1
|
Penchovsky R, Georgieva AV, Dyakova V, Traykovska M, Pavlova N. Antisense and Functional Nucleic Acids in Rational Drug Development. Antibiotics (Basel) 2024; 13:221. [PMID: 38534656 DOI: 10.3390/antibiotics13030221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
This review is focused on antisense and functional nucleic acid used for completely rational drug design and drug target assessment, aiming to reduce the time and money spent and increase the successful rate of drug development. Nucleic acids have unique properties that play two essential roles in drug development as drug targets and as drugs. Drug targets can be messenger, ribosomal, non-coding RNAs, ribozymes, riboswitches, and other RNAs. Furthermore, various antisense and functional nucleic acids can be valuable tools in drug discovery. Many mechanisms for RNA-based control of gene expression in both pro-and-eukaryotes and engineering approaches open new avenues for drug discovery with a critical role. This review discusses the design principles, applications, and prospects of antisense and functional nucleic acids in drug delivery and design. Such nucleic acids include antisense oligonucleotides, synthetic ribozymes, and siRNAs, which can be employed for rational antibacterial drug development that can be very efficient. An important feature of antisense and functional nucleic acids is the possibility of using rational design methods for drug development. This review aims to popularize these novel approaches to benefit the drug industry and patients.
Collapse
Affiliation(s)
- Robert Penchovsky
- Laboratory of Synthetic Biology and Bioinformatics, Faculty of Biology, Sofia University, "St. Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Antoniya V Georgieva
- Laboratory of Synthetic Biology and Bioinformatics, Faculty of Biology, Sofia University, "St. Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Vanya Dyakova
- Laboratory of Synthetic Biology and Bioinformatics, Faculty of Biology, Sofia University, "St. Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Martina Traykovska
- Laboratory of Synthetic Biology and Bioinformatics, Faculty of Biology, Sofia University, "St. Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Nikolet Pavlova
- Laboratory of Synthetic Biology and Bioinformatics, Faculty of Biology, Sofia University, "St. Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| |
Collapse
|
2
|
Kaloudas D, Pavlova N, Penchovsky R. Computational Design of Allosteric Ribozymes via Genetic Algorithms. Methods Mol Biol 2024; 2822:443-469. [PMID: 38907934 DOI: 10.1007/978-1-0716-3918-4_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
In vitro selection of allosteric ribozymes has many challenges, such as complex and time-consuming experimental procedures, uncertain results, and the unwanted functionality of the enriched sequences. The precise computational design of allosteric ribozymes is achievable using RNA secondary structure folding principles. The computational design of allosteric ribozymes is based on experimentally validated EAs, random search algorithms, and a partition function for RNA folding. The in silico design achieves an accuracy exceeding 90%. Various algorithms with different logic gates have been automated via computer programs that can quickly create many allosteric sequences. This can eliminate the need for in vitro selection of allosteric ribozymes, thus vastly reducing the time and cost required.
Collapse
Affiliation(s)
- Dimitrios Kaloudas
- Laboratory of Synthetic Biology and Bioinformatics, Faculty of Biology, Sofia University "St. Kliment Ohridski", Sofia, Bulgaria
| | - Nikolet Pavlova
- Laboratory of Synthetic Biology and Bioinformatics, Faculty of Biology, Sofia University "St. Kliment Ohridski", Sofia, Bulgaria
| | - Robert Penchovsky
- Laboratory of Synthetic Biology and Bioinformatics, Faculty of Biology, Sofia University "St. Kliment Ohridski", Sofia, Bulgaria.
| |
Collapse
|
3
|
Alkatheri AH, Yap PSX, Abushelaibi A, Lai KS, Cheng WH, Erin Lim SH. Microbial Genomics: Innovative Targets and Mechanisms. Antibiotics (Basel) 2023; 12:190. [PMID: 36830101 PMCID: PMC9951906 DOI: 10.3390/antibiotics12020190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Multidrug resistance (MDR) has become an increasing threat to global health because bacteria can develop resistance to antibiotics over time. Scientists worldwide are searching for new approaches that go beyond traditional antibiotic discovery and development pipelines. Advances in genomics, however, opened up an unexplored therapeutic opportunity for the discovery of new antibacterial agents. Genomic approaches have been used to discover several novel antibiotics that target critical processes for bacterial growth and survival, including histidine kinases (HKs), LpxC, FabI, peptide deformylase (PDF), and aminoacyl-tRNA synthetases (AaRS). In this review, we will discuss the use of microbial genomics in the search for innovative and promising drug targets as well as the mechanisms of action for novel antimicrobial agents. We will also discuss future directions on how the utilization of the microbial genomics approach could improve the odds of antibiotic development having a more successful outcome.
Collapse
Affiliation(s)
- Asma Hussain Alkatheri
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Polly Soo-Xi Yap
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia
| | - Aisha Abushelaibi
- Office of Campus Director, Abu Dhabi Colleges, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Wan-Hee Cheng
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Nilai 71800, Malaysia
| | - Swee-Hua Erin Lim
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| |
Collapse
|
4
|
Esser A, Mayer G. Characterization of the glmS Ribozymes from Listeria Monocytogenes and Clostridium Difficile. Chemistry 2023; 29:e202202376. [PMID: 36194523 PMCID: PMC10099748 DOI: 10.1002/chem.202202376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 11/23/2022]
Abstract
The glmS ribozyme regulates the expression of the essential GlmS enzyme being involved in cell wall biosynthesis. While >450 variants of the glmS ribozyme were identified by in silico approaches and homology searches, only a few have yet been experimentally investigated. Herein, we validate and characterize the glmS ribozymes of the human pathogens Clostridium difficile and Listeria monocytogenes. Both ribozymes, as their previous characterized homologs rely on glucosamine-6-phosphate as co-factor and the presence of divalent cations for exerting the cleavage reaction. The observed EC50 values in turn were found to be in the submicromolar range, at least an order of magnitude lower than observed for glmS ribozymes from other bacteria. The glmS ribozyme of L. monocytogenes was further shown to bear unique properties. It discriminates between co-factors very stringently and other than the glmS ribozyme of C. difficile retains activity at low temperatures. This finding illustrates that albeit being highly conserved, glmS ribozymes have unique characteristics.
Collapse
Affiliation(s)
- Anna Esser
- Life & Medical Sciences Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Günter Mayer
- Life & Medical Sciences Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany.,Center of Aptamer Research & Development, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| |
Collapse
|
5
|
Ellinger E, Chauvier A, Romero RA, Liu Y, Ray S, Walter NG. Riboswitches as therapeutic targets: promise of a new era of antibiotics. Expert Opin Ther Targets 2023; 27:433-445. [PMID: 37364239 PMCID: PMC10527229 DOI: 10.1080/14728222.2023.2230363] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/13/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION The growth of antibiotic resistance among bacterial pathogens is an impending global threat that can only be averted through the development of novel antibacterial drugs. A promising answer could be the targeting of riboswitches, structured RNA elements found almost exclusively in bacteria. AREAS COVERED This review examines the potential of riboswitches as novel antibacterial drug targets. The limited mechanisms of action of currently available antibiotics are summarized, followed by a delineation of the functional mechanisms of riboswitches. We then discuss the potential for developing novel approaches that target paradigmatic riboswitches in the context of their bacterial gene expression machinery. EXPERT OPINION We highlight potential advantages of targeting riboswitches in their functional form, embedded within gene expression complexes critical for bacterial survival. We emphasize the benefits of this approach, including potentially higher species specificity and lower side effects.
Collapse
Affiliation(s)
- Emily Ellinger
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Adrien Chauvier
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Rosa A. Romero
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Yichen Liu
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Sujay Ray
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Nils G. Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Traykovska M, Penchovsky R. Targeting SAM-I Riboswitch Using Antisense Oligonucleotide Technology for Inhibiting the Growth of Staphylococcus aureus and Listeria monocytogenes. Antibiotics (Basel) 2022; 11:1662. [PMID: 36421306 PMCID: PMC9686682 DOI: 10.3390/antibiotics11111662] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 08/05/2023] Open
Abstract
With the discovery of antibiotics, a productive period of antibacterial drug innovation and application in healthcare systems and agriculture resulted in saving millions of lives. Unfortunately, the misusage of antibiotics led to the emergence of many resistant pathogenic strains. Some riboswitches have risen as promising targets for developing antibacterial drugs. Here, we describe the design and applications of the chimeric antisense oligonucleotide (ASO) as a novel antibacterial agent. The pVEC-ASO-1 consists of a cell-penetrating oligopeptide known as pVEC attached to an oligonucleotide part with modifications of the first and the second generations. This combination of modifications enables specific mRNA degradation under multiple turnover conditions via RNase H. The pVEC-ASO targets the S-adenosyl methionine (SAM)-I riboswitch found in the genome of many Gram-positive bacteria. The SAM-I riboswitch controls not only the biosynthesis but also the transport of SAM. We have established an antibiotic dosage of 700 nM (4.5 µg/mL) of pVEC-ASO that inhibits 80% of the growth of Staphylococcus aureus and Listeria monocytogenes. The pVEC-ASO-1 does not show any toxicity in the human cell line at MIC80's concentration. We have proven that the SAM-I riboswitch is a suitable target for antibacterial drug development based on ASO. The approach is rational and easily adapted to other bacterial RNA targets.
Collapse
|
7
|
Wu Y, Zhu L, Li S, Chu H, Wang X, Xu W. High content design of riboswitch biosensors: All-around rational module-by-module design. Biosens Bioelectron 2022; 220:114887. [DOI: 10.1016/j.bios.2022.114887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/27/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
|
8
|
Rütten A, Kirchner T, Musiol-Kroll EM. Overview on Strategies and Assays for Antibiotic Discovery. Pharmaceuticals (Basel) 2022; 15:1302. [PMID: 36297414 PMCID: PMC9607151 DOI: 10.3390/ph15101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
The increase in antibiotic resistance poses a major threat to global health. Actinomycetes, the Gram-positive bacteria of the order Actinomycetales, are fertile producers of bioactive secondary metabolites, including antibiotics. Nearly two-thirds of antibiotics that are used for the treatment of bacterial infections were originally isolated from actinomycetes strains belonging to the genus Streptomyces. This emphasizes the importance of actinomycetes in antibiotic discovery. However, the identification of a new antimicrobial compound and the exploration of its mode of action are very challenging tasks. Therefore, different approaches that enable the "detection" of an antibiotic and the characterization of the mechanisms leading to the biological activity are indispensable. Beyond bioinformatics tools facilitating the identification of biosynthetic gene clusters (BGCs), whole cell-screenings-in which cells are exposed to actinomycete-derived compounds-are a common strategy applied at the very early stage in antibiotic drug development. More recently, target-based approaches have been established. In this case, the drug candidates were tested for interactions with usually validated targets. This review focuses on the bioactivity-based screening methods and provides the readers with an overview on the most relevant assays for the identification of antibiotic activity and investigation of mechanisms of action. Moreover, the article includes examples of the successful application of these methods and suggestions for improvement.
Collapse
Affiliation(s)
- Anika Rütten
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’ (CMFI), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Teresa Kirchner
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’ (CMFI), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Ewa Maria Musiol-Kroll
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’ (CMFI), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
9
|
Traykovska M, Otcheva LA, Penchovsky R. Targeting TPP Riboswitches Using Chimeric Antisense Oligonucleotide Technology for Antibacterial Drug Development. ACS APPLIED BIO MATERIALS 2022; 5:4896-4902. [PMID: 36170638 DOI: 10.1021/acsabm.2c00628] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nowadays, the emergence and the transmission of multidrug-resistant pathogenic bacteria are a severe menace mounting a lot of pressure on the healthcare systems worldwide. Many severe outbreaks of bacterial infections have been reported worldwide in recent years. Thus, there is an immediate demand to develop antibiotics. Some riboswitches are potential targets for overcoming bacterial resistance. This paper demonstrates the bacteriostatic effect of an antisense oligonucleotide (ASO) engineered to suppress the growth of pathogenic bacteria such as Listeria monocytogenes by targeting the Thiamine Pyrophosphate (TPP) riboswitch. It does not inhibit the growth of the conditional pathogenic bacteria Escherichia coli, as it lacks the TPP riboswitch, showing the specificity of action of our ASO. It is covalently bonded with the cell-penetrating protein pVEC. We did bioinformatics analyses of the thiamine pyrophosphate riboswitch regarding its role in synthesizing the metabolite thiamine pyrophosphate, which is essential for bacteria. L. monocytogenes is intrinsically resistant to cephalosporins and usually is treated with ampicillin. A dosage of ASO has been established that inhibits 80% of bacterial growth at 700 nM (4.5 μg/mL). Thus, the TPP riboswitch is a valuable antibacterial target.
Collapse
Affiliation(s)
- Martina Traykovska
- Department of Genetics, Faculty of Biology, Sofia University "St. Kliment Ohridski", Sofia 1164, Bulgaria
| | - Lozena A Otcheva
- Department of Genetics, Faculty of Biology, Sofia University "St. Kliment Ohridski", Sofia 1164, Bulgaria
| | - Robert Penchovsky
- Department of Genetics, Faculty of Biology, Sofia University "St. Kliment Ohridski", Sofia 1164, Bulgaria
| |
Collapse
|
10
|
Pavlova N, Penchovsky R. Bioinformatics and Genomic Analyses of the Suitability of Eight Riboswitches for Antibacterial Drug Targets. Antibiotics (Basel) 2022; 11:antibiotics11091177. [PMID: 36139956 PMCID: PMC9495176 DOI: 10.3390/antibiotics11091177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/23/2022] Open
Abstract
Antibiotic resistance (AR) is an acute problem that results in prolonged and debilitating illnesses. AR mortality worldwide is growing and causes a pressing need to research novel mechanisms of action and untested target molecules. This article presents in silico analyses of eight bacterial riboswitches for their suitability for antibacterial drug targets. Most bacterial riboswitches are located in the 5′-untranslated region of messenger RNAs, act as allosteric cis-acting gene control elements, and have not been found in humans before. Sensing metabolites, the riboswitches regulate the synthesis of vital cellular metabolites in various pathogenic bacteria. The analyses performed in this article represent a complete and informative genome-wide bioinformatics analysis of the adequacy of eight riboswitches as antibacterial drug targets in different pathogenic bacteria based on four criteria. Due to the ability of the riboswitch to control biosynthetic pathways and transport proteins of essential metabolites and the presence/absence of alternative biosynthetic pathways, we classified them into four groups based on their suitability for use as antibacterial drug targets guided by our in silico analyses. We concluded that some of them are promising targets for antibacterial drug discovery, such as the PreQ1, MoCo RNA, cyclic-di-GMP I, and cyclic-di-GMP II riboswitches.
Collapse
|
11
|
Versatile tools of synthetic biology applied to drug discovery and production. Future Med Chem 2022; 14:1325-1340. [PMID: 35975897 DOI: 10.4155/fmc-2022-0063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although synthetic biology is an emerging research field, which has come to prominence within the last decade, it already has many practical applications. Its applications cover the areas of pharmaceutical biotechnology and drug discovery, bringing essential novel methods and strategies such as metabolic engineering, reprogramming the cell fate, drug production in genetically modified organisms, molecular glues, functional nucleic acids and genome editing. This review discusses the main avenues for synthetic biology application in pharmaceutical biotechnology. The authors believe that synthetic biology will reshape drug development and drug production to a similar extent as the advances in organic chemical synthesis in the 20th century. Therefore, synthetic biology already plays an essential role in pharmaceutical, biotechnology, which is the main focus of this review.
Collapse
|
12
|
Zhang SY, Zhao J, Ni JJ, Li H, Quan ZZ, Qing H. Application and prospects of high-throughput screening for in vitro neurogenesis. World J Stem Cells 2022; 14:393-419. [PMID: 35949394 PMCID: PMC9244953 DOI: 10.4252/wjsc.v14.i6.393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/07/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
Over the past few decades, high-throughput screening (HTS) has made great contributions to new drug discovery. HTS technology is equipped with higher throughput, minimized platforms, more automated and computerized operating systems, more efficient and sensitive detection devices, and rapid data processing systems. At the same time, in vitro neurogenesis is gradually becoming important in establishing models to investigate the mechanisms of neural disease or developmental processes. However, challenges remain in generating more mature and functional neurons with specific subtypes and in establishing robust and standardized three-dimensional (3D) in vitro models with neural cells cultured in 3D matrices or organoids representing specific brain regions. Here, we review the applications of HTS technologies on in vitro neurogenesis, especially aiming at identifying the essential genes, chemical small molecules and adaptive microenvironments that hold great prospects for generating functional neurons or more reproductive and homogeneous 3D organoids. We also discuss the developmental tendency of HTS technology, e.g., so-called next-generation screening, which utilizes 3D organoid-based screening combined with microfluidic devices to narrow the gap between in vitro models and in vivo situations both physiologically and pathologically.
Collapse
Affiliation(s)
- Shu-Yuan Zhang
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Juan Zhao
- Aerospace Medical Center, Aerospace Center Hospital, Beijing 100049, China
| | - Jun-Jun Ni
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hui Li
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhen-Zhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
13
|
An allosteric ribozyme generator and an inverse folding ribozyme generator: Two computer programs for automated computational design of oligonucleotide-sensing allosteric hammerhead ribozymes with YES Boolean logic function based on experimentally validated algorithms. Comput Biol Med 2022; 145:105469. [DOI: 10.1016/j.compbiomed.2022.105469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 03/26/2022] [Accepted: 03/27/2022] [Indexed: 11/18/2022]
|
14
|
Traykovska M, Penchovsky R. Engineering Antisense Oligonucleotides as Antibacterial Agents That Target FMN Riboswitches and Inhibit the Growth of Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli. ACS Synth Biol 2022; 11:1845-1855. [PMID: 35440139 DOI: 10.1021/acssynbio.2c00013] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the past several decades, antibiotic drug resistance has emerged as a significant challenge in modern medicine due to the rise of many bacterial pathogenic strains resistant to all known antibiotics. At the same time, riboswitches have emerged as novel targets for antibacterial drug discovery. Here for the first time, we describe the design and applications of antisense oligonucleotides as antibacterial agents that target a riboswitch. The antisense oligonucleotides are covalently coupled with two different cell-penetrating peptides, penetrating Gram-positive and Gram-negative bacterial cells. We specifically target Flavin MonoNucleotide (FMN) riboswitches in Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli that control both synthesis and import of FMN precursors. We have established an average antibiotic dosage by antisense oligonucleotides that inhibit 80% of bacterial growth at 700 nM (4.5 μg/mL). Furthermore, the antisense oligonucleotides do not exhibit toxicity in human cell lines at this concentration. The results demonstrate that riboswitches are suitable targets in antisense technology for antibacterial drug development.
Collapse
Affiliation(s)
- Martina Traykovska
- Department of Genetics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Robert Penchovsky
- Department of Genetics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| |
Collapse
|
15
|
Yin Y, Yin Y, Yang H, Chen Z, Zheng J, Peng B. Vibrio alginolyticus Survives From Ofloxacin Stress by Metabolic Adjustment. Front Microbiol 2022; 13:818923. [PMID: 35369464 PMCID: PMC8966707 DOI: 10.3389/fmicb.2022.818923] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/19/2022] [Indexed: 01/22/2023] Open
Abstract
Antibiotic-resistant Vibrio alginolyticus becomes a worldwide challenge threatening both human health and food safety. The approach in managing such infection is largely absent, despite the fact that the mechanisms of antibiotic resistance have been extensively investigated. Metabolic modulation has been documented to be a novel approach in improving antibiotic efficacy. In this study, we characterize the metabolic signature of V. alginolyticus exposed to 0.3 or 0.5 μg/ml of ofloxacin (OFX). By profiling the metabolome, we find that bacteria treated by the two different concentrations of OFX generate different metabolic signatures. While a part of these metabolites was shared by both groups, the other metabolites represent their own signatures. The pathway enrichment analysis demonstrates that the pyruvate cycle is disrupted in the bacteria treated by the 0.3 μg/ml OFX as compared to those by the 0.5 μg/ml. Importantly, the disruption of pyruvate cycle confers the capability of bacteria to survive under 0.5 μg/ml of antibiotic stress. Further analysis identifies that the fatty acid biosynthesis is elevated in bacteria treated by 0.3 μg/ml OFX, and inhibition on fatty acid completely prevents the bacteria from survival even under such dose of antibiotic stress. Our study suggests that bacteria adapt to antibiotic stress by modulating the metabolic flux for survival, which could be targeted to increase antibiotic efficacy.
Collapse
Affiliation(s)
- Yue Yin
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Higher Education Mega Center, Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yuanpan Yin
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Higher Education Mega Center, Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hao Yang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Higher Education Mega Center, Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhuanggui Chen
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Bo Peng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Higher Education Mega Center, Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
16
|
Penchovsky R, Pavlova N, Kaloudas D. RSwitch: A Novel Bioinformatics Database on Riboswitches as Antibacterial Drug Targets. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:804-808. [PMID: 32248122 DOI: 10.1109/tcbb.2020.2983922] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The RSwitch is a MySQL database implemented on a PHP-based server, which also provides various useful tools for analyses of DNA, RNA, and protein sequences applying a user-friendly interface. The RSwitch database currently contains information and annotations of 215 bacterial riboswitches from 16 different types found in 50 human pathogenic bacteria. The riboswitch classes include those sensing FMN, glmS, Cobalamin, Lysine, SAH, SAM, Purine, TPP, c-di-GMPI, c-di-GMPII, Moco, PreQ1, Fluoride, Glycine, Mg2+, and Mn2+ type of bacterial riboswitches. The database provides information about the riboswitch aptamer sequences, the thermodynamic ensemble of the RNA structures on partition function and on free minimum energy function. Additionally, the database presents the centroid structure and the positional entropy for each position of the aptamer sequences. The database also provides the biochemical pathways in which the riboswitches are involved in, as well as multiple sequence alignments, multi-drug resistance bacterial strains and consensus motifs for each type of the switches. The RSwitch database is permanently available online without any restrictions. This bioinformatics database provides for the first time all information needed for assessing the suitability of the presented riboswitches as antibacterial drug targets.
Collapse
|
17
|
Armstrong I, Aldhumani AH, Schopis JL, Fang F, Parsons E, Zeng C, Hossain MI, Bergmeier SC, Hines JV. RNA drug discovery: Conformational restriction enhances specific modulation of the T-box riboswitch function. Bioorg Med Chem 2020; 28:115696. [PMID: 33069065 DOI: 10.1016/j.bmc.2020.115696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 10/23/2022]
Abstract
Antibacterial drug resistance is a global health concern that requires multiple solution approaches including development of new antibacterial compounds acting at novel targets. Targeting regulatory RNA is an emerging area of drug discovery. The T-box riboswitch is a regulatory RNA mechanism that controls gene expression in Gram-positive bacteria and is an exceptional, novel target for antibacterial drug design. We report the design, synthesis and activity of a series of conformationally restricted oxazolidinone-triazole compounds targeting the highly conserved antiterminator RNA element of the T-box riboswitch. Computational binding energies correlated with experimentally-derived Kd values indicating the predictive capabilities for docking studies within this series of compounds. The conformationally restricted compounds specifically inhibited T-box riboswitch function and not overall transcription. Complex disruption, computational docking and RNA binding specificity data indicate that inhibition may result from ligand binding to an allosteric site. These results highlight the importance of both ligand affinity and RNA conformational outcome for targeted RNA drug design.
Collapse
Affiliation(s)
- Ian Armstrong
- Department of Chemistry & Biochemistry, Clippinger Laboratory, Ohio University, Athens, OH 45701, USA
| | - Ali H Aldhumani
- Department of Chemistry & Biochemistry, Clippinger Laboratory, Ohio University, Athens, OH 45701, USA
| | - Jia L Schopis
- Department of Chemistry & Biochemistry, Clippinger Laboratory, Ohio University, Athens, OH 45701, USA
| | - Fang Fang
- Department of Chemistry & Biochemistry, Clippinger Laboratory, Ohio University, Athens, OH 45701, USA
| | - Eric Parsons
- Department of Chemistry & Biochemistry, Clippinger Laboratory, Ohio University, Athens, OH 45701, USA
| | - Chunxi Zeng
- Department of Chemistry & Biochemistry, Clippinger Laboratory, Ohio University, Athens, OH 45701, USA; Molecular & Cellular Biology Program, Ohio University, Athens, OH 45701, USA
| | - Md Ismail Hossain
- Department of Chemistry & Biochemistry, Clippinger Laboratory, Ohio University, Athens, OH 45701, USA
| | - Stephen C Bergmeier
- Department of Chemistry & Biochemistry, Clippinger Laboratory, Ohio University, Athens, OH 45701, USA; Edison Biotechnology Institute, Konneker Laboratories, Ohio University, Athens, OH 45701, USA
| | - Jennifer V Hines
- Department of Chemistry & Biochemistry, Clippinger Laboratory, Ohio University, Athens, OH 45701, USA; Molecular & Cellular Biology Program, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
18
|
Golabi F, Mehdizadeh Aghdam E, Shamsi M, Sedaaghi MH, Barzegar A, Hejazi MS. Classification of seed members of five riboswitch families as short sequences based on the features extracted by Block Location-Based Feature Extraction (BLBFE) method. ACTA ACUST UNITED AC 2020; 11:101-109. [PMID: 33842280 PMCID: PMC8022236 DOI: 10.34172/bi.2021.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 03/12/2020] [Accepted: 03/20/2020] [Indexed: 11/09/2022]
Abstract
Introduction: Riboswitches are short regulatory elements generally found in the untranslated regions of prokaryotes' mRNAs and classified into several families. Due to the binding possibility between riboswitches and antibiotics, their usage as engineered regulatory elements and also their evolutionary contribution, the need for bioinformatics tools of riboswitch detection is increasing. We have previously introduced an alignment independent algorithm for the identification of frequent sequential blocks in the families of riboswitches. Herein, we report the application of block location-based feature extraction strategy (BLBFE), which uses the locations of detected blocks on riboswitch sequences as features for classification of seed sequences. Besides, mono- and dinucleotide frequencies, k-mer, DAC, DCC, DACC, PC-PseDNC-General and SC-PseDNC-General methods as some feature extraction strategies were investigated. Methods: The classifiers of the Decision tree, KNN, LDA, and Naïve Bayes, as well as k-fold cross-validation, were employed for all methods of feature extraction to compare their performances based on the criteria of accuracy, sensitivity, specificity, and f-score performance measures. Results: The outcome of the study showed that the BLBFE strategy classified the riboswitches indicating 87.65% average correct classification rate (CCR). Moreover, the performance of the proposed feature extraction method was confirmed with average values of 94.31%, 85.01%, 95.45% and 85.38% for accuracy, sensitivity, specificity, and f-score, respectively. Conclusion: Our result approved the performance of the BLBFE strategy in the classification and discrimination of the riboswitch groups showing remarkable higher values of CCR, accuracy, sensitivity, specificity and f-score relative to previously studied feature extraction methods.
Collapse
Affiliation(s)
- Faegheh Golabi
- Genomic Signal Processing Laboratory, Faculty of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran.,Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elnaz Mehdizadeh Aghdam
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mousa Shamsi
- Genomic Signal Processing Laboratory, Faculty of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran
| | | | - Abolfazl Barzegar
- Research Institute of Bioscience and Biotechnology, University of Tabriz, Tabriz, Iran
| | - Mohammad Saeid Hejazi
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
In vivo evolutionary engineering of riboswitch with high-threshold for N-acetylneuraminic acid production. Metab Eng 2020; 59:36-43. [PMID: 31954846 DOI: 10.1016/j.ymben.2020.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/26/2019] [Accepted: 01/04/2020] [Indexed: 11/22/2022]
Abstract
Riboswitches with desired properties, such as sensitivity, threshold, dynamic range, is important for its application. However, the property change of a natural riboswitch is difficult due to the lack of the understanding of aptamer ligand binding properties and a proper screening method for both rational and irrational design. In this study, an effective method to change the threshold of riboswitch was established in vivo based on growth coupled screening by combining both positive and negative selections. The feasibility of the method was verified by the model library. Using this method, an N-acetylneuraminic acid (NeuAc) riboswitch was evolved and modified riboswitches with high threshold and large dynamic range were obtained. Then, using a new NeuAc riboswitch, both ribosome binding sites and key gene in NeuAc biosynthesis pathway were optimized. The highest NeuAc production of 14.32 g/l that has been reported using glucose as sole carbon source was obtained.
Collapse
|
20
|
Penchovsky R. Automated DNA hybridization transfer with movable super-paramagnetic microbeads in a microflow reactor. Biosens Bioelectron 2019; 135:30-35. [PMID: 30991269 DOI: 10.1016/j.bios.2019.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 03/24/2019] [Accepted: 04/06/2019] [Indexed: 12/24/2022]
Abstract
An automated DNA hybridization transfer in a microflow reactor is demonstrated by moving paramagnetic beads between two spatially separate solutions with different pH values. The microbeads-based microfluidic platform is fully automated and programmable. It employs a robust chemical procedure for specific DNA hybridization transfer in microfluidic devices under isothermal conditions based on reversible pH alterations. The method takes advantage of high-speed DNA hybridization and denaturation on beads under flow conditions, high fidelity of DNA hybridization, and small sample volumes. The microfluidic platform presented is saleable and applicable to many areas of modern biotechnology such as DNA hybridization chip microarrays, molecular computation, on-chip selection of functional nucleic acids, high-throughput screening of chemical libraries for drug discovery, and DNA amplification and sequencing.
Collapse
Affiliation(s)
- Robert Penchovsky
- Department of Genetics, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164, Sofia, Bulgaria.
| |
Collapse
|
21
|
Pavlova N, Kaloudas D, Penchovsky R. Riboswitch distribution, structure, and function in bacteria. Gene 2019; 708:38-48. [PMID: 31128223 DOI: 10.1016/j.gene.2019.05.036] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/12/2019] [Accepted: 05/20/2019] [Indexed: 10/26/2022]
Abstract
Riboswitches are gene control elements that directly bind to specific ligands to regulate gene expression without the need for proteins. They are found in all three domains of life, including Bacteria, Archaea, and Eukaryota. Riboswitches are mostly spread in bacteria and archaea. In this paper, we discuss the general distribution, structure, and function of 28 different riboswitch classes as we focus our attention on riboswitches in bacteria. Bacterial riboswitches regulate gene expression by four distinct mechanisms. They regulate the expression of a limited number of genes. However, most of these genes are responsible for the synthesis of essential metabolites without which the cell cannot function. Therefore, riboswitch distribution is also important for antibacterial drug development.
Collapse
Affiliation(s)
- Nikolet Pavlova
- Department of Genetics, Faculty of Biology, Sofia University "Saint Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Dimitrios Kaloudas
- Department of Genetics, Faculty of Biology, Sofia University "Saint Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Robert Penchovsky
- Department of Genetics, Faculty of Biology, Sofia University "Saint Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria.
| |
Collapse
|
22
|
Pavlova N, Penchovsky R. Genome-wide bioinformatics analysis of FMN, SAM-I, glmS, TPP, lysine, purine, cobalamin, and SAH riboswitches for their applications as allosteric antibacterial drug targets in human pathogenic bacteria. Expert Opin Ther Targets 2019; 23:631-643. [DOI: 10.1080/14728222.2019.1618274] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nikolet Pavlova
- Department of Genetics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Robert Penchovsky
- Department of Genetics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| |
Collapse
|
23
|
Krajewski SS, Isoz I, Johansson J. Antibacterial and antivirulence effect of 6-N-hydroxylaminopurine in Listeria monocytogenes. Nucleic Acids Res 2017; 45:1914-1924. [PMID: 28062853 PMCID: PMC5389569 DOI: 10.1093/nar/gkw1308] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 12/20/2016] [Indexed: 01/07/2023] Open
Abstract
The emerging development of antibiotic resistant bacteria calls for novel types of antibacterial agents. In this work we examined the putative antibacterial effect of purine analogs in Listeria monocytogenes. We show that, among several tested purine analogs, only 6-N-hydroxylaminopurine (6-N-HAP) reduces the viability of the Gram-positive pathogen Listeria monocytogenes. As in Bacillus subtilis, 6-N-HAP terminates expression at guanine riboswitches in L. monocytogenes hence preventing expression of their downstream genes. However, we show that the bacteriocidal effect of the compound was unlinked to the terminated expression at the guanine riboswitches. When further examining the antimicrobial effect, we observed that 6-N-HAP acts as a potent mutagen in L. monocytogenes, by increasing the mutation rate and inducing the SOS-response. Also, addition of 6-N-HAP decreased virulence gene expression by reducing both the levels and activity of the virulence regulator PrfA.
Collapse
Affiliation(s)
- Stefanie Sandra Krajewski
- Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
| | - Isabelle Isoz
- Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
| | - Jörgen Johansson
- Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
24
|
Colameco S, Elliot MA. Non-coding RNAs as antibiotic targets. Biochem Pharmacol 2016; 133:29-42. [PMID: 28012959 DOI: 10.1016/j.bcp.2016.12.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023]
Abstract
Antibiotics inhibit a wide range of essential processes in the bacterial cell, including replication, transcription, translation and cell wall synthesis. In many instances, these antibiotics exert their effects through association with non-coding RNAs. This review highlights many classical antibiotic targets (e.g. rRNAs and the ribosome), explores a number of emerging targets (e.g. tRNAs, RNase P, riboswitches and small RNAs), and discusses the future directions and challenges associated with non-coding RNAs as antibiotic targets.
Collapse
Affiliation(s)
- Savannah Colameco
- Department of Biology and Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Marie A Elliot
- Department of Biology and Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
25
|
Abstract
Telomerase activity is responsible for the maintenance of chromosome end structures (telomeres) and cancer cell immortality in most human malignancies, making telomerase an attractive therapeutic target. The rationale for targeting components of the telomerase holoenzyme has been strengthened by accumulating evidence indicating that these molecules have extra-telomeric functions in tumour cell survival and proliferation. This Review discusses current knowledge of the biogenesis, structure and multiple functions of telomerase-associated molecules intertwined with recent advances in drug discovery approaches. We also describe the fertile ground available for the pursuit of next-generation small-molecule inhibitors of telomerase.
Collapse
Affiliation(s)
- Greg M Arndt
- Australian Cancer Research Foundation (ACRF) Drug Discovery Centre for Childhood Cancer, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Karen L MacKenzie
- Personalised Medicine Program, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| |
Collapse
|
26
|
Mehdizadeh Aghdam E, Hejazi MS, Barzegar A. Riboswitches: From living biosensors to novel targets of antibiotics. Gene 2016; 592:244-59. [PMID: 27432066 DOI: 10.1016/j.gene.2016.07.035] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 12/24/2022]
Abstract
Riboswitches are generally located in 5'-UTR region of mRNAs and specifically bind small ligands. Following ligand binding, gene expression is controlled mostly by transcription termination, translation inhibition or mRNA degradation processes. More than 30 classes of known riboswitches have been identified by now. Most riboswitches consist of an aptamer domain and an expression platform. The aptamer domain of each class of riboswitch is a conserved structure and stabilizes specific structures of the expression platforms through binding to specific compounds. In this review, we are highlighting most aspects of riboswitch research including the novel riboswitch discoveries, routine methods for discovering and investigating riboswitches along with newly discovered classes and mechanistic principles of riboswitch-mediated gene expression control. Moreover, we will give an overview about the potential of riboswitches as therapeutic targets for antibiotic design and also their utilization as biosensors for molecular detection.
Collapse
Affiliation(s)
- Elnaz Mehdizadeh Aghdam
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Saeid Hejazi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Barzegar
- Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran; The School of Advanced Biomedical Sciences (SABS), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
27
|
Lee CH, Han SR, Lee SW. Therapeutic Applications of Aptamer-Based Riboswitches. Nucleic Acid Ther 2015; 26:44-51. [PMID: 26539634 DOI: 10.1089/nat.2015.0570] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aptamers bind to their targets with high affinity and specificity through structure-based complementarity, instead of sequence complementarity that is used by most of the oligonucleotide-based therapeutics. This property has been exploited in using aptamers as multifunctional therapeutic units, by attaching them to therapeutic drugs, nanoparticles, or imaging agents, or as direct molecular decoys for inducing loss-of-function or gain-of-function of targets. One of the most interesting fields of aptamer application is their development as molecular sensors to regulate artificial riboswitches. Naturally, the riboswitches sense small-molecule metabolites and respond by regulating the expression of the corresponding metabolic genes. Riboswitches are cis-acting RNA structures that consist of the sensing (aptamer) and the regulating (expression platform) domains. In principle, diverse riboswitches can be engineered and applied to control different steps of gene expression in bacterial species as well as eukaryotes, by simply replacing aptamers against various endogenous and/or exogenous targets. Although these engineered aptamer-based riboswitches are recently gaining attention, it is clear that aptamer-based riboswitches have a potential for next-generation therapeutics against various diseases because of their controllability, specificity, and modularity in regulating gene expression through various cellular processes, including transcription, splicing, stability, RNA interference, and translation. In this review, we provide a summary of the recently developed and engineered aptamer-based riboswitches focusing on their therapeutic availability and further discuss their clinical potential.
Collapse
Affiliation(s)
- Chang Ho Lee
- Department of Molecular Biology, Institute of Nanosensor and Biotechnology, and Research Institute of Advanced Omics, Dankook University , Yongin, Republic of Korea
| | - Seung Ryul Han
- Department of Molecular Biology, Institute of Nanosensor and Biotechnology, and Research Institute of Advanced Omics, Dankook University , Yongin, Republic of Korea
| | - Seong-Wook Lee
- Department of Molecular Biology, Institute of Nanosensor and Biotechnology, and Research Institute of Advanced Omics, Dankook University , Yongin, Republic of Korea
| |
Collapse
|
28
|
Stefaniak F, Chudyk EI, Bodkin M, Dawson WK, Bujnicki JM. Modeling of ribonucleic acid-ligand interactions. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2015. [DOI: 10.1002/wcms.1226] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Filip Stefaniak
- Laboratory of Bioinformatics and Protein Engineering; International Institute of Molecular and Cell Biology; Warsaw Poland
| | - Ewa I. Chudyk
- Research Informatics; Evotec (UK) Ltd; Milton Park UK
| | | | - Wayne K. Dawson
- Laboratory of Bioinformatics and Protein Engineering; International Institute of Molecular and Cell Biology; Warsaw Poland
| | - Janusz M. Bujnicki
- Laboratory of Bioinformatics and Protein Engineering; International Institute of Molecular and Cell Biology; Warsaw Poland
- Laboratory of Bioinformatics, Institute of Molecular Biology and Biotechnology, Faculty of Biology; Adam Mickiewicz University; Poznan Poland
| |
Collapse
|
29
|
Penchovsky R, Traykovska M. Designing drugs that overcome antibacterial resistance: where do we stand and what should we do? Expert Opin Drug Discov 2015; 10:631-50. [PMID: 25981754 DOI: 10.1517/17460441.2015.1048219] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION In recent years, infections caused by multidrug-resistant bacterial pathogens have become a huge issue to public healthcare systems. Indeed, the misuse of antibiotics has led to, over the past 30 years, the emergence of a number of resistant bacterial strains including Staphylococcus aureus, Neisseria gonorrhoeae, Escherichia coli and Mycobacterium tuberculosis. Unfortunately, efforts to produce new antibiotics have not been sufficient to cope with the emergence of these new antibiotic-resistant (AR) strains. AREAS COVERED There is an urgent need to invent and employ unconventional strategies for antimicrobial drug development to tackle the rising global threats imposed by the spread of antimicrobial resistance. Herein, the authors discuss these novel design strategies and provide their expert perspective on the subject. EXPERT OPINION To deal with the growing threat of AR, it is important to cut down the use of antibiotics to the very minimum to diminish the risk of unknown drug-resistant bacteria and increase antibacterial vaccination programs. Furthermore, it is important to develop new classes of antibiotics that can deal with multidrug-resistant bacterial pathogens.
Collapse
Affiliation(s)
- Robert Penchovsky
- Sofia University "St. Kliment Ohridski", Department of Genetics, Faculty of Biology , 8 Dragan Tzankov Blvd., 1164 Sofia , Bulgaria +35928167340 ; +35928167340 ;
| | | |
Collapse
|
30
|
Matzner D, Mayer G. (Dis)similar Analogues of Riboswitch Metabolites as Antibacterial Lead Compounds. J Med Chem 2015; 58:3275-86. [PMID: 25603286 DOI: 10.1021/jm500868e] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The rise of antimicrobial resistance in human pathogenic bacteria has increased the necessity for the discovery of novel, yet unexplored antibacterial drug targets. Riboswitches, which are embedded in untranslated regions of bacterial messenger RNA (mRNA), represent such an interesting target structure. These RNA elements regulate gene expression upon binding to natural metabolites, second messengers, and inorganic ions, such as fluoride with high affinity and in a highly discriminative manner. Recently, efforts have been directed toward the identification of artificial riboswitch activators by establishing high-throughput screening assays, fragment-based screening, and structure-guided ligand design approaches. Emphasis in this review is placed on the special requirements and synthesis of new potential antibiotic drugs that target riboswitches in which dissimilarity is an important aspect in the design of potential lead compounds.
Collapse
Affiliation(s)
- Daniel Matzner
- Life and Medical Sciences Institute, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | - Günter Mayer
- Life and Medical Sciences Institute, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| |
Collapse
|
31
|
Zhao C, Devany M, Greenbaum NL. Measurement of chemical exchange between RNA conformers by 19F NMR. Biochem Biophys Res Commun 2014; 453:692-5. [PMID: 25301553 DOI: 10.1016/j.bbrc.2014.09.075] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 09/18/2014] [Indexed: 01/03/2023]
Abstract
Many noncoding RNA molecules adopt alternative secondary and tertiary conformations that are critical for their roles in gene expression. Although many of these rearrangements are mediated by other biomolecular components, it is important to evaluate the equilibrium relationship of the conformers. To measure the spontaneous interconversion in a bi-stable RNA stem loop sequence into which a single (19)F-uridine label was incorporated, a (19)F-(19)F EXSY experiment was employed. The kinetic exchange rate measured from EXSY experiments for this system was 37.3±2.8s(-1). The advantage of this approach is that exchange kinetics can be monitored in any RNA sequence into which a single (19)F nucleotide is incorporated by commercial synthesis. This method is therefore suitable for application to biologically significant systems in which dynamic conformational rearrangement is important for function and may therefore facilitate studies of RNA structure-function relationships.
Collapse
Affiliation(s)
- Caijie Zhao
- Department of Chemistry and Biochemistry, Hunter College of The City University of New York, New York, NY, United States
| | - Matthew Devany
- Department of Chemistry and Biochemistry, Hunter College of The City University of New York, New York, NY, United States
| | - Nancy L Greenbaum
- Department of Chemistry and Biochemistry, Hunter College of The City University of New York, New York, NY, United States.
| |
Collapse
|
32
|
Hong W, Zeng J, Xie J. Antibiotic drugs targeting bacterial RNAs. Acta Pharm Sin B 2014; 4:258-65. [PMID: 26579393 PMCID: PMC4629089 DOI: 10.1016/j.apsb.2014.06.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/04/2014] [Accepted: 06/20/2014] [Indexed: 10/26/2022] Open
Abstract
RNAs have diverse structures that include bulges and internal loops able to form tertiary contacts or serve as ligand binding sites. The recent increase in structural and functional information related to RNAs has put them in the limelight as a drug target for small molecule therapy. In addition, the recognition of the marked difference between prokaryotic and eukaryotic rRNA has led to the development of antibiotics that specifically target bacterial rRNA, reduce protein translation and thereby inhibit bacterial growth. To facilitate the development of new antibiotics targeting RNA, we here review the literature concerning such antibiotics, mRNA, riboswitch and tRNA and the key methodologies used for their screening.
Collapse
Affiliation(s)
| | | | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
33
|
Penchovsky R. Computational design of allosteric ribozymes as molecular biosensors. Biotechnol Adv 2014; 32:1015-27. [PMID: 24877999 DOI: 10.1016/j.biotechadv.2014.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 05/14/2014] [Accepted: 05/14/2014] [Indexed: 11/24/2022]
Abstract
Nucleic acids have proven to be a very suitable medium for engineering various nanostructures and devices. While synthetic DNAs are commonly used for self-assembly of nanostructures and devices in vitro, functional RNAs, such as ribozymes, are employed both in vitro and in vivo. Allosteric ribozymes have applications in molecular computing, biosensoring, high-throughput screening arrays, exogenous control of gene expression, and others. They switch on and off their catalytic function as a result of a conformational change induced by ligand binding. Designer ribozymes are engineered to respond to different effectors by in vitro selection, rational and computational design methods. Here, I present diverse computational methods for designing allosteric ribozymes with various logic functions that sense oligonucleotides or small molecules. These methods yield the desired ribozyme sequences within minutes in contrast to the in vitro selection methods, which require weeks. Methods for synthesis and biochemical testing of ribozymes are also discussed.
Collapse
Affiliation(s)
- Robert Penchovsky
- Sofia University "St. Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria.
| |
Collapse
|
34
|
Penchovsky R. Nucleic Acids-Based Nanotechnology. HANDBOOK OF RESEARCH ON NANOSCIENCE, NANOTECHNOLOGY, AND ADVANCED MATERIALS 2014. [DOI: 10.4018/978-1-4666-5824-0.ch016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nanobiotechnology is emerging as a valuable field that integrates research from science and technology to create novel nanodevices and nanostructures with various applications in modern nanotechnology. Applications of nanobiotechnology are employed in biomedical and pharmaceutical research, biosensoring, nanofluidics, self-assembly of nanostructures, nanopharmaceutics, molecular computing, and others. It has been proven that nucleic acids are a very suitable medium for self-assembly of diverse nanostructures and catalytic nanodevices for various applications. In this chapter, the authors discuss various applications of nucleic-based nanotechnology. The areas discussed here include building nanostructures using DNA oligonucleodite, self-assembly of integrated RNA-based nanodevices for molecular computing and diagnostics, antibacterial drug discovery, exogenous control of gene expression, and gene silencing.
Collapse
|
35
|
Penchovsky R, Kostova GT. Computational selection and experimental validation of allosteric ribozymes that sense a specific sequence of human telomerase reverse transcriptase mRNAs as universal anticancer therapy agents. Nucleic Acid Ther 2013; 23:408-17. [PMID: 24206267 PMCID: PMC3868306 DOI: 10.1089/nat.2013.0446] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 10/07/2013] [Indexed: 12/19/2022] Open
Abstract
High expression levels of telomerase reverse transcriptase messenger RNAs in differentiated cells can be used as a common marker for cancer development. In this paper, we describe a novel computational method for selection of allosteric ribozymes that sense a specific sequence of human telomerase reverse transcriptase mRNAs. The in silico selection employed is based on computing secondary structures of RNA using the partition function in combination with a random search algorithm. We selected one of the ribozymes for experimental validation. The obtained results demonstrate that the tested ribozyme has a high-speed (∼1.8 per minute) of self-cleavage and is very selective. It can distinguish well between perfectly matching effector and the closest expressed RNA sequence in the human cell with 10 mismatches, with a ∼300-fold difference under physiologically relevant conditions. The presented algorithm is universal since the allosteric ribozymes can be designed to sense any specific RNA or DNA sequence of interest. Such designer ribozymes may be used for monitoring the expression of mRNAs in the cell and for developing novel anticancer gene therapies.
Collapse
Affiliation(s)
- Robert Penchovsky
- Department of Genetics, Faculty of Biology, Sofia University St. Kliment Ohridski , Sofia, Bulgaria
| | | |
Collapse
|
36
|
Penchovsky R. Computational Design and Biosensor Applications of Small Molecule-Sensing Allosteric Ribozymes. Biomacromolecules 2013; 14:1240-9. [DOI: 10.1021/bm400299a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Robert Penchovsky
- Department of Genetics, Faculty
of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Boulevard, 1164 Sofia, Bulgaria
| |
Collapse
|