1
|
Sreeja V, Jose A, Patel S, Menon B, Athira KV, Chakravarty S. Pharmacogenetics of selective serotonin reuptake inhibitors (SSRI): A serotonin reuptake transporter (SERT)-based approach. Neurochem Int 2024; 173:105672. [PMID: 38157886 DOI: 10.1016/j.neuint.2023.105672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/12/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Neuropsychiatric disorders are considered to be the most common cause of disability worldwide. Serotonin and its transporter is a prominent paradigm in mood disorders. Response to selective serotonin reuptake inhibitors (SSRI) is altered due to heterogeneity in the serotonin transporter gene, SLC6A4 (solute carrier family 6 member 4). The reported polymorphisms are found to be in different regions of the transporter gene: promoter region (5-HTTLPR and various single nucleotide polymorphisms within it), intron (STin2), and exon 9 (I425V). The long and short alleles of the 5-HTTLPR gene, which are prevalent among variations, may mediate differential effects. In long allelic variant carriers, an increased response to SSRI and timely recovery is due to increased availability of SERT. Whereas, SERT availability is significantly decreased in short allelic carriers, necessitating a reduction in SSRI dosage due to the increased risk of adverse drug reactions. Thus, pharmacogenetic investigations are required to understand the impact of functional variations on the efficacy and tolerability of SSRI. Identifying the carrier variants may aid in clear-decision making of the treatment regimen, aiding the approach of personalized medication.
Collapse
Affiliation(s)
- V Sreeja
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - Anju Jose
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - Shashikant Patel
- Applied Biology Division, CSIR- Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Bindu Menon
- Department of Psychiatry, Amrita School of Medicine, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - K V Athira
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India.
| | - Sumana Chakravarty
- Applied Biology Division, CSIR- Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
2
|
Oslin DW, Chapman S, Duvall SL, Gelernter J, Ingram EP, Kranzler HR, Lehmann LS, Lynch JA, Lynch KG, Pyne JM, Shih MC, Stone A, Thase ME, Wray LO. Study design and implementation of the PRecision Medicine In MEntal health Care (PRIME Care) Trial. Contemp Clin Trials 2021; 101:106247. [PMID: 33316457 DOI: 10.1016/j.cct.2020.106247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
Genomic testing has the potential to improve patient outcomes and reduce patient care costs by personalizing medication selection. Commercial pharmacogenetic (PGx) testing for psychotropic and other medications is widely available and promoted as a means to implement "precision medicine." Despite evidence that genetic variation affects the metabolism of psychotropic medications, the clinical utility of these test results has not been established. Moreover, implementing such testing in routine clinical care is complex, requiring informatics support and a systematic approach to patient and provider education. The PRIME Care program is designed to bridge this gap, applying both clinical trials and implementation science methods to conduct a program of research. It is centered on a large, pragmatic randomized clinical trial (RCT) in which 2000 Veterans with a major depressive disorder (MDD) and their health care providers are randomized together to receive PGx test results at the beginning of an episode of care or 6 months later. We hypothesize that providers who receive the PGx test results will prescribe an antidepressant guided by the PGx findings and Veterans whose care is guided by PGx testing will experience higher rates of remission from MDD. If the results of the trial replicate those of prior PGx studies, which provided preliminary evidence of the utility of PGx guided prescribing, it would strongly support using a precision medicine approach to treat MDD. This program of research is also evaluating dissemination influencers, other biomarkers (e.g., genetic variation associated with depression response), and the health care cost implications of PGx testing. ClinicalTrials.gov Identifier: NCT03170362.
Collapse
Affiliation(s)
- David W Oslin
- Cpl Michael J Crescenz VA Medical Center, VISN 4 Mental Illness Research, Education, and Clinical Center(,) University of Pennsylvania, Perelman School of Medicine, 3900 Woodland Ave, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3535 Market Street, Philadelphia, PA 19104, USA.
| | - Sara Chapman
- VISN 4 Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, University Drive C, Pittsburgh, PA 15240, USA
| | - Scott L Duvall
- VA Informatics and Computing Infrastructure (VINCI), VA Salt Lake City Health Care System, 500 Foothills Driver, Salt Lake City, UT 84148, USA
| | - Joel Gelernter
- VA CT Healthcare Center, Yale Univ. School of Medicine, 950 Campbell Avenue (116A2), West Haven, CT 06516, USA
| | - Erin P Ingram
- Cpl Michael J Crescenz VA Medical Center, VISN 4 Mental Illness Research, Education, and Clinical Center(,) University of Pennsylvania, Perelman School of Medicine, 3900 Woodland Ave, Philadelphia, PA 19104, USA.
| | - Henry R Kranzler
- Cpl Michael J Crescenz VA Medical Center, VISN 4 Mental Illness Research, Education, and Clinical Center(,) University of Pennsylvania, Perelman School of Medicine, 3900 Woodland Ave, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3535 Market Street, Philadelphia, PA 19104, USA.
| | | | - Julie A Lynch
- VA Salt Lake City Healthcare System, 500 Foothills Drive, Salt Lake City, UT, USA; College of Nursing & Health Sciences, University of Massachusetts, Boston, Morrissey Boulevard, Dorchester, MA, USA.
| | - Kevin G Lynch
- Cpl Michael J Crescenz VA Medical Center, VISN 4 Mental Illness Research, Education, and Clinical Center(,) University of Pennsylvania, Perelman School of Medicine, 3900 Woodland Ave, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3535 Market Street, Philadelphia, PA 19104, USA.
| | - Jeff M Pyne
- Center for Mental Healthcare and Outcomes Research, Central Arkansas Veterans Healthcare System, 2200 Fort Roots Drive, North Little Rock, AR, USA.
| | - Mei-Chiung Shih
- Cooperative Studies Program Coordinating Center, VA Palo Alto Healthcare System, Stanford University, 701B N. Shoreline Blvd, Mountain View, CA 94043, USA.
| | - Annjanette Stone
- Pharmacogenomics Analysis Laboratory, Central Arkansas Veterans Healthcare System, 4300 West 7(th) Street, Little Rock, AR 72205, USA
| | - Michael E Thase
- Cpl Michael J Crescenz VA Medical Center, VISN 4 Mental Illness Research, Education, and Clinical Center(,) University of Pennsylvania, Perelman School of Medicine, 3900 Woodland Ave, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3535 Market Street, Philadelphia, PA 19104, USA.
| | - Laura O Wray
- VA Center for Integrated Healthcare, VAWNYHS (116N), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 3495 Bailey Avenue, Buffalo, NY 14215, USA.
| |
Collapse
|
3
|
Hull LE, Chanfreau-Coffinier C, Tuteja S, Berlowitz D, Lehmann LS, Oslin DW, Pyne JM, DuVall SL, Lynch JA. Early adoption of pharmacogenetic testing for veterans prescribed psychotropic medications. Pharmacogenomics 2019; 20:781-789. [DOI: 10.2217/pgs-2019-0065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aim: Describe the characteristics of providers ordering, patients receiving, and clinical impact of a psychotropic pharmacogenetic test on veteran care. Patients & methods: Observational cohort study linking veterans' laboratory results to electronic health record data. Changes in psychotropic medication prescribing were measured as a function of test results. Results: A total of 38 providers tested 181 veterans between 10/6/2014 and 2/1/2018. Prescriptions for medications with severe gene–drug interactions decreased; however, 11 such medications were used after testing. For 43 patients, documentation of the results was missing. Conclusion: Most prescribing decisions were congruent with test results, but in a nontrivial number of cases, prescribers appeared not to act on the results. Poor result documentation impeded the potential of results to inform clinical care.
Collapse
Affiliation(s)
- Leland E Hull
- VA Boston Healthcare System, Boston, MA 02130, USA
- Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA 01730, USA
| | | | - Sony Tuteja
- Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dan Berlowitz
- Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA 01730, USA
| | - Lisa S Lehmann
- VA Boston Healthcare System, Boston, MA 02130, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - David W Oslin
- Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jeffrey M Pyne
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Scott L DuVall
- VA Informatics and Computing Infrastructure, VA Salt Lake City Health Care System, Salt Lake City, UT 84148, USA
- University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Julie A Lynch
- Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA 01730, USA
- VA Informatics and Computing Infrastructure, VA Salt Lake City Health Care System, Salt Lake City, UT 84148, USA
| |
Collapse
|
4
|
Liu Y, Zhao J, Guo W. Emotional Roles of Mono-Aminergic Neurotransmitters in Major Depressive Disorder and Anxiety Disorders. Front Psychol 2018; 9:2201. [PMID: 30524332 PMCID: PMC6262356 DOI: 10.3389/fpsyg.2018.02201] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/24/2018] [Indexed: 12/17/2022] Open
Abstract
A growing body of researches support a role for dysfunction of serotoninergic, noradrenergic, and dopaminergic systems in the neurobiological processes involved in major depression disorder (MDD) and anxiety disorders (ADs). The physiological changes underlying abnormal signaling of 5-HT, NE, and DA may be due to either reduced presynaptic release of these neurotransmitters or aberrant signal transductions, and thus contributing to the alterations in regulation or function of receptors and/or impaired intracellular signal processing. Animal models demonstrate crucial responsiveness to disturbance of 5-HT, NE, and DA neurotransmissions. Postmortem and biochemical studies have shown altered concentrations of 5-HT, NE, and DA metabolites in brain regions that contribute importantly to regulation of mood and motivation in patients with MDD or ADs. Neuroimaging studies have found abnormal 5-HT, NE, and DA receptors binding and regulation in regard to receptor numbers. Medications that act on 5-HT, NE, and DA neurons or receptors, such as SSRIs and SNRIs, show efficacy in both MDD and ADs. The overlapping treatment response presumably suggests a common mechanism underlying the interaction of these disorders. In this paper, we reviewed studies from multiple disciplines to interpret the role of altered 5-HT, NE and DA mono-amine neurotransmitter functions in both MDD and ADs.
Collapse
Affiliation(s)
- Yi Liu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jingping Zhao
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenbin Guo
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
5
|
Daud ANA, Bergman JEH, Kerstjens-Frederikse WS, van der Vlies P, Hak E, Berger RMF, Groen H, Wilffert B. Prenatal exposure to serotonin reuptake inhibitors and congenital heart anomalies: an exploratory pharmacogenetics study. Pharmacogenomics 2017. [PMID: 28639488 DOI: 10.2217/pgs-2017-0036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AIM To explore the role of pharmacogenetics in determining the risk of congenital heart anomalies (CHA) with prenatal use of serotonin reuptake inhibitors. METHODS We included 33 case-mother dyads and 2 mother-only (child deceased) cases of CHA in a case-only study. Ten genes important in determining fetal exposure to serotonin reuptake inhibitors were examined: CYP1A2, CYP2C9, CYP2C19, CYP2D6, ABCB1, SLC6A4, HTR1A, HTR1B, HTR2A and HTR3B. RESULTS Among the exposed cases, polymorphisms that tended to be associated with an increased risk of CHA were SLC6A4 5-HTTLPR and 5-HTTVNTR, HTR1A rs1364043, HTR1B rs6296 and rs6298 and HTR3B rs1176744, but none reached statistical significance due to our limited sample sizes. CONCLUSION We identified several polymorphisms that might potentially affect the risk of CHA among exposed fetuses, which warrants further investigation.
Collapse
Affiliation(s)
- Aizati N A Daud
- Unit of PharmacoTherapy, -Epidemiology & -Economics, Department of Pharmacy, University of Groningen, Groningen Research Institute of Pharmacy, Groningen, The Netherlands.,School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Jorieke E H Bergman
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Pieter van der Vlies
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Eelko Hak
- Unit of PharmacoTherapy, -Epidemiology & -Economics, Department of Pharmacy, University of Groningen, Groningen Research Institute of Pharmacy, Groningen, The Netherlands
| | - Rolf M F Berger
- Department of Pediatric Cardiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Henk Groen
- Department of Epidemiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Bob Wilffert
- Unit of PharmacoTherapy, -Epidemiology & -Economics, Department of Pharmacy, University of Groningen, Groningen Research Institute of Pharmacy, Groningen, The Netherlands.,Department of Clinical Pharmacy & Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Gupta M, Neavin D, Liu D, Biernacka J, Hall-Flavin D, Bobo WV, Frye MA, Skime M, Jenkins GD, Batzler A, Kalari K, Matson W, Bhasin SS, Zhu H, Mushiroda T, Nakamura Y, Kubo M, Wang L, Kaddurah-Daouk R, Weinshilboum RM. TSPAN5, ERICH3 and selective serotonin reuptake inhibitors in major depressive disorder: pharmacometabolomics-informed pharmacogenomics. Mol Psychiatry 2016; 21:1717-1725. [PMID: 26903268 PMCID: PMC5003027 DOI: 10.1038/mp.2016.6] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 12/07/2015] [Accepted: 01/07/2016] [Indexed: 01/01/2023]
Abstract
Millions of patients suffer from major depressive disorder (MDD), but many do not respond to selective serotonin reuptake inhibitor (SSRI) therapy. We used a pharmacometabolomics-informed pharmacogenomics research strategy to identify genes associated with metabolites that were related to SSRI response. Specifically, 306 MDD patients were treated with citalopram or escitalopram and blood was drawn at baseline, 4 and 8 weeks for blood drug levels, genome-wide single nucleotide polymorphism (SNP) genotyping and metabolomic analyses. SSRI treatment decreased plasma serotonin concentrations (P<0.0001). Baseline and plasma serotonin concentration changes were associated with clinical outcomes (P<0.05). Therefore, baseline and serotonin concentration changes were used as phenotypes for genome-wide association studies (GWAS). GWAS for baseline plasma serotonin concentrations revealed a genome-wide significant (P=7.84E-09) SNP cluster on chromosome four 5' of TSPAN5 and a cluster across ERICH3 on chromosome one (P=9.28E-08) that were also observed during GWAS for change in serotonin at 4 (P=5.6E-08 and P=7.54E-07, respectively) and 8 weeks (P=1.25E-06 and P=3.99E-07, respectively). The SNPs on chromosome four were expression quantitative trait loci for TSPAN5. Knockdown (KD) and overexpression (OE) of TSPAN5 in a neuroblastoma cell line significantly altered the expression of serotonin pathway genes (TPH1, TPH2, DDC and MAOA). Chromosome one SNPs included two ERICH3 nonsynonymous SNPs that resulted in accelerated proteasome-mediated degradation. In addition, ERICH3 and TSPAN5 KD and OE altered media serotonin concentrations. Application of a pharmacometabolomics-informed pharmacogenomic research strategy, followed by functional validation, indicated that TSPAN5 and ERICH3 are associated with plasma serotonin concentrations and may have a role in SSRI treatment outcomes.
Collapse
Affiliation(s)
- M Gupta
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - D Neavin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - D Liu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - J Biernacka
- Department of Biomedical Statistics and Bioinformatics – Genetics and Bioinformatics, Mayo Clinic, Rochester, MN, USA
| | - D Hall-Flavin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - W V Bobo
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - M A Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - M Skime
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - G D Jenkins
- Department of Biomedical Statistics and Bioinformatics – Genetics and Bioinformatics, Mayo Clinic, Rochester, MN, USA
| | - A Batzler
- Department of Biomedical Statistics and Bioinformatics – Genetics and Bioinformatics, Mayo Clinic, Rochester, MN, USA
| | - K Kalari
- Department of Biomedical Statistics and Bioinformatics – Genetics and Bioinformatics, Mayo Clinic, Rochester, MN, USA
| | - W Matson
- Bedford VA Medical Center, Bedford, MA, USA
| | - S S Bhasin
- Bedford VA Medical Center, Bedford, MA, USA
| | - H Zhu
- Department of Psychiatry and Behavioral Medicine, Duke Institute for Brain Sciences, Duke University, Durham, NC, USA
| | - T Mushiroda
- RIKEN Center for Genomic Medicine, Yokohama, Japan
| | - Y Nakamura
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - M Kubo
- RIKEN Center for Genomic Medicine, Yokohama, Japan
| | - L Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - R Kaddurah-Daouk
- Department of Psychiatry and Behavioral Medicine, Duke Institute for Brain Sciences, Duke University, Durham, NC, USA
| | - R M Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA,Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA. E-mail:
| |
Collapse
|
7
|
Dujic T, Zhou K, Tavendale R, Palmer CNA, Pearson ER. Effect of Serotonin Transporter 5-HTTLPR Polymorphism on Gastrointestinal Intolerance to Metformin: A GoDARTS Study. Diabetes Care 2016; 39:1896-1901. [PMID: 27493135 PMCID: PMC5122449 DOI: 10.2337/dc16-0706] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/23/2016] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The mechanism causing gastrointestinal intolerance to metformin treatment is unknown. We have previously shown that reduced-function alleles of organic cation transporter 1 (OCT1) are associated with increased intolerance to metformin. Considering recent findings that serotonin reuptake transporter (SERT) might also be involved in metformin intestinal absorption, and the role of serotonin in gastrointestinal physiology, in this study we investigated the association between a common polymorphism in the SERT gene and metformin gastrointestinal intolerance. RESEARCH DESIGN AND METHODS We explored the effect of composite SERT 5-HTTLPR/rs25531 genotypes, L*L* (LALA), L*S* (LALG, LAS), and S*S* (SS, SLG, LGLG), in 1,356 fully tolerant and 164 extreme metformin-intolerant patients by using a logistic regression model, adjusted for age, sex, weight, OCT1 genotype, and concomitant use of medications known to inhibit OCT1 activity. RESULTS The number of low-expressing SERT S* alleles increased the odds of metformin intolerance (odds ratio [OR] 1.31 [95% CI 1.02-1.67], P = 0.031). Moreover, a multiplicative interaction between the OCT1 and SERT genotypes was observed (P = 0.003). In the analyses stratified by SERT genotype, the presence of two deficient OCT1 alleles was associated with more than a ninefold higher odds of metformin intolerance in patients carrying the L*L* genotype (OR 9.25 [95% CI 3.18-27.0], P < 10-4); however, it showed a much smaller effect in L*S* carriers and no effect in S*S* carriers. CONCLUSIONS Our results indicate that the interaction between OCT1 and SERT genes might play an important role in metformin intolerance. Further studies are needed to replicate these findings and to substantiate the hypothesis that metformin gastrointestinal side effects could be related to the reduced intestinal serotonin uptake.
Collapse
Affiliation(s)
- Tanja Dujic
- Department of Biochemistry and Clinical Analysis, Faculty of Pharmacy, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
- Division of Molecular & Clinical Medicine, School of Medicine, University of Dundee, Dundee, Scotland, U.K
| | - Kaixin Zhou
- Division of Molecular & Clinical Medicine, School of Medicine, University of Dundee, Dundee, Scotland, U.K
| | - Roger Tavendale
- Division of Molecular & Clinical Medicine, School of Medicine, University of Dundee, Dundee, Scotland, U.K
| | - Colin N A Palmer
- Division of Molecular & Clinical Medicine, School of Medicine, University of Dundee, Dundee, Scotland, U.K
| | - Ewan R Pearson
- Division of Molecular & Clinical Medicine, School of Medicine, University of Dundee, Dundee, Scotland, U.K.
| |
Collapse
|
8
|
Kalueff AV, Stewart AM, Nguyen M, Song C, Gottesman II. Targeting drug sensitivity predictors: New potential strategies to improve pharmacotherapy of human brain disorders. Prog Neuropsychopharmacol Biol Psychiatry 2015; 63:76-82. [PMID: 25976211 DOI: 10.1016/j.pnpbp.2015.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 02/07/2023]
Abstract
One of the main challenges in medicine is the lack of efficient drug therapies for common human disorders. For example, although depressed patients receive powerful antidepressants, many often remain resistant to psychopharmacotherapy. The growing recognition of complex interplay between the drug targets and the predictors of drug sensitivity requires an improved understanding of these two key aspects of drug action and their potentially shared molecular networks. Here, we apply the concept of endophenotypes and their interplay to drug action and sensitivity. Based on these analyses, we postulate that novel drugs may be developed by targeting specific molecular pathways that integrate drug targets with drug sensitivity predictors.
Collapse
Affiliation(s)
- Allan V Kalueff
- Research Institute for Marine Drugs and Nutrition, College for Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China; ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia.
| | | | - Michael Nguyen
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College for Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| | - Irving I Gottesman
- Department of Psychology, University of Minnesota, Elliot Hall, Minneapolis, MN 55455, USA
| |
Collapse
|
9
|
Persico AM, Arango C, Buitelaar JK, Correll CU, Glennon JC, Hoekstra PJ, Moreno C, Vitiello B, Vorstman J, Zuddas A. Unmet needs in paediatric psychopharmacology: Present scenario and future perspectives. Eur Neuropsychopharmacol 2015; 25:1513-31. [PMID: 26166453 DOI: 10.1016/j.euroneuro.2015.06.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 05/17/2015] [Accepted: 06/12/2015] [Indexed: 12/20/2022]
Abstract
Paediatric psychopharmacology holds great promise in two equally important areas of enormous biomedical and social impact, namely the treatment of behavioural abnormalities in children and adolescents, and the prevention of psychiatric disorders with adolescent- or adult-onset. Yet, in striking contrast, pharmacological treatment options presently available in child and adolescent psychiatry are dramatically limited. The most important currently unmet needs in paediatric psychopharmacology are: the frequent off-label prescription of medications to children and adolescents based exclusively on data from randomized controlled studies involving adult patients; the frequent lack of age-specific dose, long-term efficacy and tolerability/safety data; the lack of effective medications for many paediatric psychiatric disorders, most critically autism spectrum disorder; the scarcity and limitations of randomized placebo-controlled trials in paediatric psychopharmacology; the unexplored potential for the prevention of psychiatric disorders with adolescent- and adult-onset; the current lack of biomarkers to predict treatment response and severe adverse effects; the need for better preclinical data to foster the successful development of novel drug therapies; and the effective dissemination of evidence-based treatments to the general public, to better inform patients and families of the benefits and risks of pharmacological interventions during development. Priorities and strategies are proposed to overcome some of these limitations, including the European Child and Adolescent Clinical Psychopharmacology Network, as an overarching Pan-European infrastructure aimed at reliably carrying out much needed psychopharmacological trials in children and adolescents, in order to fill the identified gaps and improve overall outcomes.
Collapse
Affiliation(s)
- Antonio M Persico
- Child & Adolescent NeuroPsychiatry Unit, University Campus Bio-Medico, Rome, Italy; Mafalda Luce Center for Pervasive Developmental Disorders, Milan, Italy.
| | - Celso Arango
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, School of Medicine Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, and Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| | - Christoph U Correll
- Psychiatry Research, The Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, Glen Oaks, NY, USA
| | - Jeffrey C Glennon
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, and Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| | - Pieter J Hoekstra
- Department of Psychiatry, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Carmen Moreno
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, School of Medicine Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | | | - Jacob Vorstman
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alessandro Zuddas
- Dept. Biomedical Sciences, Child & Adolescent NeuroPsychiatry Unit, University of Cagliari, Cagliari, Italy
| | | |
Collapse
|
10
|
Fabbri C, Serretti A. Pharmacogenetics of major depressive disorder: top genes and pathways toward clinical applications. Curr Psychiatry Rep 2015; 17:50. [PMID: 25980509 DOI: 10.1007/s11920-015-0594-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The pharmacogenetics of antidepressants has been not only a challenging but also frustrating research field since its birth in the 1990s. Indeed, great expectations followed the first evidence of familiar aggregation of antidepressant response. Despite the progress from candidate gene studies to genome-wide association studies (GWAS), results fell out the expectations and they were often inconsistent. Anyway, the cumulative evidence supports the involvement of some genes and molecular pathways in antidepressant efficacy. The best single genes are SLC6A4, HTR2A, BDNF, GNB3, FKBP5, ABCB1, and cytochrome P450 genes (CYP2D6 and CYP2C19). Molecular pathways involved in inflammation and neuroplasticity show the greatest support. The first studies evaluating benefits of genotype-guided antidepressant treatments provided encouraging results and confirmed the relevance of SLC6A4, HTR2A, ABCB1, and cytochrome P450 genes. Further progress in genotyping and data analysis would allow to move forward and complete the understanding of antidepressant pharmacogenetics and its translation into clinical applications.
Collapse
Affiliation(s)
- Chiara Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Viale Carlo Pepoli 5, 40123, Bologna, Italy,
| | | |
Collapse
|
11
|
Caldirola D, Perna G. Is there a role for pharmacogenetics in the treatment of panic disorder? Pharmacogenomics 2015; 16:771-4. [PMID: 26083015 DOI: 10.2217/pgs.15.66] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Daniela Caldirola
- Department of Clinical Neurosciences, Villa San Benedetto Menni, Hermanas Hospitalarias, Via Roma 16, 22032, FoRiPsi, Albese con Cassano, Como, Italy
| | - Giampaolo Perna
- Department of Clinical Neurosciences, Villa San Benedetto Menni, Hermanas Hospitalarias, Via Roma 16, 22032, FoRiPsi, Albese con Cassano, Como, Italy.,Department of Psychiatry & Neuropsychology, Faculty of Health, Medicine & Life Sciences, University of Maastricht, Maastricht, The Netherlands.,Department of Psychiatry & Behavioral Sciences, Leonard Miller School of Medicine, University of Miami, 1600 NW 10th Ave #1140, Miami, FL 33136, USA
| |
Collapse
|
12
|
Probst-Schendzielorz K, Viviani R, Stingl JC. Effect of Cytochrome P450 polymorphism on the action and metabolism of selective serotonin reuptake inhibitors. Expert Opin Drug Metab Toxicol 2015; 11:1219-32. [PMID: 26028357 DOI: 10.1517/17425255.2015.1052791] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The aim of this article is to review the field of clinically relevant pharmacogenetic effects of cytochrome P450 polymorphisms on metabolism, kinetics, and action of selective serotonin reuptake inhibitors (SSRIs). AREAS COVERED The relevant literature in humans on the implications of genetic variation on SSRI drug exposure, drug safety, and efficacy was systematically evaluated. There is a large amount of evidence on the influences of CYP polymorphisms on the pharmacokinetics of SSRIs. Regulatory agencies have issued warnings or advice considering dose adjustments in the presence of affected metabolic phenotypes for several SSRIs. Evidence-based dose adjustments for drugs dependent on CYP genotype are available to clinicians. However, few data on the relationship between genetically determined elevated plasma concentrations of SSRIs and specific side effects or therapeutic failure are currently available. EXPERT OPINION Genetic polymorphisms in CYP2D6 and CYP2C19 exert large influences on the individual exposure to SSRIs, leading to the aim to achieve similar concentration time courses in different metabolizer phenotypes. The implementation of a stratified approach to medication with SSRIs in different metabolic phenotypes on a rational basis will require new studies assessing the association between clinical outcomes (such as adverse reactions) and genetically determined elevated plasma concentrations.
Collapse
|