption of intracellular spatiotemporal metabolism can lead to disease development and progression, as well as drug treatment interference. In this review, we systematically discuss spatiotemporal metabolism in cells and cell subpopulations. In particular, we focused on metabolism compartmentalization and physiological rhythms, including the variation and regulation of metabolic enzymes, metabolic pathways, and metabolites. Additionally, the intricate relationship among intracellular spatiotemporal metabolism, metabolism-related diseases, and drug therapy/toxicity has been discussed. Finally, approaches and strategies for intracellular spatiotemporal metabolism analysis and potential target identification are introduced, along with examples of potential new drug design based on this.
Collapse
Affiliation(s)
- Jingwei Zhang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Zhixia Qiu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yongjie Zhang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China; Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China.
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
15
|
Tess D, Chang GC, Keefer C, Carlo A, Jones R, Di L. In Vitro-In Vivo Extrapolation and Scaling Factors for Clearance of Human and Preclinical Species with Liver Microsomes and Hepatocytes. AAPS J 2023; 25:40. [PMID: 37052732 DOI: 10.1208/s12248-023-00800-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/03/2023] [Indexed: 04/14/2023] Open
Abstract
In vitro-in vivo extrapolation ((IVIVE) and empirical scaling factors (SF) of human intrinsic clearance (CLint) were developed using one of the largest dataset of 455 compounds with data from human liver microsomes (HLM) and human hepatocytes (HHEP). For extended clearance classification system (ECCS) class 2/4 compounds, linear SFs (SFlin) are approximately 1, suggesting enzyme activities in HLM and HHEP are similar to those in vivo under physiological conditions. For ECCS class 1A/1B compounds, a unified set of SFs was developed for CLint. These SFs contain both SFlin and an exponential SF (SFβ) of fraction unbound in plasma (fu,p). The unified SFs for class 1A/1B eliminate the need to identify the transporters involved prior to clearance prediction. The underlying mechanisms of these SFs are not entirely clear at this point, but they serve practical purposes to reduce biases and increase prediction accuracy. Similar SFs have also been developed for preclinical species. For HLM-HHEP disconnect (HLM > HHEP) ECCS class 2/4 compounds that are mainly metabolized by cytochrome P450s/FMO, HLM significantly overpredicted in vivo CLint, while HHEP slightly underpredicted and geometric mean of HLM and HHEP slightly overpredicted in vivo CLint. This observation is different than in rats, where rat liver microsomal CLint correlates well with in vivo CLint for compounds demonstrating permeability-limited metabolism. The good CLint IVIVE developed using HLM and HHEP helps build confidence for prospective predictions of human clearance and supports the continued utilization of these assays to guide structure-activity relationships to improve metabolic stability.
Collapse
Affiliation(s)
- David Tess
- Modeling and Simulation, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - George C Chang
- Modeling and Simulation, Pfizer Worldwide Research and Development, Groton, CT, USA
| | - Christopher Keefer
- Modeling and Simulation, Pfizer Worldwide Research and Development, Groton, CT, USA
| | - Anthony Carlo
- Discovery Sciences, Pfizer Worldwide Research and Development, Groton, CT, USA
| | - Rhys Jones
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, La Jolla, CA, USA
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, CT, 06340, USA.
| |
Collapse
|
16
|
Qi D, Li H, Liang C, Peng P, Yang Z, Gao Y, Li Z, Zhang Q, Liu Z. Herb-drug interaction of Xingnaojing injection and Edaravone via pharmacokinetics, mixed inhibition of UGTs, and molecular docking. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154696. [PMID: 36764095 DOI: 10.1016/j.phymed.2023.154696] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Xingnaojing injection (XNJ) is a famous emergency Traditional Chinese medicine (TCM) derived from the classical Chinese prescription named An-Gong-Niu-Huang Pill. XNJ is often used along with Edaravone injection (EDA) to treat acute ischemic stroke, they have a synergistic effect in improving patients' blood coagulation and neurological function. However, this combination also causes herb-drug interactions (HDIs), raising the risk of adverse reactions. At present, little is known about the pharmacokinetics and potential mechanism of XNJ combined with EDA. PURPOSE This study investigates the pharmacokinetics and potential mechanism of the HDIs between XNJ and EDA. STUDY DESIGN AND METHODS The pharmacokinetic interactions between XNJ and EDA were studied by GC-MS in rats, and the inhibition of XNJ and (-)-borneol on UDP-glucuronosyltransferase (UGTs) were assayed by LC-MS/MS in vitro. In vitro-in vivo extrapolation (IVIVE) and molecular docking were performed to reveal the potential for HDIs. RESULTS The AUC0-∞ of (-)-borneol was increased by 1.25-fold in group EDA+XNJ 10 min later, and the Cmax of edaravone was increased by 1.6-fold in group XNJ+EDA 10 min later (p < 0.05). XNJ and (-)-borneol inhibited UGTs-mediated edaravone metabolism in HLM and RLM with a similar inhibitory intensity, in which both of them have stronger inhibition in RLM. These findings demonstrated that (-)-borneol in XNJ mainly exerted UGTs inhibition, which was consistent with the pharmacokinetic assays. (-)-Borneol moderately inhibited UGT2B7 and UGT1A6 by a mixed inhibition mechanism, with Ki values of 101.393 and 136.217 μM, respectively. Due to the blood concentration of injection was dramatically increased, the HDIs caused by the inhibitory effect of XNJ on UGTs should be highly emphasized. The binding energies of (-)-borneol and edaravone toward UGT2B7 were -6.254 and -6.643 kcal/mol, and the scores towards UGT1A6 were -5.220 and -6.469 kcal/mol, respectively. Moreover, (-)-borneol has similar free energies to many drugs metabolized by UGT2B7 and UGT1A6. CONCLUSIONS (-)-Borneol modulates the pharmacokinetic behavior of edaravone via mixed inhibition of UGT2B7 and UGT1A6. It provides a theoretical basis for the synergistic effect of XNJ and EDA combinations in clinical practice. When XNJ is used along with UGT2B7 and UGT1A6 substrates, it should be used clinically with caution.
Collapse
Affiliation(s)
- Dongli Qi
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huihui Li
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chunxia Liang
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Peijin Peng
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhen Yang
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanquan Gao
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ziwei Li
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qingqing Zhang
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhidong Liu
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
17
|
Lee SJ, Joo SA, Kim H, Lee Y, Chung SJ, Chae YJ, Maeng HJ. Involvement of CYP3A4 and MDR1 in altered metabolism and transport of indinavir in 1,25(OH) 2D 3-treated Caco-2 cells. Eur J Pharm Sci 2023; 183:106396. [PMID: 36736464 DOI: 10.1016/j.ejps.2023.106396] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/02/2023] [Accepted: 01/30/2023] [Indexed: 02/02/2023]
Abstract
Altered drug concentrations may induce unexpected toxicity or treatment failure; thus, understanding the factors that alter the pharmacokinetic profiles of drugs is crucial for optimal disease treatment. Vitamin D receptor (VDR), a nuclear receptor, regulates the expression of cytochrome P450 3A4 (CYP3A4) and multidrug resistance protein 1 (MDR1), which are crucial determinants of drug pharmacokinetics. In this study, we investigated the effects of 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], a VDR ligand, on the metabolism, transport, and pharmacokinetics of indinavir, a dual substrate of CYP3A4 and MDR1. 1,25(OH)2D3 treatment for three days upregulated the expression levels of CYP3A4 and MDR1 in Caco-2 cells and consequently led to an increase in the level of a metabolite formed via CYP3A4 (indinavir M6) and the efflux ratio of indinavir in transport study. The increase in the metabolic reaction was also confirmed through a metabolism assay performed using the lysate of 1,25(OH)2D3-treated Caco-2 cells. In the Ussing chamber study conducted with the rat intestine, 1,25(OH)2D3 treatment did not alter the transport of indinavir into the basolateral side but increased indinavir M6 formation. Similarly, plasma levels of the metabolite increased in 1,25(OH)2D3-treated rats; however, systemic exposure to indinavir led to insignificant alterations. Considering the overlapping substrate specificities for CYP3A4 and MDR1 and their significant roles in drug pharmacokinetics, VDR may play an important role in drug interactions of CYP3A4 and MDR1 substrates for accessing more effective and safe disease treatments.
Collapse
Affiliation(s)
- Su-Jin Lee
- College of Pharmacy, Gachon University, Incheon 21936, Korea
| | - Seul-A Joo
- College of Pharmacy, Gachon University, Incheon 21936, Korea
| | - Heejeong Kim
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Yunjong Lee
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Suk-Jae Chung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Yoon-Jee Chae
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju 55338, Korea.
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, Incheon 21936, Korea.
| |
Collapse
|
18
|
Ademuwagun IA, Oduselu GO, Rotimi SO, Adebiyi E. Pharmacophore-Aided Virtual Screening and Molecular Dynamics Simulation Identifies TrkB Agonists for Treatment of CDKL5-Deficiency Disorders. Bioinform Biol Insights 2023; 17:11779322231158254. [PMID: 36895324 PMCID: PMC9989394 DOI: 10.1177/11779322231158254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/31/2023] [Indexed: 03/06/2023] Open
Abstract
Therapeutic intervention in cyclin-dependent kinase-like 5 (CDKL5) deficiency disorders (CDDs) has remained a concern over the years. Recent advances into the mechanistic interplay of signalling pathways has revealed the role of deficient tropomyosin receptor kinase B (TrkB)/phospholipase C γ1 signalling cascade in CDD. Novel findings showed that in vivo administration of a TrkB agonist, 7,8-dihydroxyflavone (7,8-DHF), resulted in a remarkable reversal in the molecular pathologic mechanisms underlying CDD. Owing to this discovery, this study aimed to identify more potent TrkB agonists than 7,8-DHF that could serve as alternatives or combinatorial drugs towards effective management of CDD. Using pharmacophore modelling and multiple database screening, we identified 691 compounds with identical pharmacophore features with 7,8-DHF. Virtual screening of these ligands resulted in identification of at least 6 compounds with better binding affinities than 7,8-DHF. The in silico pharmacokinetic and ADMET studies of the compounds also indicated better drug-like qualities than those of 7,8-DHF. Postdocking analyses and molecular dynamics simulations of the best hits, 6-hydroxy-10-(2-oxo-1-azatricyclo[7.3.1.05,13]trideca-3,5(13),6,8-tetraen-3-yl)-8-oxa-13,14,16-triazatetracyclo[7.7.0.02,7.011,15]hexadeca-1,3,6,9,11,15-hexaen-5-one (PubChem: 91637738) and 6-hydroxy-10-(8-methyl-2-oxo-1H-quinolin-3-yl)-8-oxa-13,14,16-triazatetracyclo[7.7.0.02,7.011,15]hexadeca-1,3,6,9,11,15-hexaen-5-one (PubChem ID: 91641310), revealed unique ligand interactions, validating the docking findings. We hereby recommend experimental validation of the best hits in CDKL5 knock out models before consideration as drugs in CDD management.
Collapse
Affiliation(s)
- Ibitayo Abigail Ademuwagun
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
- Department of Biochemistry, Covenant University, Ota, Nigeria
| | - Gbolahan Oladipupo Oduselu
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
- Department of Chemistry, Covenant University, Ota, Nigeria
| | - Solomon Oladapo Rotimi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
- Department of Biochemistry, Covenant University, Ota, Nigeria
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
- Department of Computer and Information Sciences, Covenant University, Ota, Nigeria
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
19
|
Chowdhury H, Kumar Bera A, Subhasmita Raut S, Chandra Malick R, Sekhar Swain H, Saha A, Kumar Das B. In Vitro Antibacterial Efficacy of Cymbopogon flexuosus Essential Oil against Aeromonas hydrophila of Fish Origin and in Silico Molecular Docking of the Essential Oil Components against DNA Gyrase-B and Their Drug-Likeness. Chem Biodivers 2023; 20:e202200668. [PMID: 36799768 DOI: 10.1002/cbdv.202200668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
In aquaculture, diseases caused by the Aeromonads with high antibiotic resistance are among the most common and troublesome diseases. Application of herbs is emerging as a tool in controlling these diseases. Plant extracts besides disease control, favor various physiological activities in fish. In this study, essential oil of Cymbopogon flexuosus (Poaceae family) was studied in vitro for its antibacterial efficacy against two oxytetracycline (OTC) resistant and one sensitive strains of Aeromonas hydrophila. The oil was found rich (86.93 %) in oxygenated terpenoids containing 74.15 % of citral. The oil exhibited dose dependent growth inhibition of the bacteria. Mean MIC value of the oil against the sensitive strain was recorded as 2.0 mg mL-1 whereas MBC value was recorded as 4.0 mg mL-1 . The oil was found effective against the OTC resistant isolates with the MIC and MBC values ranging from 2.67-3.33 and 4.0-6.67 mg mL-1 , respectively. In silico molecular docking of the essential oil components against DNA gyrase-B, a vital macromolecule in bacterial cell, was carried out to computationally asses the efficacy of the oil against the bacteria. Some of the components of the essential oil strongly bonded with the enzyme to inhibit its efficacy. Binding energy of some components of the oil was comparable to that of the conventional antibiotic, OTC. The identified phytochemicals exhibited favorable physicochemical and pharmacokinetic properties and satisfied the rule of five (Ro5).
Collapse
Affiliation(s)
- Hemanta Chowdhury
- ICAR - Central Inland Fisheries Research Institute, Manirampore, Barrackpore, Kolkata 700 120, West Bengal, India
| | - Asit Kumar Bera
- ICAR - Central Inland Fisheries Research Institute, Manirampore, Barrackpore, Kolkata 700 120, West Bengal, India
| | - Subhashree Subhasmita Raut
- ICAR - Central Inland Fisheries Research Institute, Manirampore, Barrackpore, Kolkata 700 120, West Bengal, India
| | - Ramesh Chandra Malick
- ICAR - Central Inland Fisheries Research Institute, Manirampore, Barrackpore, Kolkata 700 120, West Bengal, India
| | - Himanshu Sekhar Swain
- ICAR - Central Inland Fisheries Research Institute, Manirampore, Barrackpore, Kolkata 700 120, West Bengal, India
| | - Ajoy Saha
- ICAR - Central Inland Fisheries Research Institute, Manirampore, Barrackpore, Kolkata 700 120, West Bengal, India
| | - Basanta Kumar Das
- ICAR - Central Inland Fisheries Research Institute, Manirampore, Barrackpore, Kolkata 700 120, West Bengal, India
| |
Collapse
|
20
|
Medoro A, Jafar TH, Ali S, Trung TT, Sorrenti V, Intrieri M, Scapagnini G, Davinelli S. In silico evaluation of geroprotective phytochemicals as potential sirtuin 1 interactors. Biomed Pharmacother 2023; 161:114425. [PMID: 36812712 DOI: 10.1016/j.biopha.2023.114425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Sirtuin 1 (SIRT1) belongs to the histone deacetylase enzyme family and its activity regulates various signaling networks associated with aging. SIRT1 is widely involved in a large number of biological processes, including senescence, autophagy, inflammation, and oxidative stress. In addition, SIRT1 activation may improve lifespan and health in numerous experimental models. Therefore, SIRT1 targeting is a potential strategy to delay or reverse aging and age-related diseases. Although SIRT1 is activated by a wide array of small molecules, only a limited number of phytochemicals that directly interact with SIRT1 have been identified. Using the Geroprotectors.org database and a literature search, the aim of this study was to identify geroprotective phytochemicals that might interact with SIRT1. We performed molecular docking, density functional theory studies, molecular dynamic simulations (MDS), and absorption, distribution, metabolism, excretion, and toxicity (ADMET) prediction to screen potential candidates against SIRT1. After the initial screening of 70 phytochemicals, crocin, celastrol, hesperidin, taxifolin, vitexin, and quercetin had significant binding affinity scores. These six compounds established multiple hydrogen-bonding and hydrophobic interactions with SIRT1 and showed good drug-likeness and ADMET properties. In particular, crocin was further analyzed using MDS to study its complex with SIRT1 during simulation. Crocin has a high reactivity to SIRT1 and can form a stable complex with it, showing a good ability to fit into the binding pocket. Although further investigations are required, our results suggest that these geroprotective phytochemicals, especially crocin, are novel interacting partners of SIRT1.
Collapse
Affiliation(s)
- Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy
| | - Tassadaq Hussain Jafar
- Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy
| | - Sawan Ali
- Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy
| | - Truong Tan Trung
- Laboratory of Computation and Nanoscience, Dong Nai Technology University, Dong Nai, Vietnam
| | - Vincenzo Sorrenti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Mariano Intrieri
- Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy.
| | - Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy
| |
Collapse
|
21
|
Tachoua W, Kabrine M, Mushtaq M, Selmi A, Ul-Haq Z. Highlights in TMPRSS2 inhibition mechanism with guanidine derivatives approved drugs for COVID-19 treatment. J Biomol Struct Dyn 2023; 41:12908-12922. [PMID: 36709428 DOI: 10.1080/07391102.2023.2169762] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/11/2023] [Indexed: 01/30/2023]
Abstract
Transmembrane protease serine 2 (TMPRSS2) has been identified as a critical key for the entry of coronaviruses into human cells by cleaving and activating the spike protein of SARS-CoV-2. To block the TMPRSS2 function, 18 approved drugs, containing the guanidine group were tested against TMPRSS2's ectodomain (7MEQ). Among these drugs, Famotidine, Argatroban, Guanadrel and Guanethidine strongly binds with TMPRSS2 S1 pocket with estimated Fullfitness energies of -1847.12, -1630.87, -1605.81 and -1600.52 kcal/mol, respectively. A significant number of non-covalent interactions such as hydrogen bonding, hydrophobic and electrostatic interactions were detected in protein-ligand complexes. In addition, the ADMET analysis revealed a perfect concurrence with the aptitude of these drugs to be developed as an anti-SARS-CoV-2 therapeutics. Further, MD simulation and binding free energy calculations were performed to evaluate the dynamic behavior and stability of protein-ligand complexes. The results obtained herein highlight the enhanced stability and good binding affinities of the Argatroban and Famotidine towards the target protein, hence might act as new scaffolds for TMPRSS2 inhibition.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wafa Tachoua
- Nature and Life Sciences department, University of Algiers Benyoucef Benkhedda, Algiers, Algeria
| | - Mohamed Kabrine
- Faculty of Biological Sciences, Cellular and Molecular Biology, University of Science and Technology Houari Boumediene, Algiers, Algeria
| | - Mamona Mushtaq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi, Pakistan
| | - Ahmed Selmi
- Faculty of Sciences of Gafsa, University of Gafsa, Gafsa, Tunisia
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi, Pakistan
| |
Collapse
|
22
|
Oladejo DO, duselu GO, Dokunmu TM, Isewon I, Oyelade J, Okafor E, Iweala EEJ, Adebiyi E. In silico Structure Prediction, Molecular Docking, and Dynamic Simulation of Plasmodium falciparum AP2-I Transcription Factor. Bioinform Biol Insights 2023; 17:11779322221149616. [PMID: 36704725 PMCID: PMC9871981 DOI: 10.1177/11779322221149616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/18/2022] [Indexed: 01/22/2023] Open
Abstract
Plasmodium falciparum Apicomplexan Apetala 2 Invasion (PfAP2-I) transcription factor (TF) is a protein that regulates the expression of a subset of gene families involved in P. falciparum red blood cell (RBC) invasion. Inhibiting PfAP2-I TF with small molecules represents a potential new antimalarial therapeutic target to combat drug resistance, which this study aims to achieve. The 3D model structure of PfAP2-I was predicted ab initio using ROBETTA prediction tool and was validated using Save server 6.0 and MolProbity. Computed Atlas of Surface Topography of proteins (CASTp) 3.0 was used to predict the active sites of the PfAP2-I modeled structure. Pharmacophore modeling of the control ligand and PfAP2-I modeled structure was carried out using the Pharmit server to obtain several compounds used for molecular docking analysis. Molecular docking and postdocking studies were conducted using AutoDock vina and Discovery studio. The designed ligands' toxicity predictions and in silico drug-likeness were performed using the SwissADME predictor and OSIRIS Property Explorer. The modeled protein structure from the ROBETTA showed a validation result of 96.827 for ERRAT, 90.2% of the amino acid residues in the most favored region for the Ramachandran plot, and MolProbity score of 1.30 in the 98th percentile. Five (5) best hit compounds from molecular docking analysis were selected based on their binding affinity (between -8.9 and -11.7 Kcal/mol) to the active site of PfAP2-I and were considered for postdocking studies. For the absorption, distribution, metabolism, elimination, and toxicity (ADMET) properties, compound MCULE-7146940834 had the highest drug score (0.63) and drug-likeness (6.76). MCULE-7146940834 maintained a stable conformation within the flexible protein's active site during simulation. The good, estimated binding energies, drug-likeness, drug score, and molecular dynamics simulation interaction observed for MCULE-7146940834 against PfAP2-I show that MCULE-7146940834 can be considered a lead candidate for PfAP2-I inhibition. Experimental validations should be carried out to ascertain the efficacy of these predicted best hit compounds.
Collapse
Affiliation(s)
- David O Oladejo
- Covenant Applied Informatics and
Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota,
Nigeria
- Department of Biochemistry, College of
Science and Technology, Covenant University, Ota, Nigeria
| | - Gbolahan O duselu
- Department of Chemistry, College of
Science and Technology, Covenant University, Ota, Nigeria
| | - Titilope M Dokunmu
- Covenant Applied Informatics and
Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota,
Nigeria
- Department of Biochemistry, College of
Science and Technology, Covenant University, Ota, Nigeria
| | - Itunuoluwa Isewon
- Covenant Applied Informatics and
Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota,
Nigeria
- Department of Computer and Information
Science, College of Science and Technology, Covenant University, Ota, Nigeria
| | - Jelili Oyelade
- Covenant Applied Informatics and
Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota,
Nigeria
- Department of Computer and Information
Science, College of Science and Technology, Covenant University, Ota, Nigeria
| | - Esther Okafor
- Department of Biochemistry, College of
Science and Technology, Covenant University, Ota, Nigeria
| | - Emeka EJ Iweala
- Covenant Applied Informatics and
Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota,
Nigeria
- Department of Biochemistry, College of
Science and Technology, Covenant University, Ota, Nigeria
| | - Ezekiel Adebiyi
- Covenant Applied Informatics and
Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota,
Nigeria
- Department of Computer and Information
Science, College of Science and Technology, Covenant University, Ota, Nigeria
| |
Collapse
|
23
|
Marie S, Frost KL, Hau RK, Martinez-Guerrero L, Izu JM, Myers CM, Wright SH, Cherrington NJ. Predicting disruptions to drug pharmacokinetics and the risk of adverse drug reactions in non-alcoholic steatohepatitis patients. Acta Pharm Sin B 2023; 13:1-28. [PMID: 36815037 PMCID: PMC9939324 DOI: 10.1016/j.apsb.2022.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/18/2022] Open
Abstract
The liver plays a central role in the pharmacokinetics of drugs through drug metabolizing enzymes and transporters. Non-alcoholic steatohepatitis (NASH) causes disease-specific alterations to the absorption, distribution, metabolism, and excretion (ADME) processes, including a decrease in protein expression of basolateral uptake transporters, an increase in efflux transporters, and modifications to enzyme activity. This can result in increased drug exposure and adverse drug reactions (ADRs). Our goal was to predict drugs that pose increased risks for ADRs in NASH patients. Bibliographic research identified 71 drugs with reported ADRs in patients with liver disease, mainly non-alcoholic fatty liver disease (NAFLD), 54 of which are known substrates of transporters and/or metabolizing enzymes. Since NASH is the progressive form of NAFLD but is most frequently undiagnosed, we identified other drugs at risk based on NASH-specific alterations to ADME processes. Here, we present another list of 71 drugs at risk of pharmacokinetic disruption in NASH, based on their transport and/or metabolism processes. It encompasses drugs from various pharmacological classes for which ADRs may occur when used in NASH patients, especially when eliminated through multiple pathways altered by the disease. Therefore, these results may inform clinicians regarding the selection of drugs for use in NASH patients.
Collapse
Affiliation(s)
- Solène Marie
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Kayla L. Frost
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Raymond K. Hau
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Lucy Martinez-Guerrero
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Jailyn M. Izu
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Cassandra M. Myers
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Stephen H. Wright
- College of Medicine, Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| | - Nathan J. Cherrington
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA,Corresponding author. Tel.: +1 520 6260219; fax: +1 520 6266944.
| |
Collapse
|
24
|
Pyasi S, Jonniya NA, Sk MF, Nayak D, Kar P. Finding potential inhibitors against RNA-dependent RNA polymerase (RdRp) of bovine ephemeral fever virus (BEFV): an in- silico study. J Biomol Struct Dyn 2022; 40:10403-10421. [PMID: 34238122 DOI: 10.1080/07391102.2021.1946714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The bovine ephemeral fever virus (BEFV) is an enzootic agent that affects millions of bovines and causes major economic losses. Though the virus is seasonally reported with a very high morbidity rate (80-100%) from African, Australian, and Asiatic continents, it remains a neglected pathogen in many of its endemic areas, with no proper therapeutic drugs or vaccines presently available for treatment. The RNA-dependent RNA polymerase (RdRp) catalyzes the viral RNA synthesis and is an appropriate candidate for antiviral drug developments. We utilized integrated computational tools to build the 3D model of BEFV-RdRp and then predicted its probable active binding sites. The virtual screening and optimization against these active sites, using several small-molecule inhibitors from a different category of Life Chemical database and FDA-approved drugs from the ZINC database, was performed. We found nine molecules that have docking scores varying between -6.84 to -10.43 kcal/mol. Furthermore, these complexes were analyzed for their conformational dynamics and thermodynamic stability using molecular dynamics simulations in conjunction with the molecular mechanics generalized Born surface area (MM-GBSA) scheme. The binding free energy calculations depict that the electrostatic interactions play a dominant role in the RdRp-inhibitor binding. The hot spot residues, such as Arg565, Asp631, Glu633, Asp740, and Glu707, were found to control the RdRp-inhibitor interaction. The ADMET analysis strongly suggests favorable pharmacokinetics of these compounds that may prove useful for treating the BEFV ailment. Overall, we anticipate that these findings would help explore and develop a wide range of anti-BEFV therapy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shruti Pyasi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Nisha Amarnath Jonniya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Md Fulbabu Sk
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Debasis Nayak
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| |
Collapse
|
25
|
Akl L, Abd El-Hafeez AA, Ibrahim TM, Salem R, Marzouk HMM, El-Domany RA, Ghosh P, Eldehna WM, Abou-Seri SM. Identification of novel piperazine-tethered phthalazines as selective CDK1 inhibitors endowed with in vitro anticancer activity toward the pancreatic cancer. Eur J Med Chem 2022; 243:114704. [PMID: 36095992 DOI: 10.1016/j.ejmech.2022.114704] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022]
Abstract
Pharmacologic inhibition of the oncogenic protein kinases using small molecules is a promising strategy to combat several human malignancies. CDK1 is an example of such a valuable target for the management of pancreatic ductal adenocarcinomas (PDAC); its overexpression in PDAC positively correlates with the size, histological grade and tumor aggressiveness. Here we report the identification of novel series of 1-piperazinyl-4-benzylphthalazine derivatives (8a-g, 10a-i and 12a-d) as promising anticancer agents with CDK1 inhibitory activity. The anti-proliferative activity of these agents was first screened on a panel of 11 cell lines representing 5 cancers (pancreas, melanoma, leukemia, colon and breast), and then confirmed on two CDK1-overexpressing PDAC cell lines (MDA-PATC53 and PL45 cells). Phthalazines 8g, 10d and 10h displayed potent activity against MDA-PATC53 (IC50 = 0.51, 0.88 and 0.73 μM, respectively) and PL45 (IC50 = 0.74, 1.14 and 1.00 μM, respectively) cell lines. Furthermore, compounds 8g, 10d and 10h exhibited potent and selective inhibitory activity toward CDK1 with IC50 spanning in the range 36.80-44.52 nM, whereas they exerted weak inhibitory effect on CDK2, CDK5, AXL, PTK2B, FGFR, JAK1, IGF1R and BRAF kinases. Western blotting of CDK1 in MDA-PATC53 cells confirmed the ability of target phthalazines to diminish the CDK1 levels, and cell cycle analyses revealed their ability to arrest the cell cycle at G2/M phase. In conclusion, a panel of potent and selective CDK1 inhibitors were identified which can serve as lead compounds for designing further CDK1 inhibitors.
Collapse
Affiliation(s)
- Laila Akl
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Amer Ali Abd El-Hafeez
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Rofaida Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Hala Mohamed M Marzouk
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Department of Biochemistry, Faculty of Medicine, Minia University, El-Minia, 61519, Egypt
| | - Ramadan A El-Domany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA; Moores Comprehensive Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt.
| | - Sahar M Abou-Seri
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt.
| |
Collapse
|
26
|
Xu Y, Fan B, Gao Y, Chen Y, Han D, Lu J, Liu T, Gao Q, Zhang JZ, Wang M. Design Two Novel Tetrahydroquinoline Derivatives against Anticancer Target LSD1 with 3D-QSAR Model and Molecular Simulation. Molecules 2022; 27:molecules27238358. [PMID: 36500451 PMCID: PMC9739212 DOI: 10.3390/molecules27238358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Lysine-specific demethylase 1 (LSD1) is a histone-modifying enzyme, which is a significant target for anticancer drug research. In this work, 40 reported tetrahydroquinoline-derivative inhibitors targeting LSD1 were studied to establish the three-dimensional quantitative structure-activity relationship (3D-QSAR). The established models CoMFA (Comparative Molecular Field Analysis (q2 = 0.778, Rpred2 = 0.709)) and CoMSIA (Comparative Molecular Similarity Index Analysis (q2 = 0.764, Rpred2 = 0.713)) yielded good statistical and predictive properties. Based on the corresponding contour maps, seven novel tetrahydroquinoline derivatives were designed. For more information, three of the compounds (D1, D4, and Z17) and the template molecule 18x were explored with molecular dynamics simulations, binding free energy calculations by MM/PBSA method as well as the ADME (absorption, distribution, metabolism, and excretion) prediction. The results suggested that D1, D4, and Z17 performed better than template molecule 18x due to the introduction of the amino and hydrophobic groups, especially for the D1 and D4, which will provide guidance for the design of LSD1 inhibitors.
Collapse
Affiliation(s)
- Yongtao Xu
- School of Medical Engineering & Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang Medical University, Xinxiang 453003, China
| | - Baoyi Fan
- School of Medical Engineering & Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang Medical University, Xinxiang 453003, China
| | - Yunlong Gao
- School of Medical Engineering & Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang Medical University, Xinxiang 453003, China
| | - Yifan Chen
- School of Medical Engineering & Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang Medical University, Xinxiang 453003, China
| | - Di Han
- School of Medical Engineering & Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang Medical University, Xinxiang 453003, China
| | - Jiarui Lu
- School of Medical Engineering & Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang Medical University, Xinxiang 453003, China
| | - Taigang Liu
- School of Medical Engineering & Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang Medical University, Xinxiang 453003, China
| | - Qinghe Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - John Zenghui Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Meiting Wang
- School of Medical Engineering & Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang Medical University, Xinxiang 453003, China
- Department of Theoretical Chemistry, Chemical Centre, Lund University, SE-221 00 Lund, Sweden
- Correspondence:
| |
Collapse
|
27
|
In Silico Screening of Plant-Derived Anti-virals from Shorea hemsleyana (King) King ex Foxw Against SARS CoV-2 Main Protease. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00521-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
28
|
West MS, Gabbey AL, Huestis MP, Rousseaux SAL. Ni-Catalyzed Reductive Cross-Coupling of Cyclopropylamines and Other Strained Ring NHP Esters with (Hetero)Aryl Halides. Org Lett 2022; 24:8441-8446. [DOI: 10.1021/acs.orglett.2c03570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Michael S. West
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Alexis L. Gabbey
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Malcolm P. Huestis
- Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Sophie A. L. Rousseaux
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
29
|
Qiu M, Liang X, Deng S, Li Y, Ke Y, Wang P, Mei H. A unified GCNN model for predicting CYP450 inhibitors by using graph convolutional neural networks with attention mechanism. Comput Biol Med 2022; 150:106177. [PMID: 36242811 DOI: 10.1016/j.compbiomed.2022.106177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/19/2022] [Accepted: 10/01/2022] [Indexed: 11/17/2022]
Abstract
Undesirable drug-drug interactions (DDIs) may lead to serious adverse side effects when more than two drugs are administered to a patient simultaneously. One of the most common DDIs is caused by unexpected inhibition of a specific human cytochrome P450 (CYP450), which plays a dominant role in the metabolism of the co-administered drugs. Therefore, a unified and reliable method for predicting the potential inhibitors of CYP450 family is extremely important in drug development. In this work, graph convolutional neural network (GCN) with attention mechanism and 1-D convolutional neural network (CNN) were used to extract the features of CYP ligands and the binding sites of CYP450 respectively, which were then combined to establish a unified GCN-CNN (GCNN) model for predicting the inhibitors of 5 dominant CYP isoforms, i.e., 1A2, 2C9, 2C19, 2D6, and 3A4. Overall, the established GCNN model showed good performances on the test samples and achieved better performances than the recently proposed iCYP-MFE model by using the same datasets. Based on the heat-map analysis of the resulting molecular graphs, the key structural determinants of the CYP inhibitors were further explored.
Collapse
Affiliation(s)
- Minyao Qiu
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, Chongqing, 400044, China; College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xiaoqi Liang
- College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Siyao Deng
- College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yufang Li
- College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yanlan Ke
- College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Pingqing Wang
- College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Hu Mei
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, Chongqing, 400044, China; College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
30
|
Jin Y, Li Y, Eisenmann ED, Figg WD, Baker SD, Sparreboom A, Hu S. Determination of the endogenous OATP1B biomarkers glycochenodeoxycholate-3-sulfate and chenodeoxycholate-24-glucuronide in human and mouse plasma by a validated UHPLC-MS/MS method. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1210:123437. [PMID: 36054985 PMCID: PMC9588625 DOI: 10.1016/j.jchromb.2022.123437] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 12/11/2022]
Abstract
Glycochenodeoxycholate-3-sulfate (GCDCA-S) and chenodeoxycholate-24-glucuronide (CDCA-24G) are bile acid metabolites that potentially serve as endogenous biomarkers for drug-drug interactions mediated by the hepatic uptake transporters OATP1B1 and OATP1B3. We developed and validated a novel UHPLC-MS/MS method for the quantitative determination of GCDCA-S and CDCA-24G in mouse and human plasma with a lower limit of quantitation of 0.5 ng/mL. Chromatographic separation was achieved on an Accucore aQ column (50 mm × 2.1 mm, dp = 2.6 μm) maintained at 20 °C and a gradient mobile phase comprising 2 mM ammonium acetate in water and methanol. The extraction recoveries of GCDCA-S and CDCA-24G were >80 %, and linear (r2 > 0.99) calibration curves ranged 0.5-100 ng/mL (CDCA-24G and GCDCA-S in mouse plasma) or 0.5-1000 ng/mL (GCDCA-S in mouse plasma). Values for precision (CV < 11.6 %) and accuracy bias (10.9 %) of analyte-spiked quality control samples verified that water was an acceptable matrix to prepare calibrators. This method was successfully applied to establish baseline activity of OATP1B1/OATP1B3 in humans and mice and establish the in vivo effects of OATP1B1/OATP1B3 inhibitors rifampin and micafungin.
Collapse
Affiliation(s)
- Yan Jin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Yang Li
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Eric D Eisenmann
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - William D Figg
- Clinical Pharmacology Program, Office of the Clinical Director, National Cancer Institute, Bethesda, MD, USA
| | - Sharyn D Baker
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Shuiying Hu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA; Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
31
|
Gajula SNR, Nathani TN, Patil RM, Talari S, Sonti R. Aldehyde oxidase mediated drug metabolism: an underpredicted obstacle in drug discovery and development. Drug Metab Rev 2022; 54:427-448. [PMID: 36369949 DOI: 10.1080/03602532.2022.2144879] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Aldehyde oxidase (AO) has garnered curiosity as a non-CYP metabolizing enzyme in drug development due to unexpected consequences such as toxic metabolite generation and high metabolic clearance resulting in the clinical failure of new drugs. Therefore, poor AO mediated clearance prediction in preclinical nonhuman species remains a significant obstacle in developing novel drugs. Various isoforms of AO, such as AOX1, AOX3, AOX3L1, and AOX4 exist across species, and different AO activity among humans influences the AO mediated drug metabolism. Therefore, carefully considering the unique challenges is essential in developing successful AO substrate drugs. The in vitro to in vivo extrapolation underpredicts AO mediated drug clearance due to the lack of reliable representative animal models, substrate-specific activity, and the discrepancy between absolute concentration and activity. An in vitro tool to extrapolate in vivo clearance using a yard-stick approach is provided to address the underprediction of AO mediated drug clearance. This approach uses a range of well-known AO drug substrates as calibrators for qualitative scaling new drugs into low, medium, or high clearance category drugs. So far, in vivo investigations on chimeric mice with humanized livers (humanized mice) have predicted AO mediated metabolism to the best extent. This review addresses the critical aspects of the drug discovery stage for AO metabolism studies, challenges faced in drug development, approaches to tackle AO mediated drug clearance's underprediction, and strategies to decrease the AO metabolism of drugs.
Collapse
Affiliation(s)
- Siva Nageswara Rao Gajula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Telangana, India
| | - Tanaaz Navin Nathani
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Telangana, India
| | - Rashmi Madhukar Patil
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Telangana, India
| | - Sasikala Talari
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Telangana, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Telangana, India
| |
Collapse
|
32
|
Gulnaz A, Chang JE, Maeng HJ, Shin KH, Lee KR, Chae YJ. A mechanism-based understanding of altered drug pharmacokinetics by gut microbiota. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00600-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Ezeh M, Okonkwo OE, Okpoli IN, Orji CE, Modozie BU, Onyema AC, Ezebuo FC. Chemoinformatic Design and Profiling of Derivatives of Dasabuvir, Efavirenz, and Tipranavir as Potential Inhibitors of Zika Virus RNA-Dependent RNA Polymerase and Methyltransferase. ACS OMEGA 2022; 7:33330-33348. [PMID: 36157724 PMCID: PMC9494688 DOI: 10.1021/acsomega.2c03945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/24/2022] [Indexed: 05/29/2023]
Abstract
Zika virus (ZIKV) infection is one of the mosquito-borne flaviviruses of human importance with more than 2 million suspected cases and more than 1 million people infected in about 30 countries. There are reported inhibitors of the zika virus replication machinery, but no approved effective antiviral therapy including vaccines directed against the virus for treatment or prevention is currently available. The study investigated the chemoinformatic design and profiling of derivatives of dasabuvir, efavirenz, and tipranavir as potential inhibitors of the zika virus RNA-dependent RNA polymerase (RdRP) and/or methyltransferase (MTase). The three-dimensional (3D) coordinates of dasabuvir, efavirenz, and tipranavir were obtained from the PubChem database, and their respective derivatives were designed with DataWarrior-5.2.1 using an evolutionary algorithm. Derivatives that were not mutagenic, tumorigenic, or irritant were selected; docked into RdRP and MTase; and further subjected to absorption, distribution, metabolism, excretion, and toxicity (ADMET) evaluation with Swiss-ADME and pkCSM web tools. Some of the designed compounds are Lipinski's rule-of-five compliant, with good synthetic accessibilities. Compounds 20d, 21d, 22d, and 1e are nontoxic with the only limitation of CYP1A2, CYP2C19, and/or CYP2C9 inhibition. Replacements of -CH3 and -NH- in the methanesulfonamide moiety of dasabuvir with -OH and -CH2- or -CH2CH2-, respectively, improved the safety/toxicity profile. Hepatotoxicity in 5d, 4d, and 18d is likely due to -NH- in their methanesulfonamide/sulfamic acid moieties. These compounds are potent inhibitors of N-7 and 2'-methylation activities of ZIKV methyltransferase and/or RNA synthesis through interactions with amino acid residues in the priming loop/"N-pocket" in the virus RdRP. Synthesis of these compounds and wet laboratory validation against ZIKV are recommended.
Collapse
Affiliation(s)
- Madeleine
I. Ezeh
- Department
of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical
Sciences, Nnamdi Azikiwe University, PMB 5025, Awka 420110, Anambra
State, Nigeria
| | - Onyinyechi E. Okonkwo
- Department
of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical
Sciences, Nnamdi Azikiwe University, PMB 5025, Awka 420110, Anambra
State, Nigeria
| | - Innocent N. Okpoli
- Department
of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical
Sciences, Nnamdi Azikiwe University, PMB 5025, Awka 420110, Anambra
State, Nigeria
- Drug
Design and Informatics Group, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, PMB 5025, Awka 420110, Anambra State, Nigeria
| | - Chima E. Orji
- Department
of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, PMB 5025, Awka 420110, Anambra State, Nigeria
| | - Benjamin U. Modozie
- Department
of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical
Sciences, Nnamdi Azikiwe University, PMB 5025, Awka 420110, Anambra
State, Nigeria
| | - Augustine C. Onyema
- Department
of Biochemistry, Graduate Center, City University
of New York (CUNY), New York, New York 10016, United States
| | - Fortunatus C. Ezebuo
- Department
of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical
Sciences, Nnamdi Azikiwe University, PMB 5025, Awka 420110, Anambra
State, Nigeria
- Drug
Design and Informatics Group, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, PMB 5025, Awka 420110, Anambra State, Nigeria
| |
Collapse
|
34
|
Kalasariya HS, Patel NB, Gacem A, Alsufyani T, Reece LM, Yadav VK, Awwad NS, Ibrahium HA, Ahn Y, Yadav KK, Jeon BH. Marine Alga Ulva fasciata-Derived Molecules for the Potential Treatment of SARS-CoV-2: An In Silico Approach. Mar Drugs 2022; 20:586. [PMID: 36135775 PMCID: PMC9506351 DOI: 10.3390/md20090586] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 12/13/2022] Open
Abstract
SARS-CoV-2 is the causative agent of the COVID-19 pandemic. This in silico study aimed to elucidate therapeutic efficacies against SARS-CoV-2 of phyco-compounds from the seaweed, Ulva fasciata. Twelve phyco-compounds were isolated and toxicity was analyzed by VEGA QSAR. Five compounds were found to be nonmutagenic, noncarcinogenic and nontoxic. Moreover, antiviral activity was evaluated by PASS. Binding affinities of five of these therapeutic compounds were predicted to possess probable biological activity. Fifteen SARS-CoV-2 target proteins were analyzed by the AutoDock Vina program for molecular docking binding energy analysis and the 6Y84 protein was determined to possess optimal binding affinities. The Desmond program from Schrödinger's suite was used to study high performance molecular dynamic simulation properties for 3,7,11,15-Tetramethyl-2-hexadecen-1-ol-6Y84 for better drug evaluation. The ligand with 6Y84 had stronger binding affinities (-5.9 kcal/mol) over two standard drugs, Chloroquine (-5.6 kcal/mol) and Interferon α-2b (-3.8 kcal/mol). Swiss ADME calculated physicochemical/lipophilicity/water solubility/pharmacokinetic properties for 3,7,11,15-Tetramethyl-2-hexadecen-1-ol, showing that this therapeutic agent may be effective against SARS-CoV-2.
Collapse
Affiliation(s)
- Haresh S. Kalasariya
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Nikunj B. Patel
- Microbiology Department, Sankalchand Patel University, Visnagar 384315, India
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda 21000, Algeria
| | - Taghreed Alsufyani
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Lisa M. Reece
- Reece Life Science Consulting Agency, 819 N Amburn Rd, Texas City, TX 77591, USA
| | - Virendra Kumar Yadav
- Department of Biosciences, School of Liberal Arts & Sciences, Mody University of Science and Technology, Lakshmangarh, Sikar 332311, India
| | - Nasser S. Awwad
- Department of Chemistry, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Hala A. Ibrahium
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Department of Semi Pilot Plant, Nuclear Materials Authority, El Maadi, P.O. Box 530, Cairo 11381, Egypt
| | - Yongtae Ahn
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal 462044, India
| | - Byong-Hun Jeon
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| |
Collapse
|
35
|
Zhang B, Liu G, Wang X, Hu X. Identification of Molecular Targets and Potential Mechanisms of Yinchen Wuling San Against Head and Neck Squamous Cell Carcinoma by Network Pharmacology and Molecular Docking. Front Genet 2022; 13:914646. [PMID: 35873484 PMCID: PMC9306494 DOI: 10.3389/fgene.2022.914646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) represents one of the most malignant and heterogeneous tumors, and the patients have low 5-year survival. Traditional Chinese medicine (TCM) has been demonstrated as an effective complementary and/or alternative therapy for advanced malignancies including HNSCC. It has been noted that several herbs that are used for preparing Yinchen Wuling San (YWLS) have anti-tumor activities, whereas their mechanisms of action remain elusive. In this study, network pharmacology and molecular docking studies were employed to explore the underlying mechanisms of action of YWLS against HNSCC. The 58 active ingredients from six herbs used for YWLS and their 506 potential targets were screened from the traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) and SwissTargetPrediction database. A total of 2,173 targets associated with HNSCC were mainly identified from the DisGeNET and GeneCards databases. An active components-targets-disease network was constructed in the Cytoscape. Top 20 hub targets, such as AKT1, EGFR, TNF, ESR1, SRC, HSP90AA1, MAPK3, ERBB2, and CCND1, were identified by a degree in the protein–protein interaction (PPI) network. Gene functional enrichment analysis showed that PI3K-AKT, MAPK, Ras, TNF, and EGFR were the main signaling pathways of YWLS in treating HNSCC. There were 48 intersected targets such as EGFR, AKT1, and TNF that were associated with patients’ outcomes by the univariate Cox analysis, and most of them had increased expression in the tumor as compared to normal tissues. The area under curves of receiver operating characteristic indicated their diagnostic potential. Inhibition of these survival-related targets and/or combination with EGFR or AKT inhibitors were promising therapeutic options in HNSCC. The partial active components of YWLS exhibited good binding with the hub targets, and ADME analysis further evaluated the drug-likeness of the active components. These compounds and targets identified in this study might provide novel treatment strategies for HNSCC patients, and the subsequent work is essential to verify the underlying mechanisms of YWLS against HNSCC.
Collapse
Affiliation(s)
- Biyu Zhang
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| | - Genyan Liu
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| | - Xin Wang
- School of Medicine, Jiujiang University, Jiujiang, China
| | - Xuelei Hu
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| |
Collapse
|
36
|
Huang M, Lou C, Wu Z, Li W, Lee PW, Tang Y, Liu G. In silico prediction of UGT-mediated metabolism in drug-like molecules via graph neural network. J Cheminform 2022; 14:46. [PMID: 35804446 PMCID: PMC9270812 DOI: 10.1186/s13321-022-00626-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/18/2022] [Indexed: 11/10/2022] Open
Abstract
UDP-glucuronosyltransferases (UGTs) have gained increasing attention as they play important roles in the phase II metabolism of drugs. Due to the time-consuming process and high cost of experimental approaches to identify the metabolic fate of UGT enzymes, in silico methods have been developed to predict the UGT-mediated metabolism of drug-like molecules. We developed consensus models with the combination of machine learning (ML) and graph neural network (GNN) methods to predict if a drug-like molecule is a potential UGT substrate, and then we applied the Weisfeiler-Lehman Network (WLN) model to identify the sites of metabolism (SOMs) of UGT-catalyzed substrates. For the substrate model, the accuracy of the single substrate prediction model on the test set could reach to 0.835. Compared with the single estimators, the consensus models are more stable and have better generalization ability, and the accuracy on the test set reached to 0.851. For the SOM model, the top-1 accuracy of the SOM model on the test set reached to 0.898, outperforming existing works. Thus, in this study, we proposed a computational framework, named Meta-UGT, which would provide a useful tool for the prediction and optimization of metabolic profiles and drug design.
Collapse
Affiliation(s)
- Mengting Huang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Chaofeng Lou
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zengrui Wu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Weihua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Philip W Lee
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yun Tang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Guixia Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
37
|
Li X, Chen C, Zhang T, Ding N, Zheng P, Yang M. Comparative pharmacokinetic studies of five C-glycosylflavones in normal and urolithiasis model rats following administration of total flavonoids from Desmodium styracifolium by liquid chromatography-tandem mass spectrometry. J Sep Sci 2022; 45:2901-2913. [PMID: 35671519 DOI: 10.1002/jssc.202200010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/08/2022] [Accepted: 06/03/2022] [Indexed: 11/09/2022]
Abstract
The total flavonoids of Desmodium styracifolium are the flavonoid extracts purified from Desmodii Styracifolii Herba, which has conventionally been used for treating urolithiasis in China. In this study, a sensitive and simple liquid chromatography-tandem mass spectrometry method was developed to simultaneously determine five active components of the extracts in rat plasma. Chromatographic separation of the analytes (schaftoside, vicenin-1, vicenin-2, vicenin-3 and isovitexin) was performed on an ACQUITY UPLC HSS T3 Column under gradient elution conditions. The calibration curves were linear over ranges from 0.5 to 100 ng·mL-1 for schaftoside, vicenin-1, vicenin-2, and vicenin-3, and 0.2 to 20 ng·mL-1 for isovitexin. The RSD of intra- and inter-day precisions were ≤ 6.8% and ≤ 8.3%, respectively, and the accuracies (relative error) were within ±7.6%. The recoveries of the analytes ranged between 97.3 and 100.3%, and the matrix effects ranged from 98.6 to 113.8%. The method was successfully applied to the pharmacokinetic studies of the five active ingredients of Desmodium styracifolium, for the first time, in both normal and urolithiasis model rats. Results revealed that the plasma levels of these components were significantly increased under the pathological state. This study provided valuable information facilitating the clinical investigation of this medicine. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xue Li
- Phase I Clinical Research lab, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Chao Chen
- Phase I Clinical Research lab, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Tianjiao Zhang
- Phase I Clinical Research lab, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Nan Ding
- Phase I Clinical Research lab, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Peiyong Zheng
- Clinical research center, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Ming Yang
- Phase I Clinical Research lab, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| |
Collapse
|
38
|
Kawai K, Okada J, Nakae M, Tsujimura T, Karuo Y, Tarui A, Sato K, Yamashita S, Kataoka M, Omote M. Discovery of benzyloxyphenyl- and phenethylphenyl-imidazole derivatives as a new class of ante–drug type boosters. Bioorg Med Chem Lett 2022; 72:128868. [DOI: 10.1016/j.bmcl.2022.128868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/11/2022] [Accepted: 06/22/2022] [Indexed: 11/02/2022]
|
39
|
Lai Y, Chu X, Di L, Gao W, Guo Y, Liu X, Lu C, Mao J, Shen H, Tang H, Xia CQ, Zhang L, Ding X. Recent advances in the translation of drug metabolism and pharmacokinetics science for drug discovery and development. Acta Pharm Sin B 2022; 12:2751-2777. [PMID: 35755285 PMCID: PMC9214059 DOI: 10.1016/j.apsb.2022.03.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
Drug metabolism and pharmacokinetics (DMPK) is an important branch of pharmaceutical sciences. The nature of ADME (absorption, distribution, metabolism, excretion) and PK (pharmacokinetics) inquiries during drug discovery and development has evolved in recent years from being largely descriptive to seeking a more quantitative and mechanistic understanding of the fate of drug candidates in biological systems. Tremendous progress has been made in the past decade, not only in the characterization of physiochemical properties of drugs that influence their ADME, target organ exposure, and toxicity, but also in the identification of design principles that can minimize drug-drug interaction (DDI) potentials and reduce the attritions. The importance of membrane transporters in drug disposition, efficacy, and safety, as well as the interplay with metabolic processes, has been increasingly recognized. Dramatic increases in investments on new modalities beyond traditional small and large molecule drugs, such as peptides, oligonucleotides, and antibody-drug conjugates, necessitated further innovations in bioanalytical and experimental tools for the characterization of their ADME properties. In this review, we highlight some of the most notable advances in the last decade, and provide future perspectives on potential major breakthroughs and innovations in the translation of DMPK science in various stages of drug discovery and development.
Collapse
Affiliation(s)
- Yurong Lai
- Drug Metabolism, Gilead Sciences Inc., Foster City, CA 94404, USA
| | - Xiaoyan Chu
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Wei Gao
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Yingying Guo
- Eli Lilly and Company, Indianapolis, IN 46221, USA
| | - Xingrong Liu
- Drug Metabolism and Pharmacokinetics, Biogen, Cambridge, MA 02142, USA
| | - Chuang Lu
- Drug Metabolism and Pharmacokinetics, Accent Therapeutics, Inc. Lexington, MA 02421, USA
| | - Jialin Mao
- Department of Drug Metabolism and Pharmacokinetics, Genentech, A Member of the Roche Group, South San Francisco, CA 94080, USA
| | - Hong Shen
- Drug Metabolism and Pharmacokinetics Department, Bristol-Myers Squibb Company, Princeton, NJ 08540, USA
| | - Huaping Tang
- Bioanalysis and Biomarkers, Glaxo Smith Kline, King of the Prussia, PA 19406, USA
| | - Cindy Q. Xia
- Department of Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International Co., Cambridge, MA 02139, USA
| | - Lei Zhang
- Office of Research and Standards, Office of Generic Drugs, CDER, FDA, Silver Spring, MD 20993, USA
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
40
|
Chtita S, Fouedjou RT, Belaidi S, Djoumbissie LA, Ouassaf M, Qais FA, Bakhouch M, Efendi M, Tok TT, Bouachrine M, Lakhlifi T. In silico investigation of phytoconstituents from Cameroonian medicinal plants towards COVID-19 treatment. Struct Chem 2022; 33:1799-1813. [PMID: 35505923 PMCID: PMC9051495 DOI: 10.1007/s11224-022-01939-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/07/2022] [Indexed: 01/01/2023]
Abstract
In silico studies performed on the metabolites of four Cameroonian medicinal plants with a view to propose potential molecules to fight against COVID-19 were carried out. At first, molecular docking was performed for a set of 84 selected phytochemicals with SARS-CoV-2 main protease (PDB ID: 6lu7) protein. It was further followed by assessing the pharmacokinetics and pharmacological abilities of 15 compounds, which showed low binding energy values. As the screening criteria for their ADMET properties were performed, only two compounds have shown suitable pharmacological properties for human administration which were shortlisted. Furthermore, the stability of binding of these compounds was assessed by performing molecular dynamics (MD) simulations. Based on further analysis through molecular dynamics simulations and reactivity studies, it was concluded that only the Pycnanthuquinone C (17) and the Pycnanthuquinone A (18) extracted from the Pycnanthus angolensis could be considered as candidate inhibitors for targeted protein. Indeed, we expect that these compounds could show excellent in vitro and in vivo activity against SARS-CoV-2.
Collapse
|
41
|
El-Nashar HAS, El-labbad EM, Al-Azzawi MA, Ashmawy NS. A New Xanthone Glycoside from Mangifera indica L.: Physicochemical Properties and In Vitro Anti-Skin Aging Activities. Molecules 2022; 27:molecules27092609. [PMID: 35565960 PMCID: PMC9105941 DOI: 10.3390/molecules27092609] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/08/2022] [Accepted: 04/15/2022] [Indexed: 12/28/2022] Open
Abstract
A new xanthone glycoside, 1,3,5,6-tetrahydroxyxanthone-C-4-β-d-glucopyranoside was isolated from the methanol extract of Mangifera indica leaves (Anacardiaceae) growing in Egypt. The structure was clarified by 1D and 2D-NMR spectroscopic data. The physicochemical properties of the compound such as lipophilicity, solubility, and formulation considerations were predicted via in silico ADMET technique using the SwissADME server. This technique provided Lipinski’s rule of five, such as GIT absorption, distribution, metabolism, and skin permeation. The in vitro inhibitory activities against aging-mediated enzymes such as collagenase, elastase, hyaluronidase, and tyrosinase were assessed. The compound exhibited remarkable anti-collagenase, anti-elastase, anti-hyaluronidase, and anti-tyrosinase effects with IC50 values of 1.06, 419.10, 1.65, and 0.48 µg/mL, respectively, compared to the positive control. The compound showed promising predicted aqueous solubility and reasonable skin penetration suggesting the suitability of the compound for topical formulation as an anti-aging agent for cosmetic preparations.
Collapse
Affiliation(s)
- Heba A. S. El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
- Centre of Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
- Correspondence: (H.A.S.E.-N.); (E.M.E.-l.); Tel.: +2-02-2405-1120 (H.A.S.E.-N.); +971-6-7431333 (E.M.E.-l.); Fax: +2-02-2405-1107 (H.A.S.E.-N.)
| | - Eman M. El-labbad
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman P.O. Box 4184, United Arab Emirates
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
- Correspondence: (H.A.S.E.-N.); (E.M.E.-l.); Tel.: +2-02-2405-1120 (H.A.S.E.-N.); +971-6-7431333 (E.M.E.-l.); Fax: +2-02-2405-1107 (H.A.S.E.-N.)
| | - Mahmood A. Al-Azzawi
- Department of Medical Laboratory Technologies, Al-Amal University College for Specialized Medical Sciences, Karbala P.O. Box 56001, Iraq;
| | - Naglaa S. Ashmawy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
- Rochester Institute of Technology-Dubai, Dubai P.O. Box 341055, United Arab Emirates
| |
Collapse
|
42
|
Ajala A, Uzairu A, Shallangwa GA, Abechi SE. Computational and pharmacokinetics studies of 1,3-dimethylbenzimidazolinone analogues of new proposed agent against Alzheimer's disease. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00231-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Alzheimer's disease (AD) is a multifactorial disorder that gradually destroys wisdom and memory skills. Currently, this disease can only be treated palliatively. However, the molecular mechanisms underlying this condition remain elusive. Therefore, these treatments are inadequate. Current medications can only increase patient warning signs. Chemical structures were drawn using Chemsketch software. Spartan’14 software was used to optimize the structures using density functional theory (DFT). The PaDEL software was used to generate the descriptors. The genetic function algorithm (GFA) and multi-linear regression (MLR) approaches were used to generate the QSAR model.
Results
In the present study, we performed a computational investigation, molecular docking, and pharmacokinetics analysis of 1,3-dimethylbenzimidazolinone derivatives. The descriptors generated in the model are AATS7i, MATS5p, SpMin7_Bhe, and GATS6c. Compounds 13 and 21 have the best binding scores, 11.2 kcal/mol and 10.8 kcal/mol, respectively, and optimal protein–ligand interactions with AChE. These compounds have brilliant pharmacokinetic and physicochemical properties.
Conclusions
The model was validated and found to have good internal and external assessment parameters: R2 = 0.937, $$R_{{{\text{adj}}}}^{2}$$
R
adj
2
= 0.863, $$Q_{{{\text{cv}}}}^{2}$$
Q
cv
2
= 0.788, $$R_{{{\text{test}}}}^{2}$$
R
test
2
= 0.756, LOF = 0.0268, $$cR_{{\text{p}}}^{2}$$
c
R
p
2
= 0.677. In summary, these data suggested that compounds 13 and 21 are promising multifunctional agents against AD.
Collapse
|
43
|
Ulenberg S, Ciura K, Georgiev P, Pastewska M, Ślifirski G, Król M, Herold F, Bączek T. Use of biomimetic chromatography and in vitro assay to develop predictive GA-MLR model for use in drug-property prediction among anti-depressant drug candidates. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
44
|
Li J, Wu Y, Ma Y, Bai L, Li Q, Zhou X, Xu P, Li X, Xue M. A UPLC-MS/MS method reveals the pharmacokinetics and metabolism characteristics of kaempferol in rats under hypoxia. Drug Metab Pharmacokinet 2022; 43:100440. [PMID: 35051732 DOI: 10.1016/j.dmpk.2021.100440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/24/2021] [Accepted: 12/09/2021] [Indexed: 12/19/2022]
|
45
|
In Vitro - in Vivo Extrapolation of Hepatic Clearance in Preclinical Species. Pharm Res 2022; 39:1615-1632. [PMID: 35257289 DOI: 10.1007/s11095-022-03205-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/15/2022] [Indexed: 10/18/2022]
Abstract
Accurate prediction of human clearance is of critical importance in drug discovery. In this study, in vitro - in vivo extrapolation (IVIVE) of hepatic clearance was established using large sets of compounds for four preclinical species (mouse, rat, dog, and non-human primate) to enable better understanding of clearance mechanisms and human translation. In vitro intrinsic clearances were obtained using pooled liver microsomes (LMs) or hepatocytes (HEPs) and scaled to hepatic clearance using the parallel-tube and well-stirred models. Subsequently, IVIVE scaling factors (SFs) were derived to best predict in vivo clearance. The SFs for extended clearance classification system (ECCS) class 2/4 compounds, involving metabolic clearance, were generally small (≤ 2.6) using both LMs and HEPs with parallel-tube model, with the exception of the rodents (~ 2.4-4.6), suggesting in vitro reagents represent in vivo reasonably well. SFs for ECCS class 1A and 1B are generally higher than class 2/4 across the species, likely due to the contribution of transporter-mediated clearance that is under-represented with in vitro reagents. The parallel-tube model offered lower variability in clearance predictions over the well-stirred model. For compounds that likely demonstrate passive permeability-limited clearance in vitro, rat LM predicted in vivo clearance more accurately than HEP. This comprehensive analysis demonstrated reliable IVIVE can be achieved using LMs and HEPs. Evaluation of clearance IVIVE in preclinical species helps to better understand clearance mechanisms, establish more reliable IVIVE in human, and enhance our confidence in human clearance and PK prediction, while considering species differences in drug metabolizing enzymes and transporters.
Collapse
|
46
|
Chai L, Zhang H, Guo F, Song R, Yu H, Ji L. Computational Investigation of the Bisphenolic Drug Metabolism by Cytochrome P450: What Factors Favor Intramolecular Phenol Coupling. Chem Res Toxicol 2022; 35:440-449. [PMID: 35230092 DOI: 10.1021/acs.chemrestox.1c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intramolecular phenol coupling reactions of alkaloids can lead to active metabolites catalyzed by the mammalian cytochrome P450 enzyme (P450); however, the mechanistic knowledge of such an "unusual" process is lacking. This work performs density functional theory computations to reveal the P450-mediated metabolic pathway leading from R-reticuline to the morphine precursor salutaridine by exploring possible intramolecular phenol coupling mechanisms involving diradical coupling, radical addition, and electron transfer. The computed results show that the outer-sphere electron transfer with a high barrier (>20.0 kcal/mol) is unlikely to happen. However, for inter-sphere intramolecular phenol coupling, it reveals that intramolecular phenol coupling of R-reticuline proceeds via the diradical mechanism consecutively by compound I and protonated compound II of P450 rather than the radical addition mechanism. The existence of a much higher radical rebound barrier than that of H-abstraction in the quartet high-spin state can endow the R-reticuline phenoxy radical with a sufficient lifetime to enable intramolecular phenol coupling, while the H-abstraction/radical rebound mode with a negligible rebound barrier leading to phenol hydroxylation can only happen in the doublet low-spin state. Therefore, the ratio [coupling]/[hydroxylation] can be approximately reflected by the relative yield of the high-spin and low-spin H-abstraction by P450, which thus can provide a theoretical ratio of 16:1 for R-reticuline, which is in accordance with previous experimental results. Especially, the high rebound barrier of the phenoxy radical derived from the weak electron-donating ability of the phenoxy radical is revealed as an intrinsic nature. Therefore, the revealed intramolecular phenol coupling mechanism can be potentially extended to several other bisphenolic drugs to infer groups of unexpected metabolites in organisms.
Collapse
Affiliation(s)
- Lihong Chai
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China.,College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China.,Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Lichtenbergstrasse 4, Munich 81377, Germany
| | - Huanni Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Fangjie Guo
- School of Management Engineering and Electronic Commerce, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Runqian Song
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Li Ji
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China.,College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China.,Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
47
|
Khaldan A, Bouamrane S, El-mernissi R, Alaqarbeh M, Hajji H, Alsakhen N, Maghat H, Ajana MA, Sbai A, Bouachrine M, Lakhlifi T. Computational study of quinoline-based thiadiazole compounds as potential antileishmanial inhibitors. NEW J CHEM 2022. [DOI: 10.1039/d2nj03253h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Leishmaniasis is a severe disease caused by protozoan parasites of the genus Leishmania and it is accountable for sizable morbidity and mortality worldwide.
Collapse
Affiliation(s)
- Ayoub Khaldan
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, Moulay Ismail University, Meknes, Morocco
| | - Soukaina Bouamrane
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, Moulay Ismail University, Meknes, Morocco
| | - Reda El-mernissi
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, Moulay Ismail University, Meknes, Morocco
| | - Marwa Alaqarbeh
- National Agricultural Research Center, Al-Baqa 19381, Jordan
| | - Halima Hajji
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, Moulay Ismail University, Meknes, Morocco
| | - Nada Alsakhen
- The Hashemite University, Department of Chemistry, Faculty of Science, Zarqa, Jordan
| | - Hamid Maghat
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, Moulay Ismail University, Meknes, Morocco
| | - Mohammed Aziz Ajana
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, Moulay Ismail University, Meknes, Morocco
| | - Abdelouahid Sbai
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, Moulay Ismail University, Meknes, Morocco
| | - Mohammed Bouachrine
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, Moulay Ismail University, Meknes, Morocco
- EST Khenifra, Sultan Moulay Sliman University, Benimellal, Morocco
| | - Tahar Lakhlifi
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, Moulay Ismail University, Meknes, Morocco
| |
Collapse
|
48
|
Ertl P, Gerebtzoff G, Lewis RA, Muenkler H, Schneider N, Sirockin F, Stiefl N, Tosco P. Chemical reactivity prediction: current methods and different application areas. Mol Inform 2021; 41:e2100277. [PMID: 34964302 DOI: 10.1002/minf.202100277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/28/2021] [Indexed: 11/10/2022]
Abstract
The ability to predict chemical reactivity of a molecule is highly desirable in drug discovery, both ex vivo (synthetic route planning, formulation, stability) and in vivo: metabolic reactions determine pharmacodynamics, pharmacokinetics and potential toxic effects, and early assessment of liabilities is vital to reduce attrition rates in later stages of development. Quantum mechanics offer a precise description of the interactions between electrons and orbitals in the breaking and forming of new bonds. Modern algorithms and faster computers have allowed the study of more complex systems in a punctual and accurate fashion, and answers for chemical questions around stability and reactivity can now be provided. Through machine learning, predictive models can be built out of descriptors derived from quantum mechanics and cheminformatics, even in the absence of experimental data to train on. In this article, current progress on computational reactivity prediction is reviewed: applications to problems in drug design, such as modelling of metabolism and covalent inhibition, are highlighted and unmet challenges are posed.
Collapse
Affiliation(s)
| | | | - Richard A Lewis
- Computer-Aided Drug Design, Eli Lilly and Company Limited, Windlesham, SWITZERLAND
| | - Hagen Muenkler
- Novartis Institutes for BioMedical Research Inc, SWITZERLAND
| | | | | | | | - Paolo Tosco
- Novartis Institutes for BioMedical Research Inc, SWITZERLAND
| |
Collapse
|
49
|
In Silico Analysis and Experimental Evaluation of Ester Prodrugs of Ketoprofen for Oral Delivery: With a View to Reduce Toxicity. Processes (Basel) 2021. [DOI: 10.3390/pr9122221] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The present research aimed to synthesize ketoprofen prodrugs and to demonstrate their potentiality for oral treatment to treat chronic inflammation by reducing its hepatotoxicity and gastrointestinal irritation. Methyl 2-(3-benzoyl phenyl) propanoate, ethyl 2-(3-benzoyl phenyl) propanoate and propyl 2-(3-benzoyl phenyl) propanoate was synthesized by esterification and identified by nuclear magnetic resonance (1HNMR) and infrared (IR) spectrometric analysis. In silico SwissADME and ProTox-II analysis stated methyl derivative as ideal candidate for oral absorption, having a >30-fold LD50 value compared to ketoprofen with no hepatotoxicity. Moreover, in vivo hepatotoxicity study demonstrates that these ester prodrugs have significantly lower effects on liver toxicity compared to pure ketoprofen. Furthermore, ex vivo intestinal permeation enhancement ratio was statistically significant (* p < 0.05) compared to ketoprofen. Likewise, the prodrugs were found to exhibit not only remarkable in vitro anti-proteolytic and lysosomal membrane stabilization potentials, but also significant efficiency to alleviate pain induced by inflammation, as well as central and peripheral stimulus in mice model in vivo. These outcomes recommend that ketoprofen ester prodrugs, especially methyl derivative, can be a cost-effective candidate for prolonged treatment of chronic inflammatory diseases.
Collapse
|
50
|
Hanapi NA, Chear NJY, Azizi J, Yusof SR. Kratom Alkaloids: Interactions With Enzymes, Receptors, and Cellular Barriers. Front Pharmacol 2021; 12:751656. [PMID: 34867362 PMCID: PMC8637859 DOI: 10.3389/fphar.2021.751656] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/26/2021] [Indexed: 01/11/2023] Open
Abstract
Parallel to the growing use of kratom, there is a wealth of evidence from self-report, preclinical, and early clinical studies on therapeutic benefits of its alkaloids in particular for treating pain, managing substance use disorder, and coping with emotional or mental health conditions. On the other hand, there are also reports on potential health risks concerning kratom use. These two aspects are often discussed in reviews on kratom. Here, we aim to highlight specific areas that are of importance to give insights into the mechanistic of kratom alkaloids pharmacological actions. This includes their interactions with drug-metabolizing enzymes and predictions of clinical drug-drug interactions, receptor-binding properties, interactions with cellular barriers in regards to barrier permeability, involvement of membrane transporters, and alteration of barrier function when exposed to the alkaloids.
Collapse
Affiliation(s)
- Nur Aziah Hanapi
- Centre for Drug Research, Universiti Sains Malaysia, Minden, Malaysia
| | | | - Juzaili Azizi
- Centre for Drug Research, Universiti Sains Malaysia, Minden, Malaysia
| | - Siti R Yusof
- Centre for Drug Research, Universiti Sains Malaysia, Minden, Malaysia
| |
Collapse
|