1
|
Obrecht M, Zurbruegg S, Accart N, Lambert C, Doelemeyer A, Ledermann B, Beckmann N. Magnetic resonance imaging and ultrasound elastography in the context of preclinical pharmacological research: significance for the 3R principles. Front Pharmacol 2023; 14:1177421. [PMID: 37448960 PMCID: PMC10337591 DOI: 10.3389/fphar.2023.1177421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
The 3Rs principles-reduction, refinement, replacement-are at the core of preclinical research within drug discovery, which still relies to a great extent on the availability of models of disease in animals. Minimizing their distress, reducing their number as well as searching for means to replace them in experimental studies are constant objectives in this area. Due to its non-invasive character in vivo imaging supports these efforts by enabling repeated longitudinal assessments in each animal which serves as its own control, thereby enabling to reduce considerably the animal utilization in the experiments. The repetitive monitoring of pathology progression and the effects of therapy becomes feasible by assessment of quantitative biomarkers. Moreover, imaging has translational prospects by facilitating the comparison of studies performed in small rodents and humans. Also, learnings from the clinic may be potentially back-translated to preclinical settings and therefore contribute to refining animal investigations. By concentrating on activities around the application of magnetic resonance imaging (MRI) and ultrasound elastography to small rodent models of disease, we aim to illustrate how in vivo imaging contributes primarily to reduction and refinement in the context of pharmacological research.
Collapse
Affiliation(s)
- Michael Obrecht
- Diseases of Aging and Regenerative Medicines, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Stefan Zurbruegg
- Neurosciences Department, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Nathalie Accart
- Diseases of Aging and Regenerative Medicines, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Christian Lambert
- Diseases of Aging and Regenerative Medicines, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Arno Doelemeyer
- Diseases of Aging and Regenerative Medicines, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Birgit Ledermann
- 3Rs Leader, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Nicolau Beckmann
- Diseases of Aging and Regenerative Medicines, Novartis Institutes for BioMedical Research, Basel, Switzerland
| |
Collapse
|
2
|
Spark DL, Fornito A, Langmead CJ, Stewart GD. Beyond antipsychotics: a twenty-first century update for preclinical development of schizophrenia therapeutics. Transl Psychiatry 2022; 12:147. [PMID: 35393394 PMCID: PMC8991275 DOI: 10.1038/s41398-022-01904-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/02/2022] [Accepted: 03/15/2022] [Indexed: 11/15/2022] Open
Abstract
Despite 50+ years of drug discovery, current antipsychotics have limited efficacy against negative and cognitive symptoms of schizophrenia, and are ineffective-with the exception of clozapine-against any symptom domain for patients who are treatment resistant. Novel therapeutics with diverse non-dopamine D2 receptor targets have been explored extensively in clinical trials, yet often fail due to a lack of efficacy despite showing promise in preclinical development. This lack of translation between preclinical and clinical efficacy suggests a systematic failure in current methods that determine efficacy in preclinical rodent models. In this review, we critically evaluate rodent models and behavioural tests used to determine preclinical efficacy, and look to clinical research to provide a roadmap for developing improved translational measures. We highlight the dependence of preclinical models and tests on dopamine-centric theories of dysfunction and how this has contributed towards a self-reinforcing loop away from clinically meaningful predictions of efficacy. We review recent clinical findings of distinct dopamine-mediated dysfunction of corticostriatal circuits in patients with treatment-resistant vs. non-treatment-resistant schizophrenia and suggest criteria for establishing rodent models to reflect such differences, with a focus on objective, translational measures. Finally, we review current schizophrenia drug discovery and propose a framework where preclinical models are validated against objective, clinically informed measures and preclinical tests of efficacy map onto those used clinically.
Collapse
Affiliation(s)
- Daisy L Spark
- Drug Discovery Biology, Neuroscience & Mental Health Therapeutic Program Area, and Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, Monash Biomedical Imaging, and School of Psychological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Christopher J Langmead
- Drug Discovery Biology, Neuroscience & Mental Health Therapeutic Program Area, and Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.
| | - Gregory D Stewart
- Drug Discovery Biology, Neuroscience & Mental Health Therapeutic Program Area, and Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.
| |
Collapse
|
3
|
Borruto AM, Stopponi S, Li H, Weiss F, Roberto M, Ciccocioppo R. Genetically selected alcohol-preferring msP rats to study alcohol use disorder: Anything lost in translation? Neuropharmacology 2021; 186:108446. [PMID: 33476639 DOI: 10.1016/j.neuropharm.2020.108446] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/24/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022]
Abstract
For several decades, genetically selected alcohol-preferring rats have been successfully used to mimic and study alcohol use disorders (AUD). These rat lines have been instrumental in advancing our understanding of the neurobiology of alcoholism and enabling pharmacological studies to evaluate drug efficacy on alcohol drinking and relapse. Moreover, the results of these studies have identified genetic variables that are linked to AUD vulnerability. This is an up-to-date review that focuses on genetically selected Marchigian Sardinian alcohol-preferring (msP) rats. To support the translational relevance of the findings that are obtained from msP rats and highlight important similarities to AUD patients, we also discuss the results of recent brain imaging studies. Finally, to demonstrate the importance of studying sex differences in animal models of AUD, we present original data that highlight behavioral differences in the response to alcohol in male and female rats. Female msP rats exhibited higher alcohol consumption compared with males. Furthermore, msP rats of both sexes exhibit higher anxiety- and depressive-like behaviors in the elevated plus maze and forced swim test, respectively, compared with unselected Wistar controls. Notably, voluntary alcohol drinking decreases foot-shock stress and depressive-like behavior in both sexes, whereas anxiety-like behavior in the elevated plus maze is attenuated only in males. These findings suggest that male and female msP rats both drink high amounts of alcohol to self-medicate negative affective symptoms. For females, this behavior may be driven by an attempt to treat stress and depressive-like conditions. For males, generalized anxiety appears to be an important additional factor in the motivation to drink alcohol. This article is part of the special issue on 'Vulnerabilities to Substance Abuse.'
Collapse
Affiliation(s)
- Anna Maria Borruto
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Serena Stopponi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Hongwu Li
- College of Chemical Engineering, Changchun University of Technology, Changchun, China
| | - Friedbert Weiss
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy.
| |
Collapse
|
4
|
Mandino F, Cerri DH, Garin CM, Straathof M, van Tilborg GAF, Chakravarty MM, Dhenain M, Dijkhuizen RM, Gozzi A, Hess A, Keilholz SD, Lerch JP, Shih YYI, Grandjean J. Animal Functional Magnetic Resonance Imaging: Trends and Path Toward Standardization. Front Neuroinform 2020; 13:78. [PMID: 32038217 PMCID: PMC6987455 DOI: 10.3389/fninf.2019.00078] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022] Open
Abstract
Animal whole-brain functional magnetic resonance imaging (fMRI) provides a non-invasive window into brain activity. A collection of associated methods aims to replicate observations made in humans and to identify the mechanisms underlying the distributed neuronal activity in the healthy and disordered brain. Animal fMRI studies have developed rapidly over the past years, fueled by the development of resting-state fMRI connectivity and genetically encoded neuromodulatory tools. Yet, comparisons between sites remain hampered by lack of standardization. Recently, we highlighted that mouse resting-state functional connectivity converges across centers, although large discrepancies in sensitivity and specificity remained. Here, we explore past and present trends within the animal fMRI community and highlight critical aspects in study design, data acquisition, and post-processing operations, that may affect the results and influence the comparability between studies. We also suggest practices aimed to promote the adoption of standards within the community and improve between-lab reproducibility. The implementation of standardized animal neuroimaging protocols will facilitate animal population imaging efforts as well as meta-analysis and replication studies, the gold standards in evidence-based science.
Collapse
Affiliation(s)
- Francesca Mandino
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore, Singapore
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Domenic H. Cerri
- Center for Animal MRI, Department of Neurology, Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Clement M. Garin
- Direction de la Recherche Fondamentale, MIRCen, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique et aux Énergies Alternatives, Fontenay-aux-Roses, France
- Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique, UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Milou Straathof
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Geralda A. F. van Tilborg
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - M. Mallar Chakravarty
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Department of Biological and Biomedical Engineering, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Marc Dhenain
- Direction de la Recherche Fondamentale, MIRCen, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique et aux Énergies Alternatives, Fontenay-aux-Roses, France
- Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique, UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Rick M. Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Centre for Neuroscience and Cognitive Systems @ UNITN, Rovereto, Italy
| | - Andreas Hess
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich–Alexander University Erlangen–Nürnberg, Erlangen, Germany
| | - Shella D. Keilholz
- Department of Biomedical Engineering, Georgia Tech, Emory University, Atlanta, GA, United States
| | - Jason P. Lerch
- Hospital for Sick Children, Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Wellcome Centre for Integrative NeuroImaging, University of Oxford, Oxford, United Kingdom
| | - Yen-Yu Ian Shih
- Center for Animal MRI, Department of Neurology, Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Joanes Grandjean
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Radiology and Nuclear Medicine, Donders Institute for Brain, Cognition, and Behaviour, Donders Institute, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
5
|
Bifone A, Gozzi A, Cippitelli A, Matzeu A, Domi E, Li H, Scuppa G, Cannella N, Ubaldi M, Weiss F, Ciccocioppo. phMRI, neurochemical and behavioral responses to psychostimulants distinguishing genetically selected alcohol-preferring from genetically heterogenous rats. Addict Biol 2019; 24:981-993. [PMID: 30328656 PMCID: PMC6697752 DOI: 10.1111/adb.12671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 06/27/2018] [Accepted: 07/23/2018] [Indexed: 01/01/2023]
Abstract
Alcoholism is often associated with other forms of drug abuse, suggesting that innate predisposing factors may confer vulnerability to addiction to diverse substances. However, the neurobiological bases of these factors remain unknown. Here, we have used a combination of imaging, neurochemistry and behavioral techniques to investigate responses to the psychostimulant amphetamine in Marchigian Sardinian (msP) alcohol-preferring rats, a model of vulnerability to alcoholism. Specifically, we employed pharmacological magnetic resonance imaging to investigate the neural circuits engaged by amphetamine challenge, and to relate functional reactivity to neurochemical and behavioral responses. Moreover, we studied self-administration of cocaine in the msP rats. We found stronger functional responses in the extended amygdala, alongside with increased release of dopamine in the nucleus accumbens shell and augmented vertical locomotor activity compared with controls. Wistar and msP rats did not differ in operant cocaine self-administration under short access (2 hours) conditions, but msP rats exhibited a higher propensity to escalate drug intake following long access (6 hours). Our findings suggest that neurobiological and genetic mechanisms that convey vulnerability to excessive alcohol drinking also facilitate the transition from psychostimulants use to abuse.
Collapse
Affiliation(s)
- A Bifone
- Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Corso Bettini 31, 38068 Rovereto, Italy
| | - A Gozzi
- Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Corso Bettini 31, 38068 Rovereto, Italy
| | - A Cippitelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri, Camerino 62032, Italy
| | - A Matzeu
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, United States
| | - E Domi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri, Camerino 62032, Italy
| | - H Li
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri, Camerino 62032, Italy
| | - G Scuppa
- Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Corso Bettini 31, 38068 Rovereto, Italy
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri, Camerino 62032, Italy
| | - N Cannella
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri, Camerino 62032, Italy
| | - M Ubaldi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri, Camerino 62032, Italy
| | - F Weiss
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, United States
| | - Ciccocioppo
- Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Corso Bettini 31, 38068 Rovereto, Italy
| |
Collapse
|
6
|
Quintero JE, Ai Y, Andersen AH, Hardy P, Grondin R, Guduru Z, Gash DM, Gerhardt GA, Zhang Z. Validations of apomorphine-induced BOLD activation correlations in hemiparkinsonian rhesus macaques. NEUROIMAGE-CLINICAL 2019; 22:101724. [PMID: 30822717 PMCID: PMC6396014 DOI: 10.1016/j.nicl.2019.101724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 02/08/2019] [Accepted: 02/16/2019] [Indexed: 11/27/2022]
Abstract
Identification of Parkinson's disease at the earliest possible stage of the disease may provide the best opportunity for the use of disease modifying treatments. However, diagnosing the disease during the pre-symptomatic period remains an unmet goal. To that end, we used pharmacological MRI (phMRI) to assess the function of the cortico-basal ganglia circuit in a non-human primate model of dopamine deficiency to determine the possible relationships between phMRI signals with behavioral, neurochemical, and histological measurements. Animals with unilateral treatments with the neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), that expressed stable, long-term hemiparkinsonism were challenged with the dopaminergic receptor agonist, apomorphine, and structure-specific phMRI blood oxygen level-dependent (BOLD) activation responses were measured. Behavioral, histopathological, and neurochemical measurements were obtained and correlated with phMRI activation of structures of the cortico-basal ganglia system. Greater phMRI activations in the basal ganglia and cortex were associated with slower movement speed, decreased daytime activity, or more pronounced parkinsonian features. Animals showed decreased stimulus-evoked dopamine release in the putamen and substantia nigra pars compacta and lower basal glutamate levels in the motor cortex on the MPTP-lesioned hemisphere compared to the contralateral hemisphere. The altered neurochemistry was significantly correlated with phMRI signals in the motor cortex and putamen. Finally, greater phMRI activations in the caudate nucleus correlated with fewer tyrosine hydroxylase-positive (TH+) nigral cells and decreased TH+ fiber density in the putamen. These results reveal the correlation of phMRI signals with the severity of the motor deficits and pathophysiological changes in the cortico-basal ganglia circuit. Apomorphine in hemiparkinsonian animals can evoke changes in functional MRI signals. Cortico-basal ganglia activation correlates to behavior, neurochemistry, histology Pharmacological MRI has potential to be biomarker for Parkinson's disease.
Collapse
Affiliation(s)
- J E Quintero
- Department of Neuroscience, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA
| | - Yi Ai
- Department of Neuroscience, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA
| | - A H Andersen
- Department of Neuroscience, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA; Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA
| | - P Hardy
- Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA
| | - R Grondin
- Department of Neuroscience, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA
| | - Z Guduru
- Department of Neurology, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA
| | - D M Gash
- Department of Neuroscience, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA
| | - G A Gerhardt
- Department of Neuroscience, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA
| | - Z Zhang
- Department of Neuroscience, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA.
| |
Collapse
|
7
|
Mehta MA, Schmechtig A, Kotoula V, McColm J, Jackson K, Brittain C, Tauscher-Wisniewski S, Kinon BJ, Morrison PD, Pollak T, Mant T, Williams SCR, Schwarz AJ. Group II metabotropic glutamate receptor agonist prodrugs LY2979165 and LY2140023 attenuate the functional imaging response to ketamine in healthy subjects. Psychopharmacology (Berl) 2018; 235:1875-1886. [PMID: 29564482 DOI: 10.1007/s00213-018-4877-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 03/08/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Aberrant glutamate neurotransmission, and in particular dysfunction of the N-methyl-D-aspartate receptor (NMDAR), has been implicated in psychiatric disorders and represents a novel therapeutic target. Low-dose administration of the NMDA antagonist ketamine in healthy volunteers elicits a strong blood oxygenation level dependent (BOLD) imaging signal that can be attenuated by pretreatment with single, therapeutically effective doses of marketed medicines interacting with the glutamate system. OBJECTIVE To test the attenuation of the ketamine-induced BOLD signal by pretreatment with either a metabotropic glutamate receptor (mGluR) 2/3 or a mGluR2 agonist in healthy volunteers METHODS: We used a ketamine challenge pharmacological magnetic resonance imaging (phMRI) paradigm to assess the modulatory effects of single acute doses of LY2140023 (pomaglumetad methionil), the methionine prodrug of the mGluR2/3 agonist LY404039 (10, 40, and 160 mg; N = 16 subjects) and of LY2979165, and the alanine prodrug of the selective orthosteric mGluR2 agonist 2812223 (20 and 60 mg; N = 16 subjects). RESULTS A reduction in the ketamine-evoked BOLD phMRI signal relative to placebo was observed at the highest doses tested of both LY2140023 and LY2979165. A relationship was observed between reduction of the BOLD signal and increasing plasma levels of 2812223 in the LY2979165 cohort. CONCLUSIONS These results identify pharmacologically active doses of the group II mGluR agonist prodrugs LY2140023 and LY2979165 in humans. They also extend the classes of compounds that have been experimentally shown to reverse the ketamine-evoked phMRI signal in humans, further supporting the use of this method as a neuroimaging biomarker for assessing functional effects.
Collapse
Affiliation(s)
- Mitul A Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK.
| | - Anne Schmechtig
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Vasileia Kotoula
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Juliet McColm
- Eli Lilly and Company, Sunninghill Road, Windlesham, Surrey, UK
| | | | - Claire Brittain
- Eli Lilly and Company, Sunninghill Road, Windlesham, Surrey, UK
| | | | | | - Paul D Morrison
- Psychosis Studies Department, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Thomas Pollak
- Psychosis Studies Department, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | | | - Steven C R Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | | |
Collapse
|
8
|
Becker G, Bolbos R, Costes N, Redouté J, Newman-Tancredi A, Zimmer L. Selective serotonin 5-HT1A receptor biased agonists elicitdistinct brain activation patterns: a pharmacoMRI study. Sci Rep 2016; 6:26633. [PMID: 27211078 PMCID: PMC4876409 DOI: 10.1038/srep26633] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 05/06/2016] [Indexed: 11/09/2022] Open
Abstract
Serotonin 1A (5-HT1A) receptors are involved in several physiological and pathological processes and constitute therefore an important therapeutic target. The recent pharmacological concept of biased agonism asserts that highly selective agonists can preferentially direct receptor signaling to specific intracellular responses, opening the possibility of drugs targeting a receptor subtype in specific brain regions. The present study brings additional support to this concept thanks to functional magnetic resonance imaging (7 Tesla-fMRI) in anaesthetized rats. Three 5-HT1A receptor agonists (8-OH-DPAT, F13714 and F15599) and one 5-HT1A receptor antagonist (MPPF) were compared in terms of influence on the brain blood oxygen level-dependent (BOLD) signal. Our study revealed for the first time contrasting BOLD signal patterns of biased agonists in comparison to a classical agonist and a silent antagonist. By providing functional information on the influence of pharmacological activation of 5-HT1A receptors in specific brain regions, this neuroimaging approach, translatable to the clinic, promises to be useful in exploring the new concept of biased agonism in neuropsychopharmacology.
Collapse
Affiliation(s)
- G Becker
- Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, CNRS, INSERM, Lyon, France.,Hospices Civils de Lyon, Lyon, France
| | - R Bolbos
- CERMEP - Imagerie du vivant, Lyon, France
| | - N Costes
- CERMEP - Imagerie du vivant, Lyon, France
| | - J Redouté
- CERMEP - Imagerie du vivant, Lyon, France
| | | | - L Zimmer
- Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, CNRS, INSERM, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,CERMEP - Imagerie du vivant, Lyon, France
| |
Collapse
|
9
|
A novel anesthesia regime enables neurofunctional studies and imaging genetics across mouse strains. Sci Rep 2016; 6:24523. [PMID: 27080031 PMCID: PMC4832200 DOI: 10.1038/srep24523] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 03/30/2016] [Indexed: 12/18/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) has revolutionized neuroscience by opening a unique window that allows neurocircuitry function and pathological alterations to be probed non-invasively across brain disorders. Here we report a novel sustainable anesthesia procedure for small animal neuroimaging that overcomes shortcomings of anesthetics commonly used in rodent fMRI. The significantly improved preservation of cerebrovascular dynamics enhances sensitivity to neural activity changes for which it serves as a proxy in fMRI readouts. Excellent cross-species/strain applicability provides coherence among preclinical findings and is expected to improve translation to clinical fMRI investigations. The novel anesthesia procedure based on the GABAergic anesthetic etomidate was extensively validated in fMRI studies conducted in a range of genetically engineered rodent models of autism and strains commonly used for transgenic manipulations. Etomidate proved effective, yielded long-term stable physiology with basal cerebral blood flow of ~0.5 ml/g/min and full recovery. Cerebrovascular responsiveness of up to 180% was maintained as demonstrated with perfusion- and BOLD-based fMRI upon hypercapnic, pharmacological and sensory stimulation. Hence, etomidate lends itself as an anesthetic-of-choice for translational neuroimaging studies across rodent models of brain disorders.
Collapse
|
10
|
Jonckers E, Shah D, Hamaide J, Verhoye M, Van der Linden A. The power of using functional fMRI on small rodents to study brain pharmacology and disease. Front Pharmacol 2015; 6:231. [PMID: 26539115 PMCID: PMC4612660 DOI: 10.3389/fphar.2015.00231] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/28/2015] [Indexed: 12/23/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) is an excellent tool to study the effect of pharmacological modulations on brain function in a non-invasive and longitudinal manner. We introduce several blood oxygenation level dependent (BOLD) fMRI techniques, including resting state (rsfMRI), stimulus-evoked (st-fMRI), and pharmacological MRI (phMRI). Respectively, these techniques permit the assessment of functional connectivity during rest as well as brain activation triggered by sensory stimulation and/or a pharmacological challenge. The first part of this review describes the physiological basis of BOLD fMRI and the hemodynamic response on which the MRI contrast is based. Specific emphasis goes to possible effects of anesthesia and the animal’s physiological conditions on neural activity and the hemodynamic response. The second part of this review describes applications of the aforementioned techniques in pharmacologically induced, as well as in traumatic and transgenic disease models and illustrates how multiple fMRI methods can be applied successfully to evaluate different aspects of a specific disorder. For example, fMRI techniques can be used to pinpoint the neural substrate of a disease beyond previously defined hypothesis-driven regions-of-interest. In addition, fMRI techniques allow one to dissect how specific modifications (e.g., treatment, lesion etc.) modulate the functioning of specific brain areas (st-fMRI, phMRI) and how functional connectivity (rsfMRI) between several brain regions is affected, both in acute and extended time frames. Furthermore, fMRI techniques can be used to assess/explore the efficacy of novel treatments in depth, both in fundamental research as well as in preclinical settings. In conclusion, by describing several exemplary studies, we aim to highlight the advantages of functional MRI in exploring the acute and long-term effects of pharmacological substances and/or pathology on brain functioning along with several methodological considerations.
Collapse
Affiliation(s)
- Elisabeth Jonckers
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp Antwerp, Belgium
| | - Disha Shah
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp Antwerp, Belgium
| | - Julie Hamaide
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp Antwerp, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp Antwerp, Belgium
| | - Annemie Van der Linden
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp Antwerp, Belgium
| |
Collapse
|
11
|
Errico F, D'Argenio V, Sforazzini F, Iasevoli F, Squillace M, Guerri G, Napolitano F, Angrisano T, Di Maio A, Keller S, Vitucci D, Galbusera A, Chiariotti L, Bertolino A, de Bartolomeis A, Salvatore F, Gozzi A, Usiello A. A role for D-aspartate oxidase in schizophrenia and in schizophrenia-related symptoms induced by phencyclidine in mice. Transl Psychiatry 2015; 5:e512. [PMID: 25689573 PMCID: PMC4445752 DOI: 10.1038/tp.2015.2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 12/19/2014] [Accepted: 12/19/2014] [Indexed: 01/19/2023] Open
Abstract
Increasing evidence points to a role for dysfunctional glutamate N-methyl-D-aspartate receptor (NMDAR) neurotransmission in schizophrenia. D-aspartate is an atypical amino acid that activates NMDARs through binding to the glutamate site on GluN2 subunits. D-aspartate is present in high amounts in the embryonic brain of mammals and rapidly decreases after birth, due to the activity of the enzyme D-aspartate oxidase (DDO). The agonistic activity exerted by D-aspartate on NMDARs and its neurodevelopmental occurrence make this D-amino acid a potential mediator for some of the NMDAR-related alterations observed in schizophrenia. Consistently, substantial reductions of D-aspartate and NMDA were recently observed in the postmortem prefrontal cortex of schizophrenic patients. Here we show that DDO mRNA expression is increased in prefrontal samples of schizophrenic patients, thus suggesting a plausible molecular event responsible for the D-aspartate imbalance previously described. To investigate whether altered D-aspartate levels can modulate schizophrenia-relevant circuits and behaviors, we also measured the psychotomimetic effects produced by the NMDAR antagonist, phencyclidine, in Ddo knockout mice (Ddo(-)(/-)), an animal model characterized by tonically increased D-aspartate levels since perinatal life. We show that Ddo(-/-) mice display a significant reduction in motor hyperactivity and prepulse inhibition deficit induced by phencyclidine, compared with controls. Furthermore, we reveal that increased levels of D-aspartate in Ddo(-/-) animals can significantly inhibit functional circuits activated by phencyclidine, and affect the development of cortico-hippocampal connectivity networks potentially involved in schizophrenia. Collectively, the present results suggest that altered D-aspartate levels can influence neurodevelopmental brain processes relevant to schizophrenia.
Collapse
Affiliation(s)
- F Errico
- Ceinge Biotecnologie Avanzate, Naples, Italy,Department of Molecular Medicine and Medical Biotechnology, University of Naples ‘Federico II', Naples, Italy,Ceinge Biotecnologie Avanzate, Via G. Salvatore, 486, 80145 Naples, Italy E-mail:
| | - V D'Argenio
- Ceinge Biotecnologie Avanzate, Naples, Italy,Department of Molecular Medicine and Medical Biotechnology, University of Naples ‘Federico II', Naples, Italy
| | - F Sforazzini
- Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, Rovereto, Italy
| | - F Iasevoli
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine ‘Federico II', Naples, Italy
| | - M Squillace
- Ceinge Biotecnologie Avanzate, Naples, Italy
| | - G Guerri
- Ceinge Biotecnologie Avanzate, Naples, Italy
| | - F Napolitano
- Ceinge Biotecnologie Avanzate, Naples, Italy,Department of Molecular Medicine and Medical Biotechnology, University of Naples ‘Federico II', Naples, Italy
| | - T Angrisano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples ‘Federico II', Naples, Italy,IEOS, CNR, Naples, Italy,Department of Biology, University of Naples ‘Federico II', Naples, Italy
| | - A Di Maio
- Ceinge Biotecnologie Avanzate, Naples, Italy
| | - S Keller
- Department of Molecular Medicine and Medical Biotechnology, University of Naples ‘Federico II', Naples, Italy,IEOS, CNR, Naples, Italy
| | - D Vitucci
- Ceinge Biotecnologie Avanzate, Naples, Italy
| | - A Galbusera
- Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, Rovereto, Italy
| | - L Chiariotti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples ‘Federico II', Naples, Italy,IEOS, CNR, Naples, Italy
| | - A Bertolino
- Group of Psychiatric Neuroscience, Department of Neuroscience, Basic Sciences and Sense Organs, University of Bari ‘Aldo Moro', Bari, Italy,pRED, Neuroscience DTA, Hoffman-La Roche, Ltd, Basel, Switzerland
| | - A de Bartolomeis
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine ‘Federico II', Naples, Italy
| | - F Salvatore
- Ceinge Biotecnologie Avanzate, Naples, Italy,Department of Molecular Medicine and Medical Biotechnology, University of Naples ‘Federico II', Naples, Italy,IRCCS-Fondazione SDN, Via Gianturco, Naples, Italy
| | - A Gozzi
- Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, Rovereto, Italy,Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, Corso Bettini, 31, 38068 Rovereto, Italy. E-mail:
| | - A Usiello
- Ceinge Biotecnologie Avanzate, Naples, Italy,Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples (SUN), Caserta, Italy
| |
Collapse
|
12
|
Haensel JX, Spain A, Martin C. A systematic review of physiological methods in rodent pharmacological MRI studies. Psychopharmacology (Berl) 2015; 232:489-99. [PMID: 25585682 PMCID: PMC4302233 DOI: 10.1007/s00213-014-3855-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 12/19/2014] [Indexed: 10/28/2022]
Abstract
RATIONALE Pharmacological magnetic resonance imaging (phMRI) provides an approach to study effects of drug challenges on brain processes. Elucidating mechanisms of drug action helps us to better understand the workings of neurotransmitter systems, map brain function or facilitate drug development. phMRI is increasingly used in preclinical research employing rodent models; however, data interpretation and integration are complicated by the use of different experimental approaches between laboratories. In particular, the effects of different anaesthetic regimes upon neuronal and haemodynamic processes and baseline physiology could be problematic. OBJECTIVES This paper investigates how differences in phMRI research methodologies are manifested and considers associated implications, placing particular emphasis on choice of anaesthetic regimes. METHODS A systematic review of rodent phMRI studies was conducted. Factors such as those describing anaesthetic regimes (e.g. agent, dosage) and parameters relating to physiological maintenance (e.g. ventilatory gases) and MRI method were recorded. RESULTS We identified 126 eligible studies and found that the volatile agents isoflurane (43.7 %) and halothane (33.3 %) were most commonly used for anaesthesia, but dosage and mixture of ventilatory gases varied substantially between laboratories. Relevant physiological parameters were usually recorded, although 32 % of studies did not provide cardiovascular measures. CONCLUSIONS Anaesthesia and animal preparation can influence phMRI data profoundly. The variation of anaesthetic type, dosage regime and ventilatory gases makes consolidation of research findings (e.g. within a specific neurotransmitter system) difficult. Standardisation of a small(er) number of preclinical phMRI research methodologies and/or increased consideration of approaches that do not require anaesthesia is necessary to address these challenges.
Collapse
Affiliation(s)
- Jennifer X. Haensel
- Department of Psychology, University of Sheffield, Western Bank, Sheffield, S10 2TP UK
| | - Aisling Spain
- Department of Psychology, University of Sheffield, Western Bank, Sheffield, S10 2TP UK
| | - Chris Martin
- Department of Psychology, University of Sheffield, Western Bank, Sheffield, S10 2TP UK
| |
Collapse
|