1
|
Ke Z, Ma Q, Ye X, Wang Y, Jin Y, Zhao X, Su Z. Peptide GLP-1 receptor agonists: From injection to oral delivery strategies. Biochem Pharmacol 2024; 229:116471. [PMID: 39127152 DOI: 10.1016/j.bcp.2024.116471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/20/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Peptide glucagon-like peptide-1 receptor agonists (GLP-1RAs) are effective drugs for treating type 2 diabetes (T2DM) and have been proven to benefit the heart and kidney. Apart from oral semaglutide, which does not require injection, other peptide GLP-1RAs need to be subcutaneously administered. However, oral semaglutide also faces significant challenges, such as low bioavailability and frequent gastrointestinal discomfort. Thus, it is imperative that advanced oral strategies for peptide GLP-1RAs need to be explored. This review mainly compares the current advantages and disadvantages of various oral delivery strategies for peptide GLP-1RAs in the developmental stage and discusses the latest research progress of peptide GLP-1RAs, providing a useful guide for the development of new oral peptide GLP-1RA drugs.
Collapse
Affiliation(s)
- Zhiqiang Ke
- Protein Engineering and Biopharmaceuticals Science, Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Diabetes and Angiopathy, National Demonstration Center for Experimental General Medicine Education, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, China
| | - Qianqian Ma
- Protein Engineering and Biopharmaceuticals Science, Hubei University of Technology, Wuhan 430068, China; School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Xiaonan Ye
- Protein Engineering and Biopharmaceuticals Science, Hubei University of Technology, Wuhan 430068, China
| | - Yanlin Wang
- Protein Engineering and Biopharmaceuticals Science, Hubei University of Technology, Wuhan 430068, China
| | - Yan Jin
- Protein Engineering and Biopharmaceuticals Science, Hubei University of Technology, Wuhan 430068, China
| | - Xinyuan Zhao
- Hubei Key Laboratory of Diabetes and Angiopathy, National Demonstration Center for Experimental General Medicine Education, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, China.
| | - Zhengding Su
- Protein Engineering and Biopharmaceuticals Science, Hubei University of Technology, Wuhan 430068, China; School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China.
| |
Collapse
|
2
|
Gong B, Yao Z, Zhou C, Wang W, Sun L, Han J. Glucagon-like peptide-1 analogs: Miracle drugs are blooming? Eur J Med Chem 2024; 269:116342. [PMID: 38531211 DOI: 10.1016/j.ejmech.2024.116342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024]
Abstract
Glucagon-like peptide-1 (GLP-1), secreted by L cells in the small intestine, assumes a central role in managing type 2 diabetes mellitus (T2DM) and obesity. Its influence on insulin secretion and gastric emptying positions it as a therapeutic linchpin. However, the limited applicability of native GLP-1 stems from its short half-life, primarily due to glomerular filtration and the inactivating effect of dipeptidyl peptidase-IV (DPP-IV). To address this, various structural modification strategies have been developed to extend GLP-1's half-life. Despite the commendable efficacy displayed by current GLP-1 receptor agonists, inherent limitations persist. A paradigm shift emerges with the advent of unimolecular multi-agonists, such as the recently introduced tirzepatide, wherein GLP-1 is ingeniously combined with other gastrointestinal hormones. This novel approach has captured the spotlight within the diabetes and obesity research community. This review summarizes the physiological functions of GLP-1, systematically explores diverse structural modifications, delves into the realm of unimolecular multi-agonists, and provides a nuanced portrayal of the developmental prospects that lie ahead for GLP-1 analogs.
Collapse
Affiliation(s)
- Binbin Gong
- College of Medicine, Jiaxing University, Jiaxing, 314001, China; College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310000, China
| | - Zhihong Yao
- College of Medicine, Jiaxing University, Jiaxing, 314001, China; College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310000, China
| | - Chenxu Zhou
- College of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - Wenxi Wang
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310000, China
| | - Lidan Sun
- College of Medicine, Jiaxing University, Jiaxing, 314001, China.
| | - Jing Han
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
3
|
Pinto SFT, Santos HA, Sarmento BFCC. New insights into nanomedicines for oral delivery of glucagon-like peptide-1 analogs. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1952. [PMID: 38500351 DOI: 10.1002/wnan.1952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/23/2024] [Accepted: 02/21/2024] [Indexed: 03/20/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder that arises when the body cannot respond fully to insulin, leading to impaired glucose tolerance. Currently, the treatment embraces non-pharmacological actions (e.g., diet and exercise) co-associated with the administration of antidiabetic drugs. Metformin is the first-line treatment for T2DM; nevertheless, alternative therapeutic strategies involving glucagon-like peptide-1 (GLP-1) analogs have been explored for managing the disease. GLP-1 analogs trigger insulin secretion and suppress glucagon release in a glucose-dependent manner thereby, reducing the risk of hyperglycemia. Additionally, GLP-1 analogs have an extended plasma half-life compared to the endogenous peptide due to their high resistance to degradation by dipeptidyl peptidase-4. However, GLP-1 analogs are mainly administered via subcutaneous route, which can be inconvenient for the patients. Even considering an oral delivery approach, GLP-1 analogs are exposed to the harsh conditions of the gastrointestinal tract (GIT) and the intestinal barriers (mucus and epithelium). Hereupon, there is an unmet need to develop non-invasive oral transmucosal drug delivery strategies, such as the incorporation of GLP-1 analogs into nanoplatforms, to overcome the GIT barriers. Nanotechnology has the potential to shield antidiabetic peptides against the acidic pH and enzymatic activity of the stomach. In addition, the nanoparticles can be coated and/or surface-conjugated with mucodiffusive polymers and target intestinal ligands to improve their transport through the intestinal mucus and epithelium. This review focuses on the main hurdles associated with the oral administration of GLP-1 and GLP-1 analogs, and the nanosystems developed to improve the oral bioavailability of the antidiabetic peptides. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Soraia Filipa Tavares Pinto
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Hélder Almeida Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bruno Filipe Carmelino Cardoso Sarmento
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Instituto Universitário de Ciências da Saúde (IUCS-CESPU), Gandra, Portugal
| |
Collapse
|
4
|
Lee MF, Poh CL. Strategies to improve the physicochemical properties of peptide-based drugs. Pharm Res 2023; 40:617-632. [PMID: 36869247 DOI: 10.1007/s11095-023-03486-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/17/2023] [Indexed: 03/05/2023]
Abstract
Peptides are a rapid-growing class of therapeutics with unique and desirable physicochemical properties. Due to disadvantages such as low membrane permeability and susceptibility to proteolytic degradation, peptide-based drugs have limited bioavailability, a short half-life, and rapid in vivo elimination. Various strategies can be applied to improve the physicochemical properties of peptide-based drugs to overcome limitations such as limited tissue residence time, metabolic instability, and low permeability. Applied strategies including backbone modifications, side chain modifications, conjugation with polymers, modification of peptide termini, fusion to albumin, conjugation with the Fc portion of antibodies, cyclization, stapled peptides, pseudopeptides, cell-penetrating peptide conjugates, conjugation with lipids, and encapsulation in nanocarriers are discussed.
Collapse
Affiliation(s)
- Michelle Felicia Lee
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 5, Jalan Universiti, Selangor 47500, Bandar Sunway, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 5, Jalan Universiti, Selangor 47500, Bandar Sunway, Malaysia.
| |
Collapse
|
5
|
Xie Y, Zhou Q, He Q, Wang X, Wang J. Opportunities and challenges of incretin-based hypoglycemic agents treating type 2 diabetes mellitus from the perspective of physiological disposition. Acta Pharm Sin B 2022. [DOI: 10.1016/j.apsb.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
6
|
Therapeutic peptides: current applications and future directions. Signal Transduct Target Ther 2022; 7:48. [PMID: 35165272 PMCID: PMC8844085 DOI: 10.1038/s41392-022-00904-4] [Citation(s) in RCA: 557] [Impact Index Per Article: 278.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/08/2023] Open
Abstract
Peptide drug development has made great progress in the last decade thanks to new production, modification, and analytic technologies. Peptides have been produced and modified using both chemical and biological methods, together with novel design and delivery strategies, which have helped to overcome the inherent drawbacks of peptides and have allowed the continued advancement of this field. A wide variety of natural and modified peptides have been obtained and studied, covering multiple therapeutic areas. This review summarizes the efforts and achievements in peptide drug discovery, production, and modification, and their current applications. We also discuss the value and challenges associated with future developments in therapeutic peptides.
Collapse
|
7
|
Chen S, Han Y, Ouyang Q, Lu J, Zhang Q, Yang S, Wang J, Huang H, Liu H, Shao Z, Li H, Chen Z, Sun S, Geng C, Lu J, Sun J, Wang J, Xu B. Randomized and dose-escalation trials of recombinant human serum albumin /granulocyte colony-stimulating factor in patients with breast cancer receiving anthracycline-containing chemotherapy. BMC Cancer 2021; 21:341. [PMID: 33789616 PMCID: PMC8010964 DOI: 10.1186/s12885-021-08093-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To evaluate the efficacy and safety of recombinant human serum albumin /granulocyte colony-stimulating factor (rHSA/G-CSF) in breast cancer following receipt of cytotoxic agents. METHODS The phase 1b trial assessed the pharmacokinetics, pharmacodynamics, and safety of dose-escalation, ranging from rHSA/G-CSF 1800 μg, 2100 μg, and 2400 μg. Randomized controlled phase 2b trial was further conducted to ensure the comparative efficacy and safety of rHSA/G-CSF 2400 μg and rhG-CSF 5 μg/kg. In multicenter, randomized, open-label, parallel, phase 2 study, participants treated with anthracycline-containing chemotherapy were assigned in a ratio 1:1:1 to receive double delivery of rHSA/G-CSF 1200 μg, 1500 μg, and continuous rhG-CSF 5 μg/kg. RESULTS Between December 16, 2014, to July 23, 2018, a total of 320 patients were enrolled, including 25 individuals in phase 1b trial, 80 patients in phase 2b trial, and 215 participants in phase 2 study. The mean duration of agranulocytosis during the first chemotherapeutic intermission was observed as 1.14 ± 1.35 days in rHSA/G-CSF 1500 μg, which was comparable with that of 1.07 ± 0.97 days obtained in rhG-CSF control (P = 0.71). Safety profiles were assessed to be acceptable ranging from rHSA/G-CSF 1800 μg to 2400 μg, while the double delivery of HSA/G-CSF 2400 μg failed to meet the noninferiority in comparison with rhG-CSF. CONCLUSION The prospective randomized controlled trials demonstrated that rHSA/G-CSF was efficacious and well-tolerated with an approachable frequency and expense of application for prophylactic management of agranulocytosis. The double delivery of rHSA/G-CSF 1500 μg in comparisons with paralleling G-CSF preparations is warranted in the phase 3 trial. TRIAL REGISTRATION ClinicalTrials.gov identifiers: NCT02465801 (11/17/2014), NCT03246009 (08/08/2017), NCT03251768 (08/07/2017).
Collapse
Affiliation(s)
- Shanshan Chen
- Department of Medical Oncology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yiqun Han
- Department of Medical Oncology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Quchang Ouyang
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital, Changsha, Hunan, China
| | - Jianguo Lu
- Department of General Surgery, Xi'an Tangdu Hospital, Xi'an, Shanxi, China
| | - Qingyuan Zhang
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Shun'e Yang
- Department of Breast Cancer and Lymphoma, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jingfen Wang
- Department of Internal Medicine, Linyi Tumor Hospital, Linyi, Shandong, China
| | - Haixin Huang
- Department of Oncology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Hong Liu
- Department of Breast Surgery, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhimin Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Hui Li
- Department of Breast Surgery, Sichuan Province Tumor Hospital, Chengdu, Sichuan, China
| | - Zhendong Chen
- Department of Medical Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Sanyuan Sun
- Department of Medical Oncology, Central Hospital of Xuzhou, the Cancer Institute of Southeast University, Xuzhou, Jiangsu, China
| | - Cuizhi Geng
- First Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Junguo Lu
- Department of Medical Oncology, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Jianwei Sun
- Department of Tumor, Yunnan First People's Hospital, Kunming, Yunnan, China
| | - Jiayu Wang
- Department of Medical Oncology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
8
|
Alavi SE, Cabot PJ, Moyle PM. Glucagon-Like Peptide-1 Receptor Agonists and Strategies To Improve Their Efficiency. Mol Pharm 2019; 16:2278-2295. [PMID: 31050435 DOI: 10.1021/acs.molpharmaceut.9b00308] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is increasing in global prevalence and is associated with serious health problems (e.g., cardiovascular disease). Various treatment options are available for T2DM, including the incretin hormone glucagon-like peptide-1 (GLP-1). GLP-1 is a therapeutic peptide secreted from the intestines following food intake, which stimulates the secretion of insulin from the pancreas. The native GLP-1 has a very short plasma half-life, owning to renal clearance and degradation by the enzyme dipeptidyl peptidase-4. To overcome this issue, various GLP-1 agonists with increased resistance to proteolytic degradation and reduced renal clearance have been developed, with several currently marketed. Strategies, such as controlled release delivery systems, methods to reduce renal clearance (e.g., PEGylation and conjugation to antibodies), and methods to improve proteolytic stability (e.g., stapling, cyclization, and glycosylation) provide means to further improve the ability of GLP-1 analogs. These will be discussed in this literature review.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- School of Pharmacy , The University of Queensland , Woolloongabba , 4102 , Australia
| | - Peter J Cabot
- School of Pharmacy , The University of Queensland , Woolloongabba , 4102 , Australia
| | - Peter M Moyle
- School of Pharmacy , The University of Queensland , Woolloongabba , 4102 , Australia
| |
Collapse
|
9
|
Møller TSB, Hay J, Saxton MJ, Bunting K, Petersen EI, Kjærulff S, Finnis CJA. Human β-defensin-2 production from S. cerevisiae using the repressible MET17 promoter. Microb Cell Fact 2017; 16:11. [PMID: 28100236 PMCID: PMC5241953 DOI: 10.1186/s12934-017-0627-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 01/08/2017] [Indexed: 11/25/2022] Open
Abstract
Background Baker’s yeast Saccharomyces cerevisiae is a proven host for the commercial production of recombinant biopharmaceutical proteins. For the manufacture of heterologous proteins with activities deleterious to the host it can be desirable to minimise production during the growth phase and induce production late in the exponential phase. Protein expression by regulated promoter systems offers the possibility of improving productivity in this way by separating the recombinant protein production phase from the yeast growth phase. Commonly used inducible promoters do not always offer convenient solutions for industrial scale biopharmaceutical production with engineered yeast systems. Results Here we show improved secretion of the antimicrobial protein, human β-defensin-2, (hBD2), using the S. cerevisiae MET17 promoter by repressing expression during the growth phase. In shake flask culture, a higher final concentration of human β-defensin-2 was obtained using the repressible MET17 promoter system than when using the strong constitutive promoter from proteinase B (PRB1) in a yeast strain developed for high-level commercial production of recombinant proteins. Furthermore, this was achieved in under half the time using the MET17 promoter compared to the PRB1 promoter. Cell density, plasmid copy-number, transcript level and protein concentration in the culture supernatant were used to study the effects of different initial methionine concentrations in the culture media for the production of human β-defensin-2 secreted from S. cerevisiae. Conclusions The repressible S. cerevisiae MET17 promoter was more efficient than a strong constitutive promoter for the production of human β-defensin-2 from S. cerevisiae in small-scale culture and offers advantages for the commercial production of this and other heterologous proteins which are deleterious to the host organism. Furthermore, the MET17 promoter activity can be modulated by methionine alone, which has a safety profile applicable to biopharmaceutical manufacturing.
Collapse
Affiliation(s)
- Thea S B Møller
- Novozymes Biopharma UK Limited, Castle Court, 59 Castle Boulevard, Nottingham, NG7 1FD, UK.,Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, Aalborg East, 9220, Aalborg, Denmark
| | - Joanna Hay
- Novozymes Biopharma UK Limited, Castle Court, 59 Castle Boulevard, Nottingham, NG7 1FD, UK
| | - Malcolm J Saxton
- Novozymes Biopharma UK Limited, Castle Court, 59 Castle Boulevard, Nottingham, NG7 1FD, UK
| | - Karen Bunting
- Novozymes Biopharma UK Limited, Castle Court, 59 Castle Boulevard, Nottingham, NG7 1FD, UK
| | - Evamaria I Petersen
- Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, Aalborg East, 9220, Aalborg, Denmark
| | - Søren Kjærulff
- Novozymes Biopharma UK Limited, Castle Court, 59 Castle Boulevard, Nottingham, NG7 1FD, UK
| | - Christopher J A Finnis
- Novozymes Biopharma UK Limited, Castle Court, 59 Castle Boulevard, Nottingham, NG7 1FD, UK.
| |
Collapse
|
10
|
Tomlinson B, Hu M, Zhang Y, Chan P, Liu ZM. Investigational glucagon-like peptide-1 agonists for the treatment of obesity. Expert Opin Investig Drugs 2016; 25:1167-79. [PMID: 27563838 DOI: 10.1080/13543784.2016.1221925] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Obesity is a worldwide problem predisposing to type 2 diabetes mellitus (T2DM), hypertension, cardiovascular disease, cancer and other comorbidities. Lifestyle modification is the first line intervention but adjunctive pharmacotherapy is often required. The GLP-1 receptor agonists (GLP-1RAs) were developed primarily for T2DM and they also reduce body weight. Liraglutide was approved for the treatment of obesity and other GLP-1RAs are likely to be suitable for this indication. AREAS COVERED This review describes the GLP-1RAs that have been approved for the treatment of T2DM as potential candidates for the treatment of obesity and the new agents currently under development which may have advantages in patient adherence. EXPERT OPINION The GLP-1RAs offer a welcome addition to obesity pharmacotherapy. They appear to be free of serious adverse effects although uncertainty remains about possible risks of pancreatitis and neoplasms. However, they have frequent gastrointestinal side effects, particularly nausea, which limits their tolerability. Cardiovascular outcome studies in T2DM support their use and this is likely to increase in both T2DM and obesity. Other GLP-1RAs which can be given by subcutaneous injection once weekly or less frequently or by oral administration would have advantages especially if nausea is less frequent than with liraglutide.
Collapse
Affiliation(s)
- Brian Tomlinson
- a Research Center for Translational Medicine , Shanghai East Hospital Affiliated to Tongji University School of Medicine , Shanghai , China.,b Department of Medicine & Therapeutics , The Chinese University of Hong Kong , Shatin , Hong Kong
| | - Miao Hu
- b Department of Medicine & Therapeutics , The Chinese University of Hong Kong , Shatin , Hong Kong
| | - Yuzhen Zhang
- a Research Center for Translational Medicine , Shanghai East Hospital Affiliated to Tongji University School of Medicine , Shanghai , China
| | - Paul Chan
- c Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital , Taipei Medical University , Taipei City , Taiwan
| | - Zhong-Min Liu
- d Department of Cardiac Surgery, Shanghai East Hospital , Tongji University , Shanghai , China
| |
Collapse
|
11
|
Tomlinson B, Hu M, Zhang Y, Chan P, Liu ZM. An overview of new GLP-1 receptor agonists for type 2 diabetes. Expert Opin Investig Drugs 2015; 25:145-58. [DOI: 10.1517/13543784.2016.1123249] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|