1
|
Cerutti JP, Diniz LA, Santos VC, Vilchez Larrea SC, Alonso GD, Ferreira RS, Dehaen W, Quevedo MA. Structure-Aided Computational Design of Triazole-Based Targeted Covalent Inhibitors of Cruzipain. Molecules 2024; 29:4224. [PMID: 39275072 PMCID: PMC11396839 DOI: 10.3390/molecules29174224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
Cruzipain (CZP), the major cysteine protease present in T. cruzi, the ethiological agent of Chagas disease, has attracted particular attention as a therapeutic target for the development of targeted covalent inhibitors (TCI). The vast chemical space associated with the enormous molecular diversity feasible to explore by means of modern synthetic approaches allows the design of CZP inhibitors capable of exhibiting not only an efficient enzyme inhibition but also an adequate translation to anti-T. cruzi activity. In this work, a computer-aided design strategy was developed to combinatorially construct and screen large libraries of 1,4-disubstituted 1,2,3-triazole analogues, further identifying a selected set of candidates for advancement towards synthetic and biological activity evaluation stages. In this way, a virtual molecular library comprising more than 75 thousand diverse and synthetically feasible analogues was studied by means of molecular docking and molecular dynamic simulations in the search of potential TCI of CZP, guiding the synthetic efforts towards a subset of 48 candidates. These were synthesized by applying a Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) centered synthetic scheme, resulting in moderate to good yields and leading to the identification of 12 hits selectively inhibiting CZP activity with IC50 in the low micromolar range. Furthermore, four triazole derivatives showed good anti-T. cruzi inhibition when studied at 50 μM; and Ald-6 excelled for its high antitrypanocidal activity and low cytotoxicity, exhibiting complete in vitro biological activity translation from CZP to T. cruzi. Overall, not only Ald-6 merits further advancement to preclinical in vivo studies, but these findings also shed light on a valuable chemical space where molecular diversity might be explored in the search for efficient triazole-based antichagasic agents.
Collapse
Affiliation(s)
- Juan Pablo Cerutti
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (FCQ-UNC), Haya de la Torre y Medina Allende, Córdoba 5000, Argentina
- Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Lucas Abreu Diniz
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte 31270-901, Brazil
| | - Viviane Corrêa Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte 31270-901, Brazil
| | - Salomé Catalina Vilchez Larrea
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Vuelta de Obligado 2490, Ciudad de Buenos Aires 1428, Argentina
| | - Guillermo Daniel Alonso
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Vuelta de Obligado 2490, Ciudad de Buenos Aires 1428, Argentina
| | - Rafaela Salgado Ferreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte 31270-901, Brazil
| | - Wim Dehaen
- Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Mario Alfredo Quevedo
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (FCQ-UNC), Haya de la Torre y Medina Allende, Córdoba 5000, Argentina
| |
Collapse
|
2
|
Saha A, Pushpa, Moitra S, Basak D, Brahma S, Mondal D, Molla SH, Samadder A, Nandi S. Targeting Cysteine Proteases and their Inhibitors to Combat Trypanosomiasis. Curr Med Chem 2024; 31:2135-2169. [PMID: 37340748 DOI: 10.2174/0929867330666230619160509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/21/2023] [Accepted: 05/18/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND Trypanosomiasis, caused by protozoan parasites of the Trypanosoma genus, remains a significant health burden in several regions of the world. Cysteine proteases play a crucial role in the pathogenesis of Trypanosoma parasites and have emerged as potential therapeutic targets for the development of novel antiparasitic drugs. INTRODUCTION This review article aims to provide a comprehensive overview of the role of cysteine proteases in trypanosomiasis and their potential as therapeutic targets. We discuss the biological significance of cysteine proteases in Trypanosoma parasites and their involvement in essential processes, such as host immune evasion, cell invasion, and nutrient acquisition. METHODS A comprehensive literature search was conducted to identify relevant studies and research articles on the role of cysteine proteases and their inhibitors in trypanosomiasis. The selected studies were critically analyzed to extract key findings and provide a comprehensive overview of the topic. RESULTS Cysteine proteases, such as cruzipain, TbCatB and TbCatL, have been identified as promising therapeutic targets due to their essential roles in Trypanosoma pathogenesis. Several small molecule inhibitors and peptidomimetics have been developed to target these proteases and have shown promising activity in preclinical studies. CONCLUSION Targeting cysteine proteases and their inhibitors holds great potential for the development of novel antiparasitic drugs against trypanosomiasis. The identification of potent and selective cysteine protease inhibitors could significantly contribute to the combat against trypanosomiasis and improve the prospects for the treatment of this neglected tropical disease.
Collapse
Affiliation(s)
- Aloke Saha
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Pushpa
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Susmita Moitra
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Deblina Basak
- Endocrinology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sayandeep Brahma
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Dipu Mondal
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sabir Hossen Molla
- Parasitology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Asmita Samadder
- Cytogenetics and Molecular Biology Lab., Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sisir Nandi
- Global Institute of Pharmaceutical Education and Research (Affiliated to Veer Madho Singh Bhandari Uttarakhand Technical University), Kashipur, 244713, India
| |
Collapse
|
3
|
Lameiro RF, Montanari CA. Investigating the Lack of Translation from Cruzain Inhibition to Trypanosoma cruzi Activity with Machine Learning and Chemical Space Analyses. ChemMedChem 2023; 18:e202200434. [PMID: 36692246 DOI: 10.1002/cmdc.202200434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023]
Abstract
Chagas disease is a neglected tropical disease caused by the protozoa Trypanosoma cruzi. Cruzain, its main cysteine protease, is commonly targeted in drug discovery efforts to find new treatments for this disease. Even though the essentiality of this enzyme for the parasite has been established, many cruzain inhibitors fail as trypanocidal agents. This lack of translation from biochemical to biological assays can involve several factors, including suboptimal physicochemical properties. In this work, we aim to rationalize this phenomenon through chemical space analyses of calculated molecular descriptors. These include statistical tests, visualization of projections, scaffold analysis, and creation of machine learning models coupled with interpretability methods. Our results demonstrate a significant difference between the chemical spaces of cruzain and T. cruzi inhibitors, with compounds with more hydrogen bond donors and rotatable bonds being more likely to be good cruzain inhibitors, but less likely to be active on T. cruzi. In addition, cruzain inhibitors seem to occupy specific regions of the chemical space that cannot be easily correlated with T. cruzi activity, which means that using predictive modeling to determine whether cruzain inhibitors will be trypanocidal is not a straightforward task. We believe that the conclusions from this work might be of interest for future projects that aim to develop novel trypanocidal compounds.
Collapse
Affiliation(s)
- Rafael F Lameiro
- Medicinal and Biological Chemistry Group, São Carlos Institute of Chemistry, University of São Paulo, Trabalhador São-Carlense Avenue 400, São Carlos, Brazil
| | - Carlos A Montanari
- Medicinal and Biological Chemistry Group, São Carlos Institute of Chemistry, University of São Paulo, Trabalhador São-Carlense Avenue 400, São Carlos, Brazil
| |
Collapse
|
4
|
Alves L, Santos DA, Cendron R, Rocho FR, Matos TKB, Leitão A, Montanari CA. Nitrile-based peptoids as cysteine protease inhibitors. Bioorg Med Chem 2021; 41:116211. [PMID: 33991733 DOI: 10.1016/j.bmc.2021.116211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 10/21/2022]
Abstract
Peptidomimetics of the class of dipeptidyl nitrile analog peptoids were synthesized as inhibitors of mammalian cysteine proteases of the papain superfamily. The dipeptidyl nitrile side chains were attached to the peptide backbone's nitrogen atom, not to the α-carbons. Synthesized nitrile-based peptoid analogs that lack the hydrogen amide at P2-P3 are responsible for many of the secondary structure elements in peptides and proteins, making them resistant to proteolysis. The designed peptoids would lose a hydrogen bond with cruzain Asp161 decreasing the affinity toward the enzyme. A structure-activity relationship and matched molecular pair-based analysis between the dipeptidyl nitrile Neq0409 and its peptoid 4a yielded the following cruzain affinities: pKiNeq0409 = 6.5 and pKi4a = 5.2. respectively. A retrosynthetic matched molecular pair cliff (RMMP-cliff) analysis with a ΔpKiNeq0409-4a of 1.3 log is found for this transformation. These novel peptoids were then optimized, leading to compound 4i, with high cruzain inhibition (pKi = 6.8). Cross-class cathepsin activity was observed for some of these novel compounds against cathepsins K, L and S, while other compounds presented a selective inhibition of cathepsin K (4b, 4c, 4k) over ten times higher than the other enzymes. The putative mode of binding was determined by using covalent docking, which also aided to describe the structure-activity relationship (SAR). Interestingly, none of the peptoids inhibited CatB to any appreciable extent. These results provide guidance to identify novel bioactive nitrile-based peptoids.
Collapse
Affiliation(s)
- Luana Alves
- Medicinal and Biological Chemistry Group (NEQUIMED), Institute of Chemistry of São Carlos, University of São Paulo, São Carlos/SP, Brazil
| | - Deborah A Santos
- Medicinal and Biological Chemistry Group (NEQUIMED), Institute of Chemistry of São Carlos, University of São Paulo, São Carlos/SP, Brazil.
| | - Rodrigo Cendron
- Medicinal and Biological Chemistry Group (NEQUIMED), Institute of Chemistry of São Carlos, University of São Paulo, São Carlos/SP, Brazil
| | - Fernanda R Rocho
- Medicinal and Biological Chemistry Group (NEQUIMED), Institute of Chemistry of São Carlos, University of São Paulo, São Carlos/SP, Brazil
| | - Thiago K B Matos
- Medicinal and Biological Chemistry Group (NEQUIMED), Institute of Chemistry of São Carlos, University of São Paulo, São Carlos/SP, Brazil
| | - Andrei Leitão
- Medicinal and Biological Chemistry Group (NEQUIMED), Institute of Chemistry of São Carlos, University of São Paulo, São Carlos/SP, Brazil.
| | - Carlos A Montanari
- Medicinal and Biological Chemistry Group (NEQUIMED), Institute of Chemistry of São Carlos, University of São Paulo, São Carlos/SP, Brazil
| |
Collapse
|
5
|
Lv HM, Jiang ZK, Wang J, Wang T, Zhang XN, Hu YM, Ma YY. A novel ratiometric AIE-based fluorescent probe for specific detection of Hcy/Cys and imaging of living cells in vivo. NEW J CHEM 2021. [DOI: 10.1039/d1nj03606h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The sensing mechanism toward Hcy/Cys is realized based on the condensation reaction, which breaks CN to form a thiazolidine adduct.
Collapse
Affiliation(s)
- Hong-Min Lv
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao, 266061, P. R. China
| | - Zi-Ke Jiang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao, 266061, P. R. China
| | - Jing Wang
- Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, Qingdao, 266061, P. R. China
| | - Tao Wang
- Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, Qingdao, 266061, P. R. China
| | - Xiao-Nan Zhang
- National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao, 266061, P. R. China
| | - Yi-Meng Hu
- National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao, 266061, P. R. China
| | - Yan-Yan Ma
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao, 266061, P. R. China
| |
Collapse
|
6
|
Synthesis, biochemical evaluation and molecular modeling studies of nonpeptidic nitrile-based fluorinated compounds. Future Med Chem 2020; 13:25-43. [PMID: 33289603 DOI: 10.4155/fmc-2020-0057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Aim: Compounds that block enzyme activity can kill pathogens and help develop effective and safe drugs for Chagas disease and leishmaniasis. Materials & methods: A library of nonpeptidic nitrile-based compounds was synthesized and had their inhibitory affinity tested against cruzain, Leishmania mexicana cysteine protease B and cathepsin L. Isothermal titration calorimetry experiments and molecular simulations were performed for selected compounds to obtain thermodynamic fingerprints and identify main interactions and putative modes of binding with cruzain. Results: The derivatives provided increased affinity against all enzymes compared with the lead, and thermodynamic and computational studies showed improved thermodynamic properties and a possible different mode of binding. Conclusion: Our studies culminated in 1b, a compound 60-fold more potent in cruzain than its lead that also showed entropic and enthalpic contributions favorable to Gibbs binding energy.
Collapse
|
7
|
Zhu H, Liu C, Yuan R, Wang R, Zhang H, Li Z, Jia P, Zhu B, Sheng W. A simple highly specific fluorescent probe for simultaneous discrimination of cysteine/homocysteine and glutathione/hydrogen sulfide in living cells and zebrafish using two separated fluorescence channels under single wavelength excitation. Analyst 2019; 144:4258-4265. [PMID: 31215916 DOI: 10.1039/c9an00818g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biothiols such as cysteine (Cys), homocysteine (Hcy), glutathione (GSH) and hydrogen sulfide (H2S) are widely found in mammalian cells. They are closely related to the production and metabolic pathways and play very important roles in physiological and pathological activities. Therefore, the quantitative detection of these biothiols is of great significance. Although many fluorescent probes have been successfully used to track biothiols in biological samples, the fluorescence method for simultaneously detecting these biothiols using separated fluorescence emission channels under single wavelength excitation is still immature. In this work, we prepared the conjugate of seminaphthorhodafluor (SNARF) dye and 7-nitro-1,2,3-benzoxadiazole (NBD) using as a simple long-wavelength fluorescent probe SNARF-NBD for specific detection of biothiols. Cys/Hcy and GSH/H2S were identified by two separated fluorescence emission channels under single wavelength excitation, which showed good selectivity and sensitivity. In addition, SNARF-NBD has low cytotoxicity and shows good imaging ability in living cells and zebrafish.
Collapse
Affiliation(s)
- Hanchuang Zhu
- School of Water Conservancy and Environment, University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan 250022, China.
| | - Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan 250022, China.
| | - Ruifang Yuan
- School of Water Conservancy and Environment, University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan 250022, China.
| | - Ruikang Wang
- School of Water Conservancy and Environment, University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan 250022, China.
| | - Hanming Zhang
- School of Water Conservancy and Environment, University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan 250022, China.
| | - Zilu Li
- School of Water Conservancy and Environment, University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan 250022, China.
| | - Pan Jia
- School of Water Conservancy and Environment, University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan 250022, China.
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan 250022, China.
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| |
Collapse
|
8
|
Martín-Escolano R, Molina-Carreño D, Delgado-Pinar E, Martin-Montes Á, Clares MP, Medina-Carmona E, Pitarch-Jarque J, Martín-Escolano J, Rosales MJ, García-España E, Sánchez-Moreno M, Marín C. New polyamine drugs as more effective antichagas agents than benznidazole in both the acute and chronic phases. Eur J Med Chem 2018; 164:27-46. [PMID: 30583247 DOI: 10.1016/j.ejmech.2018.12.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 12/25/2022]
Abstract
Despite the continuous research effort that has been made in recent years to find ways to treat the potentially life threatening Chagas disease (CD), this remains the third most important infectious disease in Latin America. CD is an important public health problem affecting 6-7 million people. Since the need to search for new drugs for the treatment of DC persists, in this article we present a panel of new polyamines based on the tripodal structure of tris(2-aminomethyl)amine (tren) that can be prepared at low cost with high yields. Moreover, these polyamines present the characteristic of being water-soluble and resistant to the acidic pH values of stomach, which would allow their potential oral administration. In vitro and in vivo assays permitted to identify the compound with the tren moiety functionalized with one fluorene unit (7) as a potential antichagas agent. Compound 7 has broader spectrum of action, improved efficacy in acute and chronic phases of the disease and lower toxicity than the reference drug benznidazole. Finally, the action mechanisms studied at metabolic and mitochondrial levels shows that the trypanocidal activity of compound 7 could be related to its effect at the glycosomal level. Therefore, this work allowed us to select compound 7 as a promising candidate to perform preclinical evaluation studies.
Collapse
Affiliation(s)
- Rubén Martín-Escolano
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs. Granada), Hospitales Universitarios de Granada/University of Granada, Severo Ochoa s/n, E-18071, Granada, Spain
| | - Daniel Molina-Carreño
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs. Granada), Hospitales Universitarios de Granada/University of Granada, Severo Ochoa s/n, E-18071, Granada, Spain
| | - Estefanía Delgado-Pinar
- ICMol, Departamento de Química Inorgánica, Universidad de Valencia, C/Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Álvaro Martin-Montes
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs. Granada), Hospitales Universitarios de Granada/University of Granada, Severo Ochoa s/n, E-18071, Granada, Spain
| | - M Paz Clares
- ICMol, Departamento de Química Inorgánica, Universidad de Valencia, C/Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Encarnación Medina-Carmona
- Department of Physical Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, 18071, Granada, Spain
| | - Javier Pitarch-Jarque
- ICMol, Departamento de Química Inorgánica, Universidad de Valencia, C/Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Javier Martín-Escolano
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs. Granada), Hospitales Universitarios de Granada/University of Granada, Severo Ochoa s/n, E-18071, Granada, Spain
| | - María José Rosales
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs. Granada), Hospitales Universitarios de Granada/University of Granada, Severo Ochoa s/n, E-18071, Granada, Spain
| | - Enrique García-España
- ICMol, Departamento de Química Inorgánica, Universidad de Valencia, C/Catedrático José Beltrán 2, 46980, Paterna, Spain.
| | - Manuel Sánchez-Moreno
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs. Granada), Hospitales Universitarios de Granada/University of Granada, Severo Ochoa s/n, E-18071, Granada, Spain.
| | - Clotilde Marín
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs. Granada), Hospitales Universitarios de Granada/University of Granada, Severo Ochoa s/n, E-18071, Granada, Spain.
| |
Collapse
|
9
|
Identification of (4-(9H-fluoren-9-yl) piperazin-1-yl) methanone derivatives as falcipain 2 inhibitors active against Plasmodium falciparum cultures. Biochim Biophys Acta Gen Subj 2018; 1862:2911-2923. [PMID: 30253205 DOI: 10.1016/j.bbagen.2018.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/19/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Falcipain 2 (FP-2) is the hemoglobin-degrading cysteine protease of Plasmodium falciparum most extensively targeted to develop novel antimalarials. However, no commercial antimalarial drugs based on FP-2 inhibition are available yet due to the low selectivity of most FP-2 inhibitors against the human cysteine proteases. METHODS A structure-based virtual screening (SVBS) using Maybridge HitFinder™ compound database was conducted to identify potential FP-2 inhibitors. In vitro enzymatic and cell-growth inhibition assays were performed for the top-scoring compounds. Docking, molecular dynamics (MD) simulations and free energy calculations were employed to study the interaction of the best hits with FP-2 and other related enzymes. RESULTS AND CONCLUSIONS Two hits based on 4-(9H-fluoren-9-yl) piperazin-1-yl) methanone scaffold, HTS07940 and HTS08262, were identified as inhibitors of FP-2 (half-maximal inhibitory concentration (IC50) = 64 μM and 14.7 μM, respectively) without a detectable inhibition against the human off-target cathepsin K (hCatK). HTS07940 and HTS08262 inhibited the growth of the multidrug-resistant P. falciparum strain FCR3 in culture (half-maximal inhibitory concentrations (IC50) = 2.91 μM and 34 μM, respectively) and exhibited only moderate cytotoxicity against HeLa cells (Half-maximal cytotoxic concentration (CC50) = 133 μM and 350 μM, respectively). Free energy calculations reproduced the experimental affinities of the hits for FP-2 and explained the selectivity with respect to hCatK. GENERAL SIGNIFICANCE To the best of our knowledge, HTS07940 stands among the most selective FP-2 inhibitors identified by SBVS reported so far, displaying moderate antiplasmodial activity and low cytotoxicity against human cells. Hence, this compound constitutes a promising lead for the design of more potent and selective FP-2 inhibitors.
Collapse
|
10
|
Organometallic compounds in the discovery of new agents against kinetoplastid-caused diseases. Eur J Med Chem 2018; 155:459-482. [PMID: 29908440 DOI: 10.1016/j.ejmech.2018.05.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/21/2018] [Accepted: 05/28/2018] [Indexed: 12/16/2022]
Abstract
The development of safe and affordable antiparasitic agents effective against neglected tropical diseases is a big challenge of the drug discovery. The drugs currently employed have limitations such as poor efficacy, drug resistance or side effects. Thus, the search for new promising drugs is more and more crucial. Metal complexes and, in particular, organometallic compounds may expand the list of the drug candidates due to the peculiar attributes that the presence of the metal core add to the organic fragment (e.g., redox and structural features, ability to interact with DNA or protein targets, etc.). To date, most organometallic compounds tested as anti-neglected tropical diseases are based on similarities or activity of the organic ligands against other diseases or parasites and/or consist in modification of existing drugs combining the features of the metal moiety and the organic ligands. This review focuses on recent studies (2012-2017) on organometallic compounds in treating kinetoplastid-caused diseases such as Human African trypanosomiasis, Chagas disease and leishmaniasis. This field of research, however, still lacks exhaustive studies to identify of parasitic targets and quantitative structure-activity relationships for a rational drug design.
Collapse
|
11
|
Giroud M, Dietzel U, Anselm L, Banner D, Kuglstatter A, Benz J, Blanc JB, Gaufreteau D, Liu H, Lin X, Stich A, Kuhn B, Schuler F, Kaiser M, Brun R, Schirmeister T, Kisker C, Diederich F, Haap W. Repurposing a Library of Human Cathepsin L Ligands: Identification of Macrocyclic Lactams as Potent Rhodesain and Trypanosoma brucei Inhibitors. J Med Chem 2018; 61:3350-3369. [DOI: 10.1021/acs.jmedchem.7b01869] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Maude Giroud
- Laboratorium für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Uwe Dietzel
- Rudolf-Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Lilli Anselm
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - David Banner
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Andreas Kuglstatter
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Jörg Benz
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Jean-Baptiste Blanc
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Delphine Gaufreteau
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Haixia Liu
- Roche Pharma Research and Early Development, Roche Innovation Center Shanghai, 720 Cailun Road, Pudong, Shanghai 201203, China
| | - Xianfeng Lin
- Roche Pharma Research and Early Development, Roche Innovation Center Shanghai, 720 Cailun Road, Pudong, Shanghai 201203, China
| | - August Stich
- Department of Tropical Medicine, Medical Mission Institute, Salvatorstrasse 7, 97074 Würzburg, Germany
| | - Bernd Kuhn
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Franz Schuler
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Reto Brun
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Tanja Schirmeister
- Institut für Pharmazie und Biochemie, Johannes Gutenberg-Universität Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Caroline Kisker
- Rudolf-Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - François Diederich
- Laboratorium für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Wolfgang Haap
- Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
12
|
Giroud M, Kuhn B, Saint-Auret S, Kuratli C, Martin RE, Schuler F, Diederich F, Kaiser M, Brun R, Schirmeister T, Haap W. 2H-1,2,3-Triazole-Based Dipeptidyl Nitriles: Potent, Selective, and Trypanocidal Rhodesain Inhibitors by Structure-Based Design. J Med Chem 2018; 61:3370-3388. [DOI: 10.1021/acs.jmedchem.7b01870] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Maude Giroud
- Laboratorium für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Bernd Kuhn
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Sarah Saint-Auret
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Christoph Kuratli
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Rainer E. Martin
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Franz Schuler
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - François Diederich
- Laboratorium für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Reto Brun
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Tanja Schirmeister
- Institut für Pharmazie und Biochemie, Johannes Gutenberg-Universität Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Wolfgang Haap
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
13
|
Kouznetsov VV, Galvis CEP. Strecker reaction and α-amino nitriles: Recent advances in their chemistry, synthesis, and biological properties. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.01.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Scala A, Rescifina A, Micale N, Piperno A, Schirmeister T, Maes L, Grassi G. Ensemble-based ADME-Tox profiling and virtual screening for the discovery of new inhibitors of the Leishmania mexicana cysteine protease CPB2.8ΔCTE. Chem Biol Drug Des 2017; 91:597-604. [PMID: 29045053 DOI: 10.1111/cbdd.13124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/05/2017] [Accepted: 09/16/2017] [Indexed: 12/12/2022]
Abstract
In an effort to identify novel molecular warheads able to inhibit Leishmania mexicana cysteine protease CPB2.8ΔCTE, fused benzo[b]thiophenes and β,β'-triketones emerged as covalent inhibitors binding the active site cysteine residue. Enzymatic screening showed a moderate-to-excellent activity (12%-90% inhibition of the target enzyme at 20 μm). The most promising compounds were selected for further profiling including in vitro cell-based assays and docking studies. Computational data suggest that benzo[b]thiophenes act immediately as non-covalent inhibitors and then as irreversible covalent inhibitors, whereas a reversible covalent mechanism emerged for the 1,3,3'-triketones with a Y-topology. Based on the predicted physicochemical and ADME-Tox properties, compound 2b has been identified as a new drug-like, non-mutagen, non-carcinogen, and non-neurotoxic lead candidate.
Collapse
Affiliation(s)
- Angela Scala
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| | - Antonio Rescifina
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, Catania, Italy
| | - Nicola Micale
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| | - Anna Piperno
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| | - Tanja Schirmeister
- Institute of Pharmacy and Biochemistry, University of Mainz, Mainz, Germany
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Giovanni Grassi
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| |
Collapse
|
15
|
Salas-Sarduy E, Landaburu LU, Karpiak J, Madauss KP, Cazzulo JJ, Agüero F, Alvarez VE. Novel scaffolds for inhibition of Cruzipain identified from high-throughput screening of anti-kinetoplastid chemical boxes. Sci Rep 2017; 7:12073. [PMID: 28935948 PMCID: PMC5608908 DOI: 10.1038/s41598-017-12170-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/04/2017] [Indexed: 11/16/2022] Open
Abstract
American Trypanosomiasis or Chagas disease is a prevalent, neglected and serious debilitating illness caused by the kinetoplastid protozoan parasite Trypanosoma cruzi. The current chemotherapy is limited only to nifurtimox and benznidazole, two drugs that have poor efficacy in the chronic phase and are rather toxic. In this scenario, more efficacious and safer drugs, preferentially acting through a different mechanism of action and directed against novel targets, are particularly welcome. Cruzipain, the main papain-like cysteine peptidase of T. cruzi, is an important virulence factor and a chemotherapeutic target with excellent pre-clinical validation evidence. Here, we present the identification of new Cruzipain inhibitory scaffolds within the GlaxoSmithKline HAT (Human African Trypanosomiasis) and Chagas chemical boxes, two collections grouping 404 non-cytotoxic compounds with high antiparasitic potency, drug-likeness, structural diversity and scientific novelty. We have adapted a continuous enzymatic assay to a medium-throughput format and carried out a primary screening of both collections, followed by construction and analysis of dose-response curves of the most promising hits. Using the identified compounds as a starting point a substructure directed search against CHEMBL Database revealed plausible common scaffolds while docking experiments predicted binding poses and specific interactions between Cruzipain and the novel inhibitors.
Collapse
Affiliation(s)
- Emir Salas-Sarduy
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín - CONICET, San Martin, B1650HMP, Buenos Aires, Argentina
| | - Lionel Urán Landaburu
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín - CONICET, San Martin, B1650HMP, Buenos Aires, Argentina
| | - Joel Karpiak
- GlaxoSmithKline R&D, Molecular Design US, Pennsylvania, Upper Providence PA, USA
| | - Kevin P Madauss
- GlaxoSmithKline R&D, Trust in Science, Pennsylvania, Upper Providence PA, USA
| | - Juan José Cazzulo
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín - CONICET, San Martin, B1650HMP, Buenos Aires, Argentina
| | - Fernán Agüero
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín - CONICET, San Martin, B1650HMP, Buenos Aires, Argentina.
| | - Vanina Eder Alvarez
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín - CONICET, San Martin, B1650HMP, Buenos Aires, Argentina.
| |
Collapse
|
16
|
Latorre A, Schirmeister T, Kesselring J, Jung S, Johé P, Hellmich UA, Heilos A, Engels B, Krauth-Siegel RL, Dirdjaja N, Bou-Iserte L, Rodríguez S, González FV. Dipeptidyl Nitroalkenes as Potent Reversible Inhibitors of Cysteine Proteases Rhodesain and Cruzain. ACS Med Chem Lett 2016; 7:1073-1076. [PMID: 27994740 DOI: 10.1021/acsmedchemlett.6b00276] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/21/2016] [Indexed: 01/08/2023] Open
Abstract
Dipeptidyl nitroalkenes are potent reversible inhibitors of cysteine proteases. Inhibitor 11 resulted to be the most potent one with Ki values of 0.49 and 0.44 nM against rhodesain and cruzain, respectively. According to enzymatic dilution and dialysis experiments, as well as computational and NMR studies, dipeptidyl nitroalkenes are tightly binding covalent reversible inhibitors.
Collapse
Affiliation(s)
- Antonio Latorre
- Departament
de Química Inorgànica i Orgànica, Universitat Jaume I, 12080 Castelló, Spain
| | - Tanja Schirmeister
- Institute
of Pharmacy and Biochemistry, University of Mainz, Staudinger
Weg 5, 55099 Mainz, Germany
| | - Jochen Kesselring
- Institute
of Pharmacy and Biochemistry, University of Mainz, Staudinger
Weg 5, 55099 Mainz, Germany
| | - Sascha Jung
- Institute
of Pharmacy and Biochemistry, University of Mainz, Staudinger
Weg 5, 55099 Mainz, Germany
| | - Patrick Johé
- Institute
of Pharmacy and Biochemistry, University of Mainz, Staudinger
Weg 5, 55099 Mainz, Germany
| | - Ute A. Hellmich
- Institute
of Pharmacy and Biochemistry, University of Mainz, Staudinger
Weg 5, 55099 Mainz, Germany
- Institute
of Pharmacy and Biochemistry, University of Mainz, Johann-Joachim
Becherweg 30, 55128 Mainz, Germany
- Center
of Biomolecular Magnetic Resonance (BMRZ), Goethe University, 60323 Frankfurt, Germany
| | - Anna Heilos
- Institute
of Phys. and Theor. Chemistry, University of Würzburg, Emil-Fischer-Straße
42, 97074 Würzburg, Germany
| | - Bernd Engels
- Institute
of Phys. and Theor. Chemistry, University of Würzburg, Emil-Fischer-Straße
42, 97074 Würzburg, Germany
| | - R. Luise Krauth-Siegel
- Biochemie-Zentrum
Heidelberg (BZH), Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Natalie Dirdjaja
- Biochemie-Zentrum
Heidelberg (BZH), Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Lledó Bou-Iserte
- Departament
de Química Inorgànica i Orgànica, Universitat Jaume I, 12080 Castelló, Spain
| | - Santiago Rodríguez
- Departament
de Química Inorgànica i Orgànica, Universitat Jaume I, 12080 Castelló, Spain
| | - Florenci V. González
- Departament
de Química Inorgànica i Orgànica, Universitat Jaume I, 12080 Castelló, Spain
| |
Collapse
|
17
|
Martinez-Mayorga K, Byler KG, Ramirez-Hernandez AI, Terrazas-Alvares DE. Cruzain inhibitors: efforts made, current leads and a structural outlook of new hits. Drug Discov Today 2015; 20:890-8. [DOI: 10.1016/j.drudis.2015.02.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/03/2015] [Accepted: 02/06/2015] [Indexed: 12/28/2022]
|
18
|
Abstract
The carbamate group is a key structural motif in many approved drugs and prodrugs. There is an increasing use of carbamates in medicinal chemistry and many derivatives are specifically designed to make drug-target interactions through their carbamate moiety. In this Perspective, we present properties and stabilities of carbamates, reagents and chemical methodologies for the synthesis of carbamates, and recent applications of carbamates in drug design and medicinal chemistry.
Collapse
Affiliation(s)
- Arun K. Ghosh
- Department of Chemistry and
Department of Medicinal Chemistry, Purdue
University, West Lafayette, Indiana 47907, United States
| | - Margherita Brindisi
- Department of Chemistry and
Department of Medicinal Chemistry, Purdue
University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
19
|
Bustamante JM, Tarleton RL. Potential new clinical therapies for Chagas disease. Expert Rev Clin Pharmacol 2014; 7:317-25. [DOI: 10.1586/17512433.2014.909282] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Reversible cysteine protease inhibitors show promise for a Chagas disease cure. Antimicrob Agents Chemother 2013; 58:1167-78. [PMID: 24323474 DOI: 10.1128/aac.01855-13] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The cysteine protease cruzipain is essential for the viability, infectivity, and virulence of Trypanosoma cruzi, the causative agent of Chagas disease. Thus, inhibitors of cruzipain are considered promising anti-T. cruzi chemotherapeutic agents. Reversible cruzipain inhibitors containing a nitrile "warhead" were prepared and demonstrated 50% inhibitory concentrations (IC50s) as potent as 1 nM in baculovirus-generated cruzipain enzyme assays. In epimastigote and intracellular amastigote in vitro assays, the most potent compounds demonstrated antiparasitic behavior in the 5 to 10 μM IC50 range; however, trypomastigote production from the amastigote form was ∼90 to 95% inhibited at 2 μM. Two key compounds, Cz007 and Cz008, with IC50s of 1.1 and 1.8 nM, respectively, against the recombinant enzyme were tested in a murine model of acute T. cruzi infection, with oral dosing in chow for 28 days at doses from 3 to 50 mg/kg of body weight. At 3 mg/kg of Cz007 and 3 mg/kg of Cz008, the blood parasitemia areas under the concentration-time curves were 16% and 25% of the untreated group, respectively. At sacrifice, 24 days after immunosuppression with cyclophosphamide, parasite presence in blood, heart, and esophagus was evaluated. Based on negative quantitative PCR results in all three tissues, cure rates in surviving animals were 90% for Cz007 at 3 mg/kg, 78% for Cz008 at 3 mg/kg, and 71% for benznidazole, the control compound, at 50 mg/kg.
Collapse
|
21
|
Dunny E, Doherty W, Evans P, Malthouse JPG, Nolan D, Knox AJS. Vinyl Sulfone-Based Peptidomimetics as Anti-Trypanosomal Agents: Design, Synthesis, Biological and Computational Evaluation. J Med Chem 2013; 56:6638-50. [DOI: 10.1021/jm400294w] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Elizabeth Dunny
- Centre for Synthesis
and Chemical Biology, School of Chemistry and Chemical Biology, University College Dublin, Dublin 4, Ireland
| | - William Doherty
- Centre for Synthesis
and Chemical Biology, School of Chemistry and Chemical Biology, University College Dublin, Dublin 4, Ireland
| | - Paul Evans
- Centre for Synthesis
and Chemical Biology, School of Chemistry and Chemical Biology, University College Dublin, Dublin 4, Ireland
| | - J. Paul G. Malthouse
- Conway Institute,
School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| | - Derek Nolan
- School of Biochemistry
and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Andrew J. S. Knox
- School of Biochemistry
and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| |
Collapse
|
22
|
Cacciarini M, Della Pia EA, Nielsen MB. Colorimetric Probe for the Detection of Thiols: The Dihydroazulene/Vinylheptafulvene System. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200887] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|