1
|
Su HH, Lin ES, Huang YH, Lien Y, Huang CY. Inhibition of SARS-CoV-2 Nsp9 ssDNA-Binding Activity and Cytotoxic Effects on H838, H1975, and A549 Human Non-Small Cell Lung Cancer Cells: Exploring the Potential of Nepenthes miranda Leaf Extract for Pulmonary Disease Treatment. Int J Mol Sci 2024; 25:6120. [PMID: 38892307 PMCID: PMC11173125 DOI: 10.3390/ijms25116120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Carnivorous pitcher plants from the genus Nepenthes are renowned for their ethnobotanical uses. This research explores the therapeutic potential of Nepenthes miranda leaf extract against nonstructural protein 9 (Nsp9) of SARS-CoV-2 and in treating human non-small cell lung carcinoma (NSCLC) cell lines. Nsp9, essential for SARS-CoV-2 RNA replication, was expressed and purified, and its interaction with ssDNA was assessed. Initial tests with myricetin and oridonin, known for targeting ssDNA-binding proteins and Nsp9, respectively, did not inhibit the ssDNA-binding activity of Nsp9. Subsequent screenings of various N. miranda extracts identified those using acetone, methanol, and ethanol as particularly effective in disrupting Nsp9's ssDNA-binding activity, as evidenced by electrophoretic mobility shift assays. Molecular docking studies highlighted stigmast-5-en-3-ol and lupenone, major components in the leaf extract of N. miranda, as potential inhibitors. The cytotoxic properties of N. miranda leaf extract were examined across NSCLC lines H1975, A549, and H838, focusing on cell survival, apoptosis, and migration. Results showed a dose-dependent cytotoxic effect in the following order: H1975 > A549 > H838 cells, indicating specificity. Enhanced anticancer effects were observed when the extract was combined with afatinib, suggesting synergistic interactions. Flow cytometry indicated that N. miranda leaf extract could induce G2 cell cycle arrest in H1975 cells, potentially inhibiting cancer cell proliferation. Gas chromatography-mass spectrometry (GC-MS) enabled the tentative identification of the 19 most abundant compounds in the leaf extract of N. miranda. These outcomes underscore the dual utility of N. miranda leaf extract in potentially managing SARS-CoV-2 infection through Nsp9 inhibition and offering anticancer benefits against lung carcinoma. These results significantly broaden the potential medical applications of N. miranda leaf extract, suggesting its use not only in traditional remedies but also as a prospective treatment for pulmonary diseases. Overall, our findings position the leaf extract of N. miranda as a promising source of natural compounds for anticancer therapeutics and antiviral therapies, warranting further investigation into its molecular mechanisms and potential clinical applications.
Collapse
Affiliation(s)
- Hsin-Hui Su
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 717, Taiwan
| | - En-Shyh Lin
- Department of Beauty Science, National Taichung University of Science and Technology, Taichung City 403, Taiwan
| | - Yen-Hua Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Yi Lien
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| |
Collapse
|
2
|
Khatua S, Nandi S, Nag A, Sen S, Chakraborty N, Naskar A, Gürer ES, Calina D, Acharya K, Sharifi-Rad J. Homoharringtonine: updated insights into its efficacy in hematological malignancies, diverse cancers and other biomedical applications. Eur J Med Res 2024; 29:269. [PMID: 38704602 PMCID: PMC11069164 DOI: 10.1186/s40001-024-01856-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Abstract
HHT has emerged as a notable compound in the realm of cancer treatment, particularly for hematological malignancies. Its multifaceted pharmacological properties extend beyond traditional applications, warranting an extensive review of its mechanisms and efficacy. This review aims to synthesize comprehensive insights into the efficacy of HHT in treating hematological malignancies, diverse cancers, and other biomedical applications. It focuses on elucidating the molecular mechanisms, therapeutic potential, and broader applications of HHT. A comprehensive search for peer-reviewed papers was conducted across various academic databases, including ScienceDirect, Web of Science, Scopus, American Chemical Society, Google Scholar, PubMed/MedLine, and Wiley. The review highlights HHT's diverse mechanisms of action, ranging from its role in leukemia treatment to its emerging applications in managing other cancers and various biomedical conditions. It underscores HHT's influence on cellular processes, its efficacy in clinical settings, and its potential to alter pathological pathways. HHT demonstrates significant promise in treating various hematological malignancies and cancers, offering a multifaceted approach to disease management. Its ability to impact various physiological pathways opens new avenues for therapeutic applications. This review provides a consolidated foundation for future research and clinical applications of HHT in diverse medical fields.
Collapse
Affiliation(s)
- Somanjana Khatua
- Department of Botany, Faculty of Science, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India
| | - Sudeshna Nandi
- Department of Botany, Molecular and Applied Mycology and Plant Pathology Laboratory, University of Calcutta, 35, Ballygung Circular Road, Kolkata, India
| | - Anish Nag
- Department of Life Sciences, CHRIST (Deemed to Be University), Bangalore Central Campus, Bangalore, Karnataka, India
| | - Surjit Sen
- Department of Botany, Fakir Chand College, Diamond Harbour, South 24-Parganas, Kolkata, India
| | | | - Arghya Naskar
- Department of Botany, Molecular and Applied Mycology and Plant Pathology Laboratory, University of Calcutta, 35, Ballygung Circular Road, Kolkata, India
| | - Eda Sönmez Gürer
- Department of Pharmacognosy, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Krishnendu Acharya
- Department of Botany, Molecular and Applied Mycology and Plant Pathology Laboratory, University of Calcutta, 35, Ballygung Circular Road, Kolkata, India.
| | | |
Collapse
|
3
|
Luo Z, Yin F, Wang X, Kong L. Progress in approved drugs from natural product resources. Chin J Nat Med 2024; 22:195-211. [PMID: 38553188 DOI: 10.1016/s1875-5364(24)60582-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Indexed: 04/02/2024]
Abstract
Natural products (NPs) have consistently played a pivotal role in pharmaceutical research, exerting profound impacts on the treatment of human diseases. A significant proportion of approved molecular entity drugs are either directly derived from NPs or indirectly through modifications of NPs. This review presents an overview of NP drugs recently approved in China, the United States, and other countries, spanning various disease categories, including cancers, cardiovascular and cerebrovascular diseases, central nervous system disorders, and infectious diseases. The article provides a succinct introduction to the origin, activity, development process, approval details, and mechanism of action of these NP drugs.
Collapse
Affiliation(s)
- Zhongwen Luo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Fucheng Yin
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaobing Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
4
|
Feng K, Li X, Bai Y, Zhang D, Tian L. Mechanisms of cancer cell death induction by triptolide: A comprehensive overview. Heliyon 2024; 10:e24335. [PMID: 38293343 PMCID: PMC10826740 DOI: 10.1016/j.heliyon.2024.e24335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
The need for naturally occurring constituents is driven by the rise in the cancer prevalence and the unpleasant side effects associated with chemotherapeutics. Triptolide, the primary active component of "Tripterygium Wilfordii", has exploited for biological mechanisms and therapeutic potential against various tumors. Based on the recent pre-clinical investigations, triptolide is linked to the induction of death of cancerous cells by triggering cellular apoptosis via inhibiting heat shock protein expression (HSP70), and cyclin dependent kinase (CDKs) by up regulating expression of P21. MKP1, histone methyl transferases and RNA polymerases have all recently identified as potential targets of triptolide in cells. Autophagy, AKT signaling pathway and various pathways involving targeted proteins such as A-disintegrin & metalloprotease-10 (ADAM10), Polycystin-2 (PC-2), dCTP pyro-phosphatase 1 (DCTP1), peroxiredoxin-I (Prx-I), TAK1 binding protein (TAB1), kinase subunit (DNA-PKcs) and the xeroderma-pigmentosum B (XPB or ERCC3) have been exploited. Besides that, triptolide is responsible for enhancing the effectiveness of various chemotherapeutics. In addition, several triptolide moieties, including minnelide and LLDT8, have progressed in investigations on humans for the treatment of cancer. Targeted strategies, such as triptolide conjugation with ligands or triptolide loaded nano-carriers, are efficient techniques to confront toxicities associated with triptolide. We expect and anticipate that advances in near future, regarding combination therapies of triptolide, might be beneficial against cancerous cells.
Collapse
Affiliation(s)
- Ke Feng
- Department of General Surgery, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| | - Xiaojiang Li
- Department of General Surgery, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| | - Yuzhuo Bai
- Department of Breast and Thyroid Surgery Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| | - Dawei Zhang
- Department of General Surgery Baishan Hospital of Traditional Chinese Medicine, Baishan, 134300, China
| | - Lin Tian
- Department of Lung Oncology, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| |
Collapse
|
5
|
Wang C, Li S, Ren H, Sheng Y, Wang T, Li M, Zhou Q, He H, Liu C. Anti-Proliferation and Pro-Apoptotic Effects of Diosmetin via Modulating Cell Cycle Arrest and Mitochondria-Mediated Intrinsic Apoptotic Pathway in MDA-MB-231 Cells. Med Sci Monit 2019; 25:4639-4647. [PMID: 31228347 PMCID: PMC6601365 DOI: 10.12659/msm.914058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Breast cancer is one of the most malignant tumors worldwide. The natural flavonoid diosmetin has been reported to exhibit various pharmacological activities, including anti-cancer effects. This study aimed to investigate the anti-breast cancer effects of diosmetin on MDA-MB-231 cells and to explore the underlying molecular mechanisms of cell apoptosis. Material/Methods The MDA-MB-231 cells were incubated with diosmetin for 24 h. Then, cell viability and lactate dehydrogenase (LDH) leakage were detected using CCK-8 and LDH assay kits, respectively. Inverted fluorescence microscopy and flow cytometry were used to measure the mitochondrial membrane potential (MMP) and intracellular reactive oxygen species (ROS). Cell apoptosis and cell cycle were determined by flow cytometry. The expressions of apoptosis and cell cycle-related genes were determined by Western blotting and qRT-PCR. Results The results revealed that diosmetin exerts significant cytotoxic effects on MDA-MB-231 cells, as indicated by decreased cell viability, increased intracellular ROS accumulation and LDH release, as well as cell cycle arrest in G0/G1 phase, inducing mitochondrial dysfunction and apoptosis. Moreover, diosmetin treatment significantly downregulated the expression levels of Bcl-2 and Cyclin D1, and upregulated that of p53, Bax, caspase 3, cleaved caspase 9, and cleaved caspase 3. Conclusions These findings demonstrate that diosmetin has anti-proliferative and pro-apoptotic activities against MDA-MB-231 cells via cell cycle arrest and the mitochondria-mediated intrinsic apoptotic pathway. Our results extend the understanding of the anti-tumor mechanism of diosmetin and suggest that it may be of use as an active natural agent for the prevention or treatment of human breast cancer.
Collapse
Affiliation(s)
- Chunjing Wang
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Shujing Li
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Huanhuan Ren
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Yue Sheng
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Tiantian Wang
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Min Li
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Qiang Zhou
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Hongxian He
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Changqing Liu
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China (mainland)
| |
Collapse
|
6
|
Shi SW, Li B, Dong Y, Ge Y, Qu X, Lu LG, Yuan YH, Li LJ, Li Y. In Vitro and Clinical Studies of Gene Therapy with Recombinant Human Adenovirus-p53 Injection for Malignant Melanoma. HUM GENE THER CL DEV 2019; 30:7-18. [PMID: 30618300 DOI: 10.1089/humc.2018.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Malignant melanoma is an aggressive tumor with high fatality rates and poor prognosis, mainly due to the lack of efficient treatment methods. The present study investigated the potential antitumor effects of recombinant adenovirus p53 (rAd-p53) on human malignant melanoma. The optimal viral titer on a human malignant melanoma (A-375) cell line was determined for the rAd-p53 treatment. The invasive abilities, apoptosis, variations in the cell cycle, and molecular expression levels of A-375 cells were detected after infection by rAd-p53. A tumor growth curve and hematoxylin and eosin staining were carried out for experiments in nude mice. Twenty-one patients with malignant melanoma were evaluated, including 12 cases without gene therapy and nine cases with rAd-p53 gene therapy. The overall survival rate and the median survival time were analyzed between the two groups of patients. When the multiplicity of infection was 100, the cells showed the best transfection efficiency. The invasive ability, apoptosis, cycle changes of the cells, and the expression of the p53, p21, and Bax genes and proteins were significantly changed in the experimental group. In nude mice, the tumor growth curve and the tumor size in the experimental group were significantly smaller than those of the control group. Hematoxylin and eosin staining revealed tumor metastasis in the blank group and the control group but not in the experimental group. Between the two groups of patients, the median survival of the gene therapy group (38 months) was greater than that of the group without gene therapy (27 months). In this study, high expression of the p53 gene could regulate the gene expression and reduce the invasive and metastatic abilities of the tumor cells. Furthermore, rAd-p53 effectively improved the survival of patients with malignant melanoma. Therefore, rAd-p53 may be a potential treatment method for human malignant melanoma.
Collapse
Affiliation(s)
- Shan-Wei Shi
- 1 State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,2 Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Bo Li
- 1 State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Yang Dong
- 1 State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Yang Ge
- 1 State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Xing Qu
- 1 State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Li-Guang Lu
- 1 State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Yi-Hang Yuan
- 1 State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Long-Jiang Li
- 1 State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Yi Li
- 1 State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
7
|
Zhang H, Li H, Liu Z, Ge A, Guo E, Liu S, Chen Z. Triptolide inhibits the proliferation and migration of medulloblastoma Daoy cells by upregulation of microRNA-138. J Cell Biochem 2018; 119:9866-9877. [PMID: 30156009 DOI: 10.1002/jcb.27307] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 06/26/2018] [Indexed: 12/25/2022]
Abstract
Medulloblastoma is a primitive neuroectodermal-derived brain tumor and the most common malignant brain tumor in children. Triptolide (TPL) is the major active component extracted from Tripterygium wilfordii Hook F. This study aimed to explore the effects of TPL on medulloblastoma cell proliferation, migration, and apoptosis, as well as the underlying possible molecular mechanism. Viability, proliferation, and apoptosis of Daoy cells were measured using cell counting kit-8 assay, 5-bromo-2'-deoxyuridine incorporation assay, and Guava Nexin assay, respectively. Cell migration was detected using two-chamber transwell assay and wound healing assay. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to determine the relative expression of microRNA-138 (miR-138) in Daoy cells. Cell transfection was used to change the expression of miR-138 in cells. Western blot analysis was used to analyze the expression of key factors involved in cell apoptosis, cell migration, the phosphatidylinositol 3-kinase (PI3K)/protein kinase 3 (AKT) pathway, and the Notch pathway in Daoy cells. We found that TPL significantly inhibited the viability, proliferation, and migration of Daoy cells but promoted Daoy cell apoptosis. The expression levels of matrix metalloproteinases (MMP)-2 and MMP-9 after TPL treatment were decreased. The expression of miR-138 in Daoy cells after TPL treatment was increased. Suppression of miR-138 obviously reversed the TPL-induced Daoy cell proliferation, migration inhibition, and cell apoptosis enhancement, as well as the inactivation of the PI3K/AKT and Notch pathways. Cyclin-dependent kinase 6 (CDK6) was a direct target gene of miR-138, which might be involved in the antitumor effects of TPL on Daoy cells. In conclusion, our study verified that TPL exerted anticancer effects on medulloblastoma cells possibly via upregulating miR-138 and inactivating the PI3K/AKT and Notch pathways.
Collapse
Affiliation(s)
- Haifang Zhang
- Department of Pediatrics, Jining No. 1 People's Hospital, Jining, Shandong, China
| | - Hui Li
- Department of Pediatrics, Jining No. 1 People's Hospital, Jining, Shandong, China
| | - Zhenguo Liu
- Department of Pediatrics, Jining No. 1 People's Hospital, Jining, Shandong, China
| | - Ang Ge
- Department of Pediatrics, Jining No. 1 People's Hospital, Jining, Shandong, China
| | - Enyu Guo
- Department of Pediatrics, Jining No. 1 People's Hospital, Jining, Shandong, China
| | - Shuxia Liu
- Department of Pediatrics, Jining No. 1 People's Hospital, Jining, Shandong, China
| | - Zhiping Chen
- Department of Pediatrics, Jining No. 1 People's Hospital, Jining, Shandong, China
| |
Collapse
|
8
|
Paudel MR, Chand MB, Pant B, Pant B. Antioxidant and cytotoxic activities of Dendrobium moniliforme extracts and the detection of related compounds by GC-MS. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:134. [PMID: 29685150 PMCID: PMC5913799 DOI: 10.1186/s12906-018-2197-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023]
Abstract
Background The medicinal orchid Dendrobium moniliforme contains water-soluble polysaccharides, phenanthrenes, bibenzyl derivatives, and polyphenol compounds. This study explored the antioxidant and cytotoxic activities of D. moniliforme extracts and detected their bioactive compounds. Methods Plant material was collected from the Daman of Makawanpur district in central Nepal. Plant extracts were prepared from stems using hexane, chloroform, acetone, ethanol and methanol. The total polyphenol content (TPC) in each extract was determined using Folin-Ciocalteu’s reagent and the total flavonoid content (TFC) in each extract was determined using the aluminium chloride method. The in vitro antioxidant and cytotoxic activities of each extract were determined using DPPH (2,2-diphenyl-1-picrylhydrazyl) and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays respectively. Gas chromatography and mass spectrometry (GC-MS) analysis was used to detect bioactive compounds. Results TPC content was highest (116.65 μg GAE/mg of extract) in D. moniliforme chloroform extract (DMC) and TFC content was highest (116.67 μg QE/mg of extract) in D. moniliforme acetone extract (DMA). D. moniliforme hexane extract (DMH) extract showed the highest percentage of DPPH radical scavenging activity (94.48%), followed closely by D. moniliforme ethanol extract (DME) (94.45%), DMA (93.71%) and DMC (94.35%) at 800 μg/ml concentration. The antioxidant capacities of DMC, DMA, DMH and DME, which were measured in IC50 values, were much lower 42.39 μg/ml, 49.56 μg/ml, 52.68 μg/ml, and 58.77 μg/ml respectively than the IC50 of D. moniliforme methanol extract (DMM) (223.15 μg/ml). DMM at the concentration of 800 μg/ml most inhibited the growth of HeLa cells (78.68%) and DME at the same concentration most inhibited the growth of U251 cells (51.95%). The cytotoxic capacity (IC50) of DMM against HeLa cells was 155.80 μg/ml of extract and that of DME against the U251 cells was 772.50 μg/ml of extract. A number of bioactive compounds were detected in both DME and DMM. Conclusion The fact that plant extract of D. moniliforme has a number of bioactive compounds which showed antioxidant and cytotoxic activities suggests the potential pharmacological importance of this plant. Electronic supplementary material The online version of this article (10.1186/s12906-018-2197-6) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Zou P, Yuan S, Yang X, Zhai X, Wang J. Chitosan oligosaccharides with degree of polymerization 2–6 induces apoptosis in human colon carcinoma HCT116 cells. Chem Biol Interact 2018; 279:129-135. [DOI: 10.1016/j.cbi.2017.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/31/2017] [Accepted: 11/13/2017] [Indexed: 12/19/2022]
|
10
|
Induction of apoptosis in human glioma cell lines of various grades through the ROS-mediated mitochondrial pathway and caspase activation by Rhaponticum carthamoides transformed root extract. Mol Cell Biochem 2017; 445:89-97. [PMID: 29238899 DOI: 10.1007/s11010-017-3254-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 12/10/2017] [Indexed: 12/23/2022]
Abstract
The present study is the first investigation of the inhibitory effect of Rhaponticum carthamoides transformed roots (TR) extract on the proliferation of grade II and III human glioma cells. TR extract showed the cytotoxic effect and inhibited the colony formation of both glioma cell lines in dose-dependent manner. The root extract induced apoptosis by increasing of the reactive oxygen species (about threefold compared to the control cells) leading to a disruption of mitochondrial membrane potential. Additionally, the mRNA levels of the apoptotic factors such as Bax, Tp53, caspase-3, and caspase-9 were observed to increase. These results indicate that the TR extract possesses anticancer activity by inhibiting glioma cell proliferation and inducing apoptotic cell death, and may be used as a promising anticancer agent.
Collapse
|
11
|
Yashavarddhan MH, Shukla SK, Srivastava NN, Suar M, Dutta S, Kalita B, Ranjan R, Singh A, Bajaj S, Gupta ML. γH2AX formation kinetics in PBMCs of rabbits exposed to acute and fractionated radiation and attenuation of focus frequency through preadministration of a combination of podophyllotoxin and rutin hydrate. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:455-468. [PMID: 27338557 DOI: 10.1002/em.22027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 05/17/2016] [Accepted: 05/17/2016] [Indexed: 06/06/2023]
Abstract
DNA damage can be assessed by the quantitation of γH2AX foci that form at DSB sites. This study examines the generation and persistence of γH2AX foci, variability in foci size after acute and fractionated radiation exposure, and the effect of pretreatment with a safe radioprotective formulation termed G-003M on foci generation and persistence. G-003M contains a combination of podophyllotoxin and rutin hydrate, and was administered intramuscularly to rabbits 1 hr prior to Co(60) gamma irradiation. Rabbits were assigned to one of the following treatment groups: untreated, G-003M alone, irradiated (single dose 8 Gy, fractionated 2 Gy/day for 4 days or single dose 2 Gy) or G-003M preadministration followed by radiation exposure. Foci continuously persisted for a week in peripheral blood mononuclear cells of rabbits exposed to a single 8 Gy dose. However, the number of foci gradually decreased after reaching a maximum at 1 h. In rabbits exposed to fractionated radiation, foci detected 1 hr after the final exposure were significantly larger (P < 0.001) than in rabbits exposed to a single 8 Gy dose, but disappeared completely after 24 h. In both groups, foci reappeared on days 11-15 in terminally ill animals. G-003M pretreatment significantly (P < 0.05) attenuated the formation of γH2AX foci in all irradiated rabbits. This study reveals that γH2AX focus assessment could be used to confirm radiation exposure, that focus size reflects the type of radiation exposure (acute or fractionated), that the re-appearance of foci is a strong indicator of imminent death in animals, and that G-003M provides protection against radiation. Environ. Mol. Mutagen. 57:455-468, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- M H Yashavarddhan
- Division of Radioprotective Drug Development Research, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, SK Mazumdar Marg, Delhi, 110054, India
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Sandeep K Shukla
- Division of Radioprotective Drug Development Research, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, SK Mazumdar Marg, Delhi, 110054, India
| | - Nitya N Srivastava
- Division of Radioprotective Drug Development Research, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, SK Mazumdar Marg, Delhi, 110054, India
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Sangeeta Dutta
- Division of Radioprotective Drug Development Research, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, SK Mazumdar Marg, Delhi, 110054, India
| | - Bhargab Kalita
- Division of Radioprotective Drug Development Research, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, SK Mazumdar Marg, Delhi, 110054, India
| | - Rajiv Ranjan
- Division of Radioprotective Drug Development Research, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, SK Mazumdar Marg, Delhi, 110054, India
| | - Abhinav Singh
- Division of Radioprotective Drug Development Research, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, SK Mazumdar Marg, Delhi, 110054, India
| | - Sania Bajaj
- Division of Radioprotective Drug Development Research, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, SK Mazumdar Marg, Delhi, 110054, India
| | - Manju L Gupta
- Division of Radioprotective Drug Development Research, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, SK Mazumdar Marg, Delhi, 110054, India
| |
Collapse
|
12
|
Girola N, Figueiredo CR, Farias CF, Azevedo RA, Ferreira AK, Teixeira SF, Capello TM, Martins EGA, Matsuo AL, Travassos LR, Lago JHG. Camphene isolated from essential oil of Piper cernuum (Piperaceae) induces intrinsic apoptosis in melanoma cells and displays antitumor activity in vivo. Biochem Biophys Res Commun 2015; 467:928-34. [PMID: 26471302 DOI: 10.1016/j.bbrc.2015.10.041] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 10/08/2015] [Indexed: 02/08/2023]
Abstract
Natural monoterpenes were isolated from the essential oil of Piper cernuum Vell. (Piperaceae) leaves. The crude oil and the individual monoterpenes were tested for cytotoxicity in human tumor cell lineages and B16F10-Nex2 murine melanoma cells. In the present work we demonstrate the activity of camphene against different cancer cells, with its mechanism of action being investigated in vitro and in vivo in murine melanoma. Camphene induced apoptosis by the intrinsic pathway in melanoma cells mainly by causing endoplasmic reticulum (ER) stress, with release of Ca(2+) together with HmgB1 and calreticulin, loss of mitochondrial membrane potential and up regulation of caspase-3 activity. Importantly, camphene exerted antitumor activity in vivo by inhibiting subcutaneous tumor growth of highly aggressive melanoma cells in a syngeneic model, suggesting a promising role of this compound in cancer therapy.
Collapse
Affiliation(s)
- Natalia Girola
- Experimental Oncology Unit (UNONEX), Federal University of São Paulo, SP, Brazil.
| | - Carlos R Figueiredo
- Experimental Oncology Unit (UNONEX), Federal University of São Paulo, SP, Brazil
| | - Camyla F Farias
- Experimental Oncology Unit (UNONEX), Federal University of São Paulo, SP, Brazil
| | - Ricardo A Azevedo
- Laboratory of Tumor Immunology, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil
| | - Adilson K Ferreira
- Laboratory of Tumor Immunology, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil
| | - Sarah F Teixeira
- Laboratory of Tumor Immunology, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil
| | - Tabata M Capello
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, SP, Brazil
| | | | - Alisson L Matsuo
- Interdepartmental Group of Health Economics (Grides), Federal University of São Paulo, SP, Brazil
| | - Luiz R Travassos
- Experimental Oncology Unit (UNONEX), Federal University of São Paulo, SP, Brazil
| | - João H G Lago
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, SP, Brazil
| |
Collapse
|
13
|
|
14
|
Choedon T, Dolma D, Mathan G, Kumar V. Molecular insights into the anti-cancer properties of traditional Tibetan medicine Yukyung Karne. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:380. [PMID: 25292320 PMCID: PMC4197273 DOI: 10.1186/1472-6882-14-380] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 10/03/2014] [Indexed: 01/08/2023]
Abstract
BACKGROUND Yukyung karne (YK) is a traditional Tibetan formulation used for many centuries for the treatment of ovarian cancer. However, the pharmacological basis of its anticancer property is not well understood. In the present study, the anticancer property of YK was investigated in cell culture. METHODS The growth inhibitory property of YK was evaluated in SKOV6, IHH, HepG2 and HEK293 cell lines using MTT assay. The pro-apoptotic activity of drug was analyzed by terminal deoxynuleotidyl transferase dUTP nick end labeling (TUNEL) and DNA fragmentation assays. Confocal microscopy was used to show the release of cytochrome c and its co-localization with mitochondria with the help of dsRed mitotracker in SKOV6 cells. The inhibition in cell proliferation was also visualized by confocal microscopy after BrDU incorporation. The activation of tumor suppressor p53 was evaluated by Western blotting while VEGF levels in culture supernatant were measured by a colorimetric method. RESULTS YK specifically and efficiently induced apoptotic killing of the human ovarian cancer SKOV6 cells as indicated by increased DNA fragmentation and nick end DNA labeling. Confocal microscopy suggested inhibition of cell proliferation and increase in cytochrome c release via perturbation in mitochondrial membrane potential (Δψm). Further, YK up-regulated the expression of tumor suppressor p53 and key cyclin-dependent kinase inhibitor p21, and inhibited VEGF secretion by cells. Interestingly, YK also exhibited a synergy with paclitaxel which is a well-known anti-cancer therapeutic drug. CONCLUSIONS The pharmacological properties of YK to impose growth arrest and trigger pro-apoptotic death in cells amply justify its usage in primary as well as adjunct therapy for ovarian cancer.
Collapse
|
15
|
Salla M, Fakhoury I, Saliba N, Darwiche N, Gali-Muhtasib H. Synergistic anticancer activities of the plant-derived sesquiterpene lactones salograviolide A and iso-seco-tanapartholide. J Nat Med 2012; 67:468-79. [PMID: 22976170 DOI: 10.1007/s11418-012-0703-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 08/08/2012] [Indexed: 10/27/2022]
Abstract
We have previously shown that the two sesquiterpene lactones, salograviolide A (Sal A) and iso-seco-tanapartholide (TNP), isolated from the Middle Eastern indigenous plants Centaurea ainetensis and Achillea falcata, respectively, possess selective antitumor properties. Here, we aimed to assess the anticancer effects of the separate compounds and their combination, study their potential to generate reactive oxygen species (ROS), and investigate their underlying antitumor mechanisms in human colon cancer cell lines. Cells were treated with Sal A and TNP alone or in combination, and cell viability, cell cycle profile, apoptosis, ROS generation and changes in protein expression were monitored. Sal A and TNP in combination caused 80% decrease in HCT-116 and DLD-1 cell viability versus only 25% reduction when the drugs were used separately. The antitumor mechanism involved triggering ROS-dependent apoptosis as well as disruption of the mitochondrial membrane potential. Further studies showed that apoptosis by the Sal A and TNP combination was caspase-independent and that ERK, JNK and p38 of the serine/threonine MAPKs signaling pathway were involved in the cell death mechanism. Taken together, our data suggest that the combination of Sal A and TNP may be of therapeutic interest against colon cancer.
Collapse
Affiliation(s)
- Mohamed Salla
- Department of Biology, American University of Beirut, Riad El-Solh, Beirut, Lebanon.
| | | | | | | | | |
Collapse
|
16
|
Saikali M, Ghantous A, Halawi R, Talhouk SN, Saliba NA, Darwiche N. Sesquiterpene lactones isolated from indigenous Middle Eastern plants inhibit tumor promoter-induced transformation of JB6 cells. Altern Ther Health Med 2012; 12:89. [PMID: 22776414 PMCID: PMC3439278 DOI: 10.1186/1472-6882-12-89] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 06/19/2012] [Indexed: 12/30/2022]
Abstract
Background Sesquiterpene lactones (SL) are plant secondary metabolites that are known for their anti-fungal, anti-bacterial, anti-inflammatory, and anti-tumor properties. Considering that several SL-derived drugs are currently in cancer clinical trials, we have tested two SL molecules, 3-β-methoxy-iso-seco-tanapartholide (β-tan) isolated from Achillea falcata and salograviolide A (Sal A) isolated from Centaurea ainetensis, for their anti-tumor properties. We used the mouse epidermal JB6P + cells as a model for tumor promotion and cellular transformation. Key players that are involved in cellular transformation and tumorigenesis are the AP-1 and NF-κB transcription factors; therefore, we assessed how β-tan and Sal A modulate their signaling pathways in JB6P + cells. Methods The effects of β-tan and Sal A on the growth of normal and neoplastic keratinocytes and on the tumor promotion-responsive JB6P + cells were determined using the MTT assay. Anchorage-independent cell growth transformation assays were used to evaluate the anti-tumor promoting properties of these SL molecules in JB6P + cells and dual luciferase reporter assays and western blot analysis were used to investigate their effects on tumor promoter-induced AP-1 and NF-κB activities and protein levels of key AP-1 and NF-кB target genes. Results β-tan and Sal A selectively inhibited tumor promoter-induced cell growth and transformation of JB6P + cells at concentrations that do not affect JB6P + and primary keratinocytes basal cell growth. In addition, both molecules reduced basal and tumor promoter-induced NF-κB transcriptional activities, differentially regulated basal and tumor promoter-induced AP-1 transcriptional activities, and modulated key players of the AP-1 and NF-κB signaling pathways. Conclusions These results highlight the anti-tumor promoting properties of β-tan and Sal A. These SL molecules isolated from two plant species native to the Middle East may provide opportunities for complementary medicine practices.
Collapse
|
17
|
An H, Hu X, Gu J, Chen L, Xu W, Mo X, Xu W, Wang X, Xu X. Crystal structure determination of new antimitotic agent bis(p-fluorobenzyl)trisulfide. AAPS PharmSciTech 2008; 9:551-6. [PMID: 18431647 DOI: 10.1208/s12249-008-9081-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 03/07/2008] [Indexed: 01/19/2023] Open
Abstract
The purpose of this research was to investigate the physical characteristics and crystalline structure of bis(p-fluorobenzyl)trisulfide, a new anti-tumor agent. Methods used included X-ray single crystal diffraction, X-ray powder diffraction (XRPD), Fourier-transform infrared (FT-IR) spectroscopy, differential scanning calorimetric (DSC) and thermogravimetric (TG) analyses. The findings obtained with X-ray single crystal diffraction showed that a monoclinic unit cell was a = 12.266(1) A, b = 4.7757(4) A, c = 25.510(1) A, beta = 104.25(1) degrees ; cell volume = 1,448.4(2) A(3), Z = 4, and space group C2/c. The XRPD studies of the four crystalline samples, obtained by recrystallization from four different solvents, indicated that they had the same diffraction patterns. The diffraction pattern stimulated from the crystal structure data is in excellent agreement with the experimental results. In addition, the identical FT-IR spectra of the four crystalline samples revealed absorption bands corresponding to S-S and C-S stretching as well as the characteristic aromatic substitution. Five percent weight loss at 163.3 degrees C was observed when TG was used to study the decomposition process in the temperature range of 20-200 degrees C. DSC also allowed for the determination of onset temperatures at 60.4(1)-60.7(3) degrees C and peak temperatures at 62.1(3)-62.4(3) degrees C for the four crystalline samples studied. The results verified that the single crystal structure shared the same crystal form with the four crystalline samples investigated.
Collapse
|