1
|
Kontoghiorghes GJ. The Vital Role Played by Deferiprone in the Transition of Thalassaemia from a Fatal to a Chronic Disease and Challenges in Its Repurposing for Use in Non-Iron-Loaded Diseases. Pharmaceuticals (Basel) 2023; 16:1016. [PMID: 37513928 PMCID: PMC10384919 DOI: 10.3390/ph16071016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
The iron chelating orphan drug deferiprone (L1), discovered over 40 years ago, has been used daily by patients across the world at high doses (75-100 mg/kg) for more than 30 years with no serious toxicity. The level of safety and the simple, inexpensive synthesis are some of the many unique properties of L1, which played a major role in the contribution of the drug in the transition of thalassaemia from a fatal to a chronic disease. Other unique and valuable clinical properties of L1 in relation to pharmacology and metabolism include: oral effectiveness, which improved compliance compared to the prototype therapy with subcutaneous deferoxamine; highly effective iron removal from all iron-loaded organs, particularly the heart, which is the major target organ of iron toxicity and the cause of mortality in thalassaemic patients; an ability to achieve negative iron balance, completely remove all excess iron, and maintain normal iron stores in thalassaemic patients; rapid absorption from the stomach and rapid clearance from the body, allowing a greater frequency of repeated administration and overall increased efficacy of iron excretion, which is dependent on the dose used and also the concentration achieved at the site of drug action; and its ability to cross the blood-brain barrier and treat malignant, neurological, and microbial diseases affecting the brain. Some differential pharmacological activity by L1 among patients has been generally shown in relation to the absorption, distribution, metabolism, elimination, and toxicity (ADMET) of the drug. Unique properties exhibited by L1 in comparison to other drugs include specific protein interactions and antioxidant effects, such as iron removal from transferrin and lactoferrin; inhibition of iron and copper catalytic production of free radicals, ferroptosis, and cuproptosis; and inhibition of iron-containing proteins associated with different pathological conditions. The unique properties of L1 have attracted the interest of many investigators for drug repurposing and use in many pathological conditions, including cancer, neurodegenerative conditions, microbial conditions, renal conditions, free radical pathology, metal intoxication in relation to Fe, Cu, Al, Zn, Ga, In, U, and Pu, and other diseases. Similarly, the properties of L1 increase the prospects of its wider use in optimizing therapeutic efforts in many other fields of medicine, including synergies with other drugs.
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, Limassol 3021, Cyprus
| |
Collapse
|
2
|
Li Z, Chen R, Li Y, Zhou Q, Zhao H, Zeng K, Zhao B, Lu Z. A comprehensive overview of PPM1B: From biological functions to diseases. Eur J Pharmacol 2023; 947:175633. [PMID: 36863552 DOI: 10.1016/j.ejphar.2023.175633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/08/2023] [Accepted: 02/28/2023] [Indexed: 03/04/2023]
Abstract
Reversible phosphorylation of proteins is an important mechanism that regulates cellular processes, which are precisely regulated by protein kinases and phosphatases. PPM1B is a metal ion-dependent serine/threonine protein phosphatase, which regulates multiple biological functions by targeting substrate dephosphorylation, such as cell cycle, energy metabolism, inflammatory responses. In this review, we summarized the occurrent understandings of PPM1B focused on its regulation of signaling pathways, related diseases, and small-molecular inhibitors, which may provide new insights for the identification of PPM1B inhibitors and the treatment of PPM1B-related diseases.
Collapse
Affiliation(s)
- Zhongyao Li
- School of Pharmacy and Pharmaceutical Sciences, Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, 250117, Shandong, China
| | - Ruoyu Chen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, Shandong, China
| | - Yanxia Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, Shandong, China
| | - Qian Zhou
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, Shandong, China
| | - Huanxin Zhao
- School of Pharmacy and Pharmaceutical Sciences, Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, 250117, Shandong, China
| | - Kewu Zeng
- School of Pharmacy and Pharmaceutical Sciences, Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, 250117, Shandong, China.
| | - Baobing Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, Shandong, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, Shandong, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, Shandong, China.
| | - Zhiyuan Lu
- School of Pharmacy and Pharmaceutical Sciences, Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, 250117, Shandong, China.
| |
Collapse
|
3
|
New Iron Metabolic Pathways and Chelation Targeting Strategies Affecting the Treatment of All Types and Stages of Cancer. Int J Mol Sci 2022; 23:ijms232213990. [PMID: 36430469 PMCID: PMC9696688 DOI: 10.3390/ijms232213990] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
There is new and increasing evidence from in vitro, in vivo and clinical studies implicating the pivotal role of iron and associated metabolic pathways in the initiation, progression and development of cancer and in cancer metastasis. New metabolic and toxicity mechanisms and pathways, as well as genomic, transcription and other factors, have been linked to cancer and many are related to iron. Accordingly, a number of new targets for iron chelators have been identified and characterized in new anticancer strategies, in addition to the classical restriction of/reduction in iron supply, the inhibition of transferrin iron delivery, the inhibition of ribonucleotide reductase in DNA synthesis and high antioxidant potential. The new targets include the removal of excess iron from iron-laden macrophages, which affects anticancer activity; the modulation of ferroptosis; ferritin iron removal and the control of hyperferritinemia; the inhibition of hypoxia related to the role of hypoxia-inducible factor (HIF); modulation of the function of new molecular species such as STEAP4 metalloreductase and the metastasis suppressor N-MYC downstream-regulated gene-1 (NDRG1); modulation of the metabolic pathways of oxidative stress damage affecting mitochondrial function, etc. Many of these new, but also previously known associated iron metabolic pathways appear to affect all stages of cancer, as well as metastasis and drug resistance. Iron-chelating drugs and especially deferiprone (L1), has been shown in many recent studies to fulfill the role of multi-target anticancer drug linked to the above and also other iron targets, and has been proposed for phase II trials in cancer patients. In contrast, lipophilic chelators and their iron complexes are proposed for the induction of ferroptosis in some refractory or recurring tumors in drug resistance and metastasis where effective treatments are absent. There is a need to readdress cancer therapy and include therapeutic strategies targeting multifactorial processes, including the application of multi-targeting drugs involving iron chelators and iron-chelator complexes. New therapeutic protocols including drug combinations with L1 and other chelating drugs could increase anticancer activity, decrease drug resistance and metastasis, improve treatments, reduce toxicity and increase overall survival in cancer patients.
Collapse
|
4
|
Berkes C, Franco J, Lawson M, Brann K, Mermelstein J, Laverty D, Connors A. Kinase Inhibitor Library Screening Identifies the Cancer Therapeutic Sorafenib and Structurally Similar Compounds as Strong Inhibitors of the Fungal Pathogen Histoplasma capsulatum. Antibiotics (Basel) 2021; 10:antibiotics10101223. [PMID: 34680804 PMCID: PMC8532743 DOI: 10.3390/antibiotics10101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 12/01/2022] Open
Abstract
Histoplasma capsulatum is a dimorphic fungal pathogen endemic to the midwestern and southern United States. It causes mycoses ranging from subclinical respiratory infections to severe systemic disease, and is of particular concern for immunocompromised patients in endemic areas. Clinical management of histoplasmosis relies on protracted regimens of antifungal drugs whose effectiveness can be limited by toxicity. In this study, we hypothesize that conserved biochemical signaling pathways in the eukaryotic domain can be leveraged to repurpose kinase inhibitors as antifungal compounds. We conducted a screen of two kinase inhibitor libraries to identify compounds inhibiting the growth of Histoplasma capsulatum in the pathogenic yeast form. Our approach identified seven compounds with an elongated hydrophobic polyaromatic structure, five of which share a molecular motif including a urea unit linking a halogenated benzene ring and a para-substituted polyaromatic group. The top hits include the cancer therapeutic Sorafenib, which inhibits growth of Histoplasma in vitro and in a macrophage infection model with low host cell cytotoxicity. Our results reveal the possibility of repurposing Sorafenib or derivatives thereof as therapy for histoplasmosis, and suggest that repurposing of libraries developed for human cellular targets may be a fruitful source of antifungal discovery.
Collapse
Affiliation(s)
- Charlotte Berkes
- Department of Biology, Merrimack College, North Andover, MA 01845, USA; (M.L.); (K.B.); (J.M.); (D.L.)
- Correspondence:
| | - Jimmy Franco
- Department of Chemistry and Biochemistry, Merrimack College, North Andover, MA 01845, USA; (J.F.); (A.C.)
| | - Maxx Lawson
- Department of Biology, Merrimack College, North Andover, MA 01845, USA; (M.L.); (K.B.); (J.M.); (D.L.)
| | - Katelynn Brann
- Department of Biology, Merrimack College, North Andover, MA 01845, USA; (M.L.); (K.B.); (J.M.); (D.L.)
| | - Jessica Mermelstein
- Department of Biology, Merrimack College, North Andover, MA 01845, USA; (M.L.); (K.B.); (J.M.); (D.L.)
| | - Daniel Laverty
- Department of Biology, Merrimack College, North Andover, MA 01845, USA; (M.L.); (K.B.); (J.M.); (D.L.)
- Department of Chemistry and Biochemistry, Merrimack College, North Andover, MA 01845, USA; (J.F.); (A.C.)
| | - Allison Connors
- Department of Chemistry and Biochemistry, Merrimack College, North Andover, MA 01845, USA; (J.F.); (A.C.)
| |
Collapse
|
5
|
Lohitha N, Vijayakumar V. Imidazole Appended Novel Phenoxyquinolines as New Inhibitors of α-Amylase and α-Glucosidase Evidenced with Molecular Docking Studies. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1939069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- N. Lohitha
- Centre for Organic and Medicinal Chemistry, VIT University, Vellore, India
| | - V. Vijayakumar
- Centre for Organic and Medicinal Chemistry, VIT University, Vellore, India
| |
Collapse
|
6
|
Dekel N, Eisenberg-Domovich Y, Karlas A, Meyer TF, Bracher F, Lebendiker M, Danieli T, Livnah O. Expression, purification and crystallization of CLK1 kinase - A potential target for antiviral therapy. Protein Expr Purif 2020; 176:105742. [PMID: 32866611 DOI: 10.1016/j.pep.2020.105742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/03/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
Abstract
Cdc-like kinase 1 (CLK1) is a dual-specificity kinase capable of autophosphorylation on tyrosine residues and Ser/Thr phosphorylation of its substrates. CLK1 belongs to the CLK kinase family that regulates alternative splicing through phosphorylation of serine-arginine rich (SR) proteins. Recent studies have demonstrated that CLK1 has an important role in the replication of influenza A and chikungunya viruses. Furthermore, CLK1 was found to be relevant for the replication of HIV-1 and the West Nile virus, making CLK1 an interesting cellular candidate for the development of a host-directed antiviral therapy that might be efficient for treatment of newly emerging viruses. We describe here our attempts and detailed procedures to obtain the recombinant kinase domain of CLK1 in suitable amounts for crystallization in complex with specific inhibitors. The key solution for the reproducibility of crystals resides in devising and refining expression and purification protocols leading to homogeneous protein. Co-expression of CLK1 with λ-phosphatase and careful purification has yielded crystals of CLK1 complexed with the KH-CB19 inhibitor that diffracted to 1.65 Å. These results paved the path to the screening of more structures of CLK1 complexed compounds, leading to further optimization of their inhibitory activity. Moreover, since kinases are desired targets in numerous pathologies, the approach we report here, the co-expression of kinases with λ-phosphatase, previously used in other kinases, can be adopted as a general protocol in numerous kinase targets for obtaining reproducible and homogenic non-phosphorylated (inactive) forms suitable for biochemical and structural studies thus facilitating the development of novel inhibitors.
Collapse
Affiliation(s)
- Noa Dekel
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yael Eisenberg-Domovich
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | - Thomas F Meyer
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Charitéplatz 1, 10117, Berlin, Germany
| | - Franz Bracher
- Ludwig-Maximilians University, Department of Pharmacy-Center for Drug Research, Butenandstrasse 5-13, 81377, Munich, Germany
| | - Mario Lebendiker
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Tsafi Danieli
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Oded Livnah
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; Department of Biological Chemistry, Alexander Silverman Institute of Life Sciences, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
7
|
O'Shea P, Wildenhain J, Leveridge M, Revankar C, Yang JP, Bradley J, Firth M, Pilling J, Piper D, Chesnut J, Isherwood B. A Novel Screening Approach for the Dissection of Cellular Regulatory Networks of NF-κB Using Arrayed CRISPR gRNA Libraries. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2020; 25:618-633. [PMID: 32476557 DOI: 10.1177/2472555220926160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
CRISPR/Cas9 is increasingly being used as a tool to prosecute functional genomic screens. However, it is not yet possible to apply the approach at scale across a full breadth of cell types and endpoints. In order to address this, we developed a novel and robust workflow for array-based lentiviral CRISPR/Cas9 screening. We utilized a β-lactamase reporter gene assay to investigate mediators of TNF-α-mediated NF-κB signaling. The system was adapted for CRISPR/Cas9 through the development of a cell line stably expressing Cas9 and application of a lentiviral gRNA library comprising mixtures of four gRNAs per gene. We screened a 743-gene kinome library whereupon hits were independently ranked by percent inhibition, Z' score, strictly standardized mean difference, and T statistic. A consolidated and optimized ranking was generated using Borda-based methods. Screening data quality was above acceptable limits (Z' ≥ 0.5). In order to determine the contribution of individual gRNAs and to better understand false positives and negatives, a subset of gRNAs, against 152 genes, were profiled in singlicate format. We highlight the use of known reference genes and high-throughput, next-generation amplicon and RNA sequencing to assess screen data quality. Screening with singlicate gRNAs was more successful than screening with mixtures at identifying genes with known regulatory roles in TNF-α-mediated NF-κB signaling and was found to be superior to previous RNAi-based methods. These results add to the available data on TNF-α-mediated NF-κB signaling and establish a high-throughput functional genomic screening approach, utilizing a vector-based arrayed gRNA library, applicable across a wide variety of endpoints and cell types at a genome-wide scale.
Collapse
Affiliation(s)
- Patrick O'Shea
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | - Mathew Leveridge
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | | | - Jenna Bradley
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Mike Firth
- Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - James Pilling
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | | | - Beverley Isherwood
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
8
|
Liu Y, Lee J, Perez L, Gill AD, Hooley RJ, Zhong W. Selective Sensing of Phosphorylated Peptides and Monitoring Kinase and Phosphatase Activity with a Supramolecular Tandem Assay. J Am Chem Soc 2018; 140:13869-13877. [PMID: 30269482 DOI: 10.1021/jacs.8b08693] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Simple tuning of a host:guest pair allows selective sensing of different peptide modifications, exploiting orthogonal recognition mechanisms. Excellent selectivity for either lysine trimethylations or alcohol phosphorylations is possible by simply varying the fluorophore guest. The phosphorylation sensor can be modulated by the presence of small (μM) concentrations of metal ions, allowing array-based sensing. Phosphorylation at serine, threonine, and tyrosine can be selectively sensed via discriminant analysis. The phosphopeptide sensing is effective in the presence of small-molecule phosphates such as ATP, which in turn enables the sensor to be employed in continuous optical assays of both serine kinase and tyrosine phosphatase activity. The activity of multiple different kinases can be monitored, and the sensor is capable of detecting the phosphorylation of peptides containing multiple different modifications, including lysine methylations and acetylation. A single deep cavitand can be used as a "one size fits all" sensor that can selectively detect multiple different modifications to oligopeptides, as well as monitoring the function of their post-translational modification writer and eraser enzymes in complex systems.
Collapse
|
9
|
Bordes I, Castillo R, Moliner V. Theoretical Study of the Phosphoryl Transfer Reaction from ATP to Dha Catalyzed by DhaK from Escherichia coli. J Phys Chem B 2017; 121:8878-8892. [PMID: 28850238 DOI: 10.1021/acs.jpcb.7b04862] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein kinases, representing one of the largest protein families involved in almost all aspects of cell life, have become one of the most important targets for the development of new drugs to be used in, for instance, cancer treatments. In this article an exhaustive theoretical study of the phosphoryl transfer reaction from adenosine triphosphate (ATP) to dihydroxyacetone (Dha) catalyzed by DhaK from Escherichia coli (E. coli) is reported. Two different mechanisms, previously proposed for the phosphoryl transfer from ATP to the hydroxyl side chain of specific serine, threonine, or tyrosine residues, have been explored based on the generation of free energy surfaces (FES) computed with hybrid QM/MM potentials. The results suggest that the substrate-assisted phosphoryl and proton-transfer mechanism is kinetically more favorable than the mechanism where an aspartate would be activating the Dha. Although the details of the mechanisms appear to be dramatically dependent on the level of theory employed in the calculations (PM3/MM, B3LYP:PM3/MM, or B3LYP/MM), the transition states (TSs) for the phosphoryl transfer step appear to be described as a concerted step with different degrees of synchronicity in the breaking and forming bonds process in both explored mechanisms. Residues of the active site belonging to different subunits of the protein, such as Gly78B, Thr79A, Ser80A, Arg178B, and one Mg2+ cation, would be stabilizing the transferred phosphate in the TS. Asp109A would have a structural role by posing the Dha and other residues of the active site in the proper orientation. The information derived from our calculations not only reveals the role of the enzyme and the particular residues of its active site, but it can assist in the rational design of new more specific inhibitors.
Collapse
Affiliation(s)
- I Bordes
- Departament de Química Física i Analítica, Universitat Jaume I , 12071 Castellón, Spain
| | - R Castillo
- Departament de Química Física i Analítica, Universitat Jaume I , 12071 Castellón, Spain
| | - V Moliner
- Departament de Química Física i Analítica, Universitat Jaume I , 12071 Castellón, Spain.,Department of Chemistry, University of Bath , Bath BA2 7AY, United Kingdom
| |
Collapse
|
10
|
McArthur K, D'Cruz AA, Segal D, Lackovic K, Wilks AF, O'Donnell JA, Nowell CJ, Gerlic M, Huang DCS, Burns CJ, Croker BA. Defining a therapeutic window for kinase inhibitors in leukemia to avoid neutropenia. Oncotarget 2017; 8:57948-57963. [PMID: 28938529 PMCID: PMC5601625 DOI: 10.18632/oncotarget.19678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/09/2017] [Indexed: 11/25/2022] Open
Abstract
Neutropenia represents one of the major dose-limiting toxicities of many current cancer therapies. To circumvent the off-target effects of cytotoxic chemotherapeutics, kinase inhibitors are increasingly being used as an adjunct therapy to target leukemia. In this study, we conducted a screen of leukemic cell lines in parallel with primary neutrophils to identify kinase inhibitors with the capacity to induce apoptosis of myeloid and lymphoid cell lines whilst sparing primary mouse and human neutrophils. We have utilized a high-throughput live cell imaging platform to demonstrate that cytotoxic drugs have limited effects on neutrophil viability but are toxic to hematopoietic progenitor cells, with the exception of the topoisomerase I inhibitor SN-38. The parallel screening of kinase inhibitors revealed that mouse and human neutrophil viability is dependent on cyclin-dependent kinase (CDK) activity but surprisingly only partially dependent on PI3 kinase and JAK/STAT signaling, revealing dominant pathways contributing to neutrophil viability. Mcl-1 haploinsufficiency sensitized neutrophils to CDK inhibition, demonstrating that Mcl-1 is a direct target for CDK inhibitors. This study reveals a therapeutic window for the kinase inhibitors BEZ235, BMS-3, AZD7762, and (R)-BI-2536 to induce apoptosis of leukemia cell lines whilst maintaining immunocompetence and hemostasis.
Collapse
Affiliation(s)
- Kate McArthur
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Akshay A D'Cruz
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - David Segal
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Kurt Lackovic
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Andrew F Wilks
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Joanne A O'Donnell
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.,Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Cameron J Nowell
- Monash Institute of Pharmaceutical Sciences, Melbourne, VIC, Australia
| | - Motti Gerlic
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - David C S Huang
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Christopher J Burns
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.,School of Chemistry, Bio21, The University of Melbourne, Melbourne, VIC, Australia
| | - Ben A Croker
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Yadav L, Tamene F, Göös H, van Drogen A, Katainen R, Aebersold R, Gstaiger M, Varjosalo M. Systematic Analysis of Human Protein Phosphatase Interactions and Dynamics. Cell Syst 2017; 4:430-444.e5. [PMID: 28330616 DOI: 10.1016/j.cels.2017.02.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/10/2017] [Accepted: 02/15/2017] [Indexed: 10/19/2022]
Abstract
Coordinated activities of protein kinases and phosphatases ensure phosphorylation homeostasis, which, when perturbed, can instigate diseases, including cancer. Yet, in contrast to kinases, much less is known about protein phosphatase functions and their interactions and complexes. Here, we used quantitative affinity proteomics to assay protein-protein interactions for 54 phosphatases distributed across the three major protein phosphatase families, with additional analysis of their 12 co-factors. We identified 838 high-confidence interactions, of which 631, to our knowledge, have not been reported before. We show that inhibiting the activity of phosphatases PP1 and PP2A by okadaic acid disrupts their specific interactions, supporting the potential of therapeutics that target these proteins. Additional analyses revealed candidate physical and functional interaction links to phosphatase-based regulation of several signaling pathways and to human cancer. Our study provides an initial glimpse of the protein interaction landscape of phosphatases and their functions in cellular regulation.
Collapse
Affiliation(s)
- Leena Yadav
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Fitsum Tamene
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Helka Göös
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Audrey van Drogen
- Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Riku Katainen
- Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki 00014, Finland
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Matthias Gstaiger
- Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland.
| |
Collapse
|
12
|
Gudernova I, Foldynova-Trantirkova S, Ghannamova BE, Fafilek B, Varecha M, Balek L, Hruba E, Jonatova L, Jelinkova I, Kunova Bosakova M, Trantirek L, Mayer J, Krejci P. One reporter for in-cell activity profiling of majority of protein kinase oncogenes. eLife 2017; 6. [PMID: 28199182 PMCID: PMC5310841 DOI: 10.7554/elife.21536] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/31/2017] [Indexed: 12/05/2022] Open
Abstract
In-cell profiling enables the evaluation of receptor tyrosine activity in a complex environment of regulatory networks that affect signal initiation, propagation and feedback. We used FGF-receptor signaling to identify EGR1 as a locus that strongly responds to the activation of a majority of the recognized protein kinase oncogenes, including 30 receptor tyrosine kinases and 154 of their disease-associated mutants. The EGR1 promoter was engineered to enhance trans-activation capacity and optimized for simple screening assays with luciferase or fluorescent reporters. The efficacy of the developed, fully synthetic reporters was demonstrated by the identification of novel targets for two clinically used tyrosine kinase inhibitors, nilotinib and osimertinib. A universal reporter system for in-cell protein kinase profiling will facilitate repurposing of existing anti-cancer drugs and identification of novel inhibitors in high-throughput screening studies. DOI:http://dx.doi.org/10.7554/eLife.21536.001
Collapse
Affiliation(s)
- Iva Gudernova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | | | | | - Bohumil Fafilek
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Miroslav Varecha
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Lukas Balek
- Department of Experimental Biology, Faculty of Sciences, Masaryk University, Brno, Czech Republic
| | - Eva Hruba
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Lucie Jonatova
- Department of Experimental Biology, Faculty of Sciences, Masaryk University, Brno, Czech Republic
| | - Iva Jelinkova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | | | - Lukas Trantirek
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jiri Mayer
- Department of Internal Medicine, Hematology and Oncology, Masaryk University Hospital, Brno, Czech Republic
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
13
|
Golkowski M, Vidadala RSR, Lombard CK, Suh HW, Maly DJ, Ong SE. Kinobead and Single-Shot LC-MS Profiling Identifies Selective PKD Inhibitors. J Proteome Res 2017; 16:1216-1227. [PMID: 28102076 DOI: 10.1021/acs.jproteome.6b00817] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
ATP-competitive protein kinase inhibitors are important research tools and therapeutic agents. Because there are >500 human kinases that contain highly conserved active sites, the development of selective inhibitors is extremely challenging. Methods to rapidly and efficiently profile kinase inhibitor targets in cell lysates are urgently needed to discover selective compounds and to elucidate the mechanisms of action for polypharmacological inhibitors. Here, we describe a protocol for microgram-scale chemoproteomic profiling of ATP-competitive kinase inhibitors using kinobeads. We employed a gel-free in situ digestion protocol coupled to nanoflow liquid chromatography-mass spectrometry to profile ∼200 kinases in single analytical runs using as little as 5 μL of kinobeads and 300 μg of protein. With our kinobead reagents, we obtained broad coverage of the kinome, monitoring the relative expression levels of 312 kinases in a diverse panel of 11 cancer cell lines. Further, we profiled a set of pyrrolopyrimidine- and pyrazolopyrimidine-based kinase inhibitors in competition-binding experiments with label-free quantification, leading to the discovery of a novel selective and potent inhibitor of protein kinase D (PKD) 1, 2, and 3. Our protocol is useful for rapid and sensitive profiling of kinase expression levels and ATP-competitive kinase inhibitor selectivity in native proteomes.
Collapse
Affiliation(s)
- Martin Golkowski
- Department of Pharmacology, School of Medicine and Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | - Rama Subba Rao Vidadala
- Department of Pharmacology, School of Medicine and Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | - Chloe K Lombard
- Department of Pharmacology, School of Medicine and Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | - Hyong Won Suh
- Department of Pharmacology, School of Medicine and Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | - Dustin J Maly
- Department of Pharmacology, School of Medicine and Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | - Shao-En Ong
- Department of Pharmacology, School of Medicine and Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| |
Collapse
|
14
|
The Intersection of Structural and Chemical Biology - An Essential Synergy. Cell Chem Biol 2016; 23:173-182. [PMID: 26933743 DOI: 10.1016/j.chembiol.2015.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/04/2015] [Accepted: 12/04/2015] [Indexed: 12/22/2022]
Abstract
The continual improvement in our ability to generate high resolution structural models of biological molecules has stimulated and supported innovative chemical biology projects that target increasingly challenging ligand interaction sites. In this review we outline some of the recent developments in chemical biology and rational ligand design and show selected examples that illustrate the synergy between these research areas.
Collapse
|
15
|
Christmann-Franck S, van Westen GJP, Papadatos G, Beltran Escudie F, Roberts A, Overington JP, Domine D. Unprecedently Large-Scale Kinase Inhibitor Set Enabling the Accurate Prediction of Compound-Kinase Activities: A Way toward Selective Promiscuity by Design? J Chem Inf Model 2016; 56:1654-75. [PMID: 27482722 PMCID: PMC5039764 DOI: 10.1021/acs.jcim.6b00122] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Drug discovery programs frequently target members of the human kinome and try to identify small molecule protein kinase inhibitors, primarily for cancer treatment, additional indications being increasingly investigated. One of the challenges is controlling the inhibitors degree of selectivity, assessed by in vitro profiling against panels of protein kinases. We manually extracted, compiled, and standardized such profiles published in the literature: we collected 356 908 data points corresponding to 482 protein kinases, 2106 inhibitors, and 661 patents. We then analyzed this data set in terms of kinome coverage, results reproducibility, popularity, and degree of selectivity of both kinases and inhibitors. We used the data set to create robust proteochemometric models capable of predicting kinase activity (the ligand-target space was modeled with an externally validated RMSE of 0.41 ± 0.02 log units and R02 0.74 ± 0.03), in order to account for missing or unreliable measurements. The influence on the prediction quality of parameters such as number of measurements, Murcko scaffold frequency or inhibitor type was assessed. Interpretation of the models enabled to highlight inhibitors and kinases properties correlated with higher affinities, and an analysis in the context of kinases crystal structures was performed. Overall, the models quality allows the accurate prediction of kinase-inhibitor activities and their structural interpretation, thus paving the way for the rational design of compounds with a targeted selectivity profile.
Collapse
Affiliation(s)
| | - Gerard J P van Westen
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus , Hinxton, Cambridgeshire CB10 1SD, U.K
| | - George Papadatos
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus , Hinxton, Cambridgeshire CB10 1SD, U.K
| | | | | | - John P Overington
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus , Hinxton, Cambridgeshire CB10 1SD, U.K
| | - Daniel Domine
- Merck Serono , Chemin des Mines 9, 1202 Genève, Switzerland
| |
Collapse
|
16
|
Volkamer A, Eid S, Turk S, Rippmann F, Fulle S. Identification and Visualization of Kinase-Specific Subpockets. J Chem Inf Model 2016; 56:335-46. [PMID: 26735903 DOI: 10.1021/acs.jcim.5b00627] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The identification and design of selective compounds is important for the reduction of unwanted side effects as well as for the development of tool compounds for target validation studies. This is, in particular, true for therapeutically important protein families that possess conserved folds and have numerous members such as kinases. To support the design of selective kinase inhibitors, we developed a novel approach that allows identification of specificity determining subpockets between closely related kinases solely based on their three-dimensional structures. To account for the intrinsic flexibility of the proteins, multiple X-ray structures of the target protein of interest as well as of unwanted off-target(s) are taken into account. The binding pockets of these protein structures are calculated and fused to a combined target and off-target pocket, respectively. Subsequently, shape differences between these two combined pockets are identified via fusion rules. The approach provides a user-friendly visualization of target-specific areas in a binding pocket which should be explored when designing selective compounds. Furthermore, the approach can be easily combined with in silico alanine mutation studies to identify selectivity determining residues. The potential impact of the approach is demonstrated in four retrospective experiments on closely related kinases, i.e., p38α vs Erk2, PAK1 vs PAK4, ITK vs AurA, and BRAF vs VEGFR2. Overall, the presented approach does not require any profiling data for training purposes, provides an intuitive visualization of a large number of protein structures at once, and could also be applied to other target classes.
Collapse
Affiliation(s)
- Andrea Volkamer
- BioMed X Innovation Center , Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Sameh Eid
- BioMed X Innovation Center , Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Samo Turk
- BioMed X Innovation Center , Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Friedrich Rippmann
- Global Computational Chemistry, Merck KGaA , Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Simone Fulle
- BioMed X Innovation Center , Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| |
Collapse
|
17
|
Elkins JM, Fedele V, Szklarz M, Abdul Azeez KR, Salah E, Mikolajczyk J, Romanov S, Sepetov N, Huang XP, Roth BL, Al Haj Zen A, Fourches D, Muratov E, Tropsha A, Morris J, Teicher BA, Kunkel M, Polley E, Lackey KE, Atkinson FL, Overington JP, Bamborough P, Müller S, Price DJ, Willson TM, Drewry DH, Knapp S, Zuercher WJ. Comprehensive characterization of the Published Kinase Inhibitor Set. Nat Biotechnol 2015; 34:95-103. [PMID: 26501955 DOI: 10.1038/nbt.3374] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 08/31/2015] [Indexed: 12/21/2022]
Abstract
Despite the success of protein kinase inhibitors as approved therapeutics, drug discovery has focused on a small subset of kinase targets. Here we provide a thorough characterization of the Published Kinase Inhibitor Set (PKIS), a set of 367 small-molecule ATP-competitive kinase inhibitors that was recently made freely available with the aim of expanding research in this field and as an experiment in open-source target validation. We screen the set in activity assays with 224 recombinant kinases and 24 G protein-coupled receptors and in cellular assays of cancer cell proliferation and angiogenesis. We identify chemical starting points for designing new chemical probes of orphan kinases and illustrate the utility of these leads by developing a selective inhibitor for the previously untargeted kinases LOK and SLK. Our cellular screens reveal compounds that modulate cancer cell growth and angiogenesis in vitro. These reagents and associated data illustrate an efficient way forward to increasing understanding of the historically untargeted kinome.
Collapse
Affiliation(s)
- Jonathan M Elkins
- Structural Genomics Consortium and Target Discovery Institute, Nuffield Department of Clinical Medicine, Old Road Campus, University of Oxford, Oxford, UK
| | - Vita Fedele
- Structural Genomics Consortium and Target Discovery Institute, Nuffield Department of Clinical Medicine, Old Road Campus, University of Oxford, Oxford, UK
| | - Marta Szklarz
- Structural Genomics Consortium and Target Discovery Institute, Nuffield Department of Clinical Medicine, Old Road Campus, University of Oxford, Oxford, UK
| | - Kamal R Abdul Azeez
- Structural Genomics Consortium and Target Discovery Institute, Nuffield Department of Clinical Medicine, Old Road Campus, University of Oxford, Oxford, UK
| | - Eidarus Salah
- Structural Genomics Consortium and Target Discovery Institute, Nuffield Department of Clinical Medicine, Old Road Campus, University of Oxford, Oxford, UK
| | | | | | | | - Xi-Ping Huang
- The National Institute of Mental Health Psychoactive Active Drug Screening Program, (NIMH PDSP), Department of Pharmacology and Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Bryan L Roth
- The National Institute of Mental Health Psychoactive Active Drug Screening Program, (NIMH PDSP), Department of Pharmacology and Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Ayman Al Haj Zen
- British Heart Foundation Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Denis Fourches
- Laboratory for Molecular Modeling Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Eugene Muratov
- Laboratory for Molecular Modeling Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alex Tropsha
- Laboratory for Molecular Modeling Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joel Morris
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland, USA
| | - Beverly A Teicher
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland, USA
| | - Mark Kunkel
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland, USA
| | - Eric Polley
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland, USA
| | - Karen E Lackey
- Medical University of South Carolina, Charleston, South Carolina, USA
| | - Francis L Atkinson
- European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - John P Overington
- European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | | | - Susanne Müller
- Structural Genomics Consortium and Target Discovery Institute, Nuffield Department of Clinical Medicine, Old Road Campus, University of Oxford, Oxford, UK
| | - Daniel J Price
- Chemical Sciences, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | - Timothy M Willson
- Chemical Sciences, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | - David H Drewry
- Chemical Sciences, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | - Stefan Knapp
- Structural Genomics Consortium and Target Discovery Institute, Nuffield Department of Clinical Medicine, Old Road Campus, University of Oxford, Oxford, UK.,Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences (BMLS), Frankfurt am Main, Germany
| | - William J Zuercher
- Chemical Sciences, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| |
Collapse
|
18
|
Song M, Jiang Z. Inferring Association between Compound and Pathway with an Improved Ensemble Learning Method. Mol Inform 2015; 34:753-60. [DOI: 10.1002/minf.201500033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/03/2015] [Indexed: 12/20/2022]
|
19
|
Hui R, El Bakkouri M, Sibley LD. Designing selective inhibitors for calcium-dependent protein kinases in apicomplexans. Trends Pharmacol Sci 2015; 36:452-60. [PMID: 26002073 DOI: 10.1016/j.tips.2015.04.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/17/2015] [Accepted: 04/23/2015] [Indexed: 12/21/2022]
Abstract
Apicomplexan parasites cause some of the most severe human diseases, including malaria (caused by Plasmodium), toxoplasmosis, and cryptosporidiosis. Treatments are limited by the lack of effective drugs and development of resistance to available agents. By exploiting novel features of protein kinases in these parasites, it may be possible to develop new treatments. We summarize here recent advances in identifying small molecule inhibitors against a novel family of plant-like, calcium-dependent kinases that are uniquely expanded in apicomplexan parasites. Analysis of the 3D structure, activation mechanism, and sensitivity to small molecules had identified several attractive chemical scaffolds that are potent and selective inhibitors of these parasite kinases. Further optimization of these leads may yield promising new drugs for treatment of these parasitic infections.
Collapse
Affiliation(s)
- Raymond Hui
- Structural Genomics Consortium, University of Toronto, MaRS South Tower, 101 College St, Toronto, ON, M5G 1L7, Canada; Toronto General Hospital Research Institute, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Majida El Bakkouri
- Structural Genomics Consortium, University of Toronto, MaRS South Tower, 101 College St, Toronto, ON, M5G 1L7, Canada
| | - L David Sibley
- Department of Molecular Microbiology, 660 S. Euclid Ave., Washington University School of Medicine, St Louis, MO 63130, USA.
| |
Collapse
|
20
|
Shott RH, Appanah C, Grenier C, Tremblay G, Roucou X, Schang LM. Development of kinomic analyses to identify dysregulated signaling pathways in cells expressing cytoplasmic PrP. Virol J 2014; 11:175. [PMID: 25280966 PMCID: PMC4283144 DOI: 10.1186/1743-422x-11-175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/26/2014] [Indexed: 12/20/2022] Open
Abstract
Background Dysregulated protein kinase signaling is involved in the pathogenesis of many chronic diseases. However, the dysregulated signaling pathways critical to prion pathogenesis remain incompletely characterized. Global analyses of signaling pathways may be useful to better characterize these pathways. We therefore set out to develop such global assays. To this end, we used as a model cytoplasmic mutants of the cellular prion protein (PrPC), which are toxic to N2a neuroblastoma cells. We tested the global assays for their sensitivity to detect changes in signaling pathways in cells expressing cytoplasmic PrP mutants. Methods We developed a targeted proteomics (kinomics) approach using multiplex Western blots to identify signaling pathways dysregulated in chronic neurological pathologies. We tested the approach for its potential ability to detect signaling changes in N2a cells expressing cytoplasmic PrP mutants. Results Multiplex Western blots were designed to quantitate the expression levels of 137 protein kinases in a single membrane and using only 1.2 mg of sample. The response of the blots was sensitive and linear to changes of 6% in protein levels. Hierarchical and functional clustering of the relative expression levels identified an mTOR signaling pathway as potentially dysregulated in N2a cells expressing cytoplasmic PrP. The mTOR signaling pathway regulates global protein synthesis, which is inhibited in cells expressing cytoplasmic PrP. The levels of proteins involved in the Akt1/p70S6K branch of mTOR signaling changed in synchrony with time of cytoplasmic PrP expression. Three kinases in this pathway, Akt, p70S6K, and eIF4B were in their inactive states, as evaluated by phosphorylation of their regulatory sites. Conclusion The results presented are consistent with the previously reported inhibition of Akt/p70S6K/eIF4B signaling as mediating pathogenesis of cytoplasmic PrP. We conclude that the kinomic analyses are sensitive and specific to detect signaling pathways dysregulated in a simple in vitro model of PrP pathogenesis. Electronic supplementary material The online version of this article (doi:10.1186/1743-422X-11-175) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Luis M Schang
- Department of Biochemistry and Centre for Prions and Protein Folding Diseases (CPPFD), University of Alberta, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
21
|
Shott RH, Majer A, Frost KL, Booth SA, Schang LM. Activation of pro-survival CaMK4β/CREB and pro-death MST1 signaling at early and late times during a mouse model of prion disease. Virol J 2014; 11:160. [PMID: 25183307 PMCID: PMC4168054 DOI: 10.1186/1743-422x-11-160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 08/29/2014] [Indexed: 12/17/2022] Open
Abstract
Background The signaling pathways most critical to prion disease pathogenesis are as yet incompletely characterized. We have developed a kinomics approach to identify signaling pathways that are dysregulated during prion pathogenesis. The approach is sensitive and specific enough to detect signaling pathways dysregulated in a simple in vitro model of prion pathogenesis. Here, we used this approach to identify signaling pathways dysregulated during prion pathogenesis in vivo. Methods Mice intraperitoneally infected with scrapie (strain RML) were euthanized at 70, 90, 110, 130 days post-infection (dpi) or at terminal stages of disease (155–190 dpi). The levels of 139 protein kinases in brainstem-cerebellum homogenates were analyzed by multiplex Western blots, followed by hierarchical clustering and analyses of activation states. Results Hierarchical and functional clustering identified CaMK4β and MST1 signaling pathways as potentially dysregulated. Targeted analyses revealed that CaMK4β and its downstream substrate CREB, which promotes neuronal survival, were activated at 70 and 90 dpi in cortical, subcortical and brainstem-cerebellum homogenates from scrapie-infected mice. The activation levels of CaMK4β/CREB signaling returned to those in mock-infected mice at 110 dpi, whereas MST1, which promotes neuronal death, became activated at 130 dpi. Conclusion Pro-survival CaMK4β/CREB signaling is activated in mouse scrapie at earlier times and later inhibited, whereas pro-death MST1 signaling is activated at these later times. Electronic supplementary material The online version of this article (doi:10.1186/1743-422X-11-160) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Luis M Schang
- Department of Biochemistry and Centre for Prions and Protein Folding Diseases (CPPFD), University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
22
|
Uitdehaag JCM, de Roos JADM, van Doornmalen AM, Prinsen MBW, de Man J, Tanizawa Y, Kawase Y, Yoshino K, Buijsman RC, Zaman GJR. Comparison of the cancer gene targeting and biochemical selectivities of all targeted kinase inhibitors approved for clinical use. PLoS One 2014; 9:e92146. [PMID: 24651269 PMCID: PMC3961306 DOI: 10.1371/journal.pone.0092146] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/17/2014] [Indexed: 12/13/2022] Open
Abstract
The anti-proliferative activities of all twenty-five targeted kinase inhibitor drugs that are in clinical use were measured in two large assay panels: (1) a panel of proliferation assays of forty-four human cancer cell lines from diverse tumour tissue origins; and (2) a panel of more than 300 kinase enzyme activity assays. This study provides a head-on comparison of all kinase inhibitor drugs in use (status Nov. 2013), and for six of these drugs, the first kinome profiling data in the public domain. Correlation of drug activities with cancer gene mutations revealed novel drug sensitivity markers, suggesting that cancers dependent on mutant CTNNB1 will respond to trametinib and other MEK inhibitors, and cancers dependent on SMAD4 to small molecule EGFR inhibitor drugs. Comparison of cellular targeting efficacies reveals the most targeted inhibitors for EGFR, ABL1 and BRAF(V600E)-driven cell growth, and demonstrates that the best targeted agents combine high biochemical potency with good selectivity. For ABL1 inhibitors, we computationally deduce optimized kinase profiles for use in a next generation of drugs. Our study shows the power of combining biochemical and cellular profiling data in the evaluation of kinase inhibitor drug action.
Collapse
Affiliation(s)
| | | | | | | | - Jos de Man
- Netherlands Translational Research Center B.V., Oss, The Netherlands
| | | | | | | | | | - Guido J. R. Zaman
- Netherlands Translational Research Center B.V., Oss, The Netherlands
- * E-mail:
| |
Collapse
|
23
|
Cuozzo JW, Soutter HH. Overview of Recent Progress in Protein-Expression Technologies for Small-Molecule Screening. ACTA ACUST UNITED AC 2014; 19:1000-13. [PMID: 24525871 DOI: 10.1177/1087057114520975] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/02/2014] [Indexed: 01/09/2023]
Abstract
Production of novel soluble and membrane-localized protein targets for functional and affinity-based screening has often been limited by the inability of traditional protein-expression systems to generate recombinant proteins that have properties similar to those of their endogenous counterparts. Such targets have often been labeled as challenging. Although biological validation of these challenging targets for specific disease areas may be strong, discovery of small-molecule modulators can be greatly delayed or completely halted due to target-expression issues. In this article, the limitations of traditional protein-expression systems will be discussed along with new systems designed to overcome these challenges. Recent work in this field has focused on two major areas for both soluble and membrane targets: construct-design strategies to improve expression levels and new hosts that can carry out the posttranslational modifications necessary for proper target folding and function. Another area of active research has been on the reconstitution of solubilized membrane targets for both structural analysis and screening. Finally, the potential impact of these new systems on the output of small-molecule screening campaigns will be discussed.
Collapse
|
24
|
Allen CE, Welford AJ, Matthews TP, Caldwell JJ, Collins I. Fragment growing to retain or alter the selectivity of anchored kinase hinge-binding fragments. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00308f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The selectivity patterns of kinase hinge-binding fragments can be retained during fragment growing, suggesting a new way to control poly-pharmacology.
Collapse
Affiliation(s)
- Charlotte E. Allen
- Cancer Research UK Cancer Therapeutics Unit
- The Institute of Cancer Research
- Sutton, UK
| | - Amanda J. Welford
- Cancer Research UK Cancer Therapeutics Unit
- The Institute of Cancer Research
- Sutton, UK
| | - Thomas P. Matthews
- Cancer Research UK Cancer Therapeutics Unit
- The Institute of Cancer Research
- Sutton, UK
| | - John J. Caldwell
- Cancer Research UK Cancer Therapeutics Unit
- The Institute of Cancer Research
- Sutton, UK
| | - Ian Collins
- Cancer Research UK Cancer Therapeutics Unit
- The Institute of Cancer Research
- Sutton, UK
| |
Collapse
|
25
|
Sawyer TK, Wu JC, Sawyer JR, English JM. Protein kinase inhibitors: breakthrough medicines and the next generation. Expert Opin Investig Drugs 2013; 22:675-8. [PMID: 23705633 DOI: 10.1517/13543784.2013.804509] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this issue of Expert Opinion on Investigational Drugs, several protein kinases families and pathways underlying cancer and other diseases are reviewed and several small molecule inhibitors that are in clinical trials are further described. Highlights of these reviews and drug evaluations are summarized in this editorial.
Collapse
|
26
|
Subramanian V, Prusis P, Pietilä LO, Xhaard H, Wohlfahrt G. Visually interpretable models of kinase selectivity related features derived from field-based proteochemometrics. J Chem Inf Model 2013; 53:3021-30. [PMID: 24116714 DOI: 10.1021/ci400369z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Achieving selectivity for small organic molecules toward biological targets is a main focus of drug discovery but has been proven difficult, for example, for kinases because of the high similarity of their ATP binding pockets. To support the design of more selective inhibitors with fewer side effects or with altered target profiles for improved efficacy, we developed a method combining ligand- and receptor-based information. Conventional QSAR models enable one to study the interactions of multiple ligands toward a single protein target, but in order to understand the interactions between multiple ligands and multiple proteins, we have used proteochemometrics, a multivariate statistics method that aims to combine and correlate both ligand and protein descriptions with affinity to receptors. The superimposed binding sites of 50 unique kinases were described by molecular interaction fields derived from knowledge-based potentials and Schrödinger's WaterMap software. Eighty ligands were described by Mold(2), Open Babel, and Volsurf descriptors. Partial least-squares regression including cross-terms, which describe the selectivity, was used for model building. This combination of methods allows interpretation and easy visualization of the models within the context of ligand binding pockets, which can be translated readily into the design of novel inhibitors.
Collapse
|