1
|
Puranik N, Yadav D, Song M. Insight into Early Diagnosis of Multiple Sclerosis by Targeting Prognostic Biomarkers. Curr Pharm Des 2023; 29:2534-2544. [PMID: 37921136 DOI: 10.2174/0113816128247471231018053737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/04/2023] [Accepted: 09/06/2023] [Indexed: 11/04/2023]
Abstract
Multiple sclerosis (MS) is a central nervous system (CNS) immune-mediated disease that mainly strikes young adults and leaves them disabled. MS is an autoimmune illness that causes the immune system to attack the brain and spinal cord. The myelin sheaths, which insulate the nerve fibers, are harmed by our own immune cells, and this interferes with brain signal transmission. Numbness, tingling, mood swings, memory problems, exhaustion, agony, vision problems, and/or paralysis are just a few of the symptoms. Despite technological advancements and significant research efforts in recent years, diagnosing MS can still be difficult. Each patient's MS is distinct due to a heterogeneous and complex pathophysiology with diverse types of disease courses. There is a pressing need to identify markers that will allow for more rapid and accurate diagnosis and prognosis assessments to choose the best course of treatment for each MS patient. The cerebrospinal fluid (CSF) is an excellent source of particular indicators associated with MS pathology. CSF contains molecules that represent pathological processes such as inflammation, cellular damage, and loss of blood-brain barrier integrity. Oligoclonal bands, neurofilaments, MS-specific miRNA, lncRNA, IgG-index, and anti-aquaporin 4 antibodies are all clinically utilised indicators for CSF in MS diagnosis. In recent years, a slew of new possible biomarkers have been presented. In this review, we look at what we know about CSF molecular markers and how they can aid in the diagnosis and differentiation of different MS forms and treatment options, and monitoring and predicting disease progression, therapy response, and consequences during such opportunistic infections.
Collapse
Affiliation(s)
- Nidhi Puranik
- Biological Sciences Department, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan 38541, Korea
| | - Minseok Song
- Department of Life Science, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
2
|
Vezzani A, Ravizza T, Bedner P, Aronica E, Steinhäuser C, Boison D. Astrocytes in the initiation and progression of epilepsy. Nat Rev Neurol 2022; 18:707-722. [PMID: 36280704 PMCID: PMC10368155 DOI: 10.1038/s41582-022-00727-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2022] [Indexed: 11/09/2022]
Abstract
Epilepsy affects ~65 million people worldwide. First-line treatment options include >20 antiseizure medications, but seizure control is not achieved in approximately one-third of patients. Antiseizure medications act primarily on neurons and can provide symptomatic control of seizures, but do not alter the onset and progression of epilepsy and can cause serious adverse effects. Therefore, medications with new cellular and molecular targets and mechanisms of action are needed. Accumulating evidence indicates that astrocytes are crucial to the pathophysiological mechanisms of epilepsy, raising the possibility that these cells could be novel therapeutic targets. In this Review, we discuss how dysregulation of key astrocyte functions - gliotransmission, cell metabolism and immune function - contribute to the development and progression of hyperexcitability in epilepsy. We consider strategies to mitigate astrocyte dysfunction in each of these areas, and provide an overview of how astrocyte activation states can be monitored in vivo not only to assess their contribution to disease but also to identify markers of disease processes and treatment effects. Improved understanding of the roles of astrocytes in epilepsy has the potential to lead to novel therapies to prevent the initiation and progression of epilepsy.
Collapse
Affiliation(s)
- Annamaria Vezzani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy.
| | - Teresa Ravizza
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
3
|
Liu Y, Jiang H, Qin X, Tian M, Zhang H. PET imaging of reactive astrocytes in neurological disorders. Eur J Nucl Med Mol Imaging 2021; 49:1275-1287. [PMID: 34873637 PMCID: PMC8921128 DOI: 10.1007/s00259-021-05640-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022]
Abstract
The reactive astrocytes manifest molecular, structural, and functional remodeling in injury, infection, or diseases of the CNS, which play a critical role in the pathological mechanism of neurological diseases. A growing need exists for dependable approach to better characterize the activation of astrocyte in vivo. As an advanced molecular imaging technology, positron emission tomography (PET) has the potential for visualizing biological activities at the cellular levels. In the review, we summarized the PET visualization strategies for reactive astrocytes and discussed the applications of astrocyte PET imaging in neurological diseases. Future studies are needed to pay more attention to the development of specific imaging agents for astrocytes and further improve our exploration of reactive astrocytes in various diseases.
Collapse
Affiliation(s)
- Yu Liu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Han Jiang
- PET-CT Center, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Xiyi Qin
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China. .,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China.
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China. .,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China. .,College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China. .,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Xi H, Tao T, Zhang R, Xue X, Zhu Y, Liu J, Xin X, Zeng X. The 2-(2-benzofuranyl)-2-imidazoline provides neuroprotection against focal cerebral ischemia-reperfusion injury in diabetic rats: Influence of microglia and possible mechanisms of action. Brain Res Bull 2021; 174:230-239. [PMID: 34175385 DOI: 10.1016/j.brainresbull.2021.06.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 01/16/2023]
Abstract
Increased microglial NADPH oxidase (NOX2) production may make an important contribution to the increased incidence and severity of ischemic stroke associated with diabetes. Imidazoline receptors are closely associated with neuroprotection, but the neuroprotective effects of the selective I2-imidazoline receptor ligand 2-(2-benzofuranyl)-2-imidazoline (2BFI) in diabetes has not been established. The effect of 2BFI on microglial NOX2 production was investigated using a co-culture of neurons and microglia, and the effect on cerebral ischemia-reperfusion (IR) injury was determined in diabetic rats. Garcia neurological scores, brain infarct volumes, brain water content, TUNEL staining, blood-brain barrier, and immunofluorescent labeling for microglia were evaluated. Western blots were used to determine gp91phox and Tyr1472 expression. Anti-inflammatory cytokine (IL-10) and inflammatory cytokine secretion was determined using ELISA kits. The brain infarct volumes, TUNEL-positive neurons, expression of microglia, brain water content, blood-brain barrier structure damage, and gp91phox and Tyr1472 expression were increased, the Garcia neurological scores were significantly decreased in the IR group, and 2BFI relieved these alterations. The IL-10 concentration was increased in the IR group; 2BFI significantly improved this increase. The neuron apoptosis and necrosis rates, and production of reactive oxygen species (ROS) and inflammatory cytokines, including IL-6, IL-8, TNF-α, and 8-iso-PGF2α, were significantly increased by high glucose stimulation combined with oxygen-glucose deprivation treatment, which were inhibited by 2BFI. The 2BFI ameliorated cerebral ischemia-reperfusion injury in diabetes and decreased neuron death in an in vitro model. The mechanism underlying these findings may be related to the decreased production of inflammatory factors and reactive oxygen species from microglia.
Collapse
Affiliation(s)
- Hongjie Xi
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
| | - Tao Tao
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
| | - Ruru Zhang
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
| | - Xinxin Xue
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
| | - Yana Zhu
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
| | - Jiuyang Liu
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
| | - Xianyi Xin
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
| | - Xianzhang Zeng
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
| |
Collapse
|
5
|
Dynamics of Central Remyelination and Treatment Evolution in a Model of Multiple Sclerosis with Optic Coherence Tomography. Int J Mol Sci 2021; 22:ijms22052440. [PMID: 33671012 PMCID: PMC7957639 DOI: 10.3390/ijms22052440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 01/03/2023] Open
Abstract
The need for remyelinating drugs is essential for healing disabling diseases such as multiple sclerosis (MS). One of the reasons for the lack of this class of therapies is the impossibility to monitor remyelination in vivo, which is of utmost importance to perform effective clinical trials. Here, we show how optical coherence tomography (OCT), a cheap and non-invasive technique commonly used in ophthalmology, may be used to assess remyelination in vivo in MS patients. Our pioneer approach validates OCT as a technique to study remyelination of the optic nerve and reflects what is occurring in non-accessible central nervous system (CNS) structures, like the spinal cord. In this study we used the orally bioavailable small molecule VP3.15, confirming its therapeutical potential as a neuroprotective, anti-inflammatory, and probably remyelinating drug for MS. Altogether, our results confirm the usefulness of OCT to monitor the efficacy of remyelinating therapies in vivo and underscore the relevance of VP3.15 as a potential disease modifying drug for MS therapy.
Collapse
|
6
|
van der Weide HL, Kramer MCA, Scandurra D, Eekers DBP, Klaver YLB, Wiggenraad RGJ, Méndez Romero A, Coremans IEM, Boersma L, van Vulpen M, Langendijk JA. Proton therapy for selected low grade glioma patients in the Netherlands. Radiother Oncol 2020; 154:283-290. [PMID: 33197495 DOI: 10.1016/j.radonc.2020.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022]
Abstract
Proton therapy offers an attractive alternative to conventional photon-based radiotherapy in low grade glioma patients, delivering radiotherapy with equivalent efficacy to the tumour with less radiation exposure to the brain. In the Netherlands, patients with favourable prognosis based on tumour and patient characteristics can be offered proton therapy. Radiation-induced neurocognitive function decline is a major concern in these long surviving patients. Although level 1 evidence of superior clinical outcome with proton therapy is lacking, the Dutch National Health Care Institute concluded that there is scientific evidence to assume that proton therapy can have clinical benefit by reducing radiation-induced brain damage. Based on this decision, proton therapy is standard insured care for selected low grade glioma patients. Patients with other intracranial tumours can also qualify for proton therapy, based on the same criteria. In this paper, the evidence and considerations that led to this decision are summarised. Additionally, the eligibility criteria for proton therapy and the steps taken to obtain high-quality data on treatment outcome are discussed.
Collapse
Affiliation(s)
- Hiska L van der Weide
- University of Groningen, University Medical Center Groningen, Department of Radiation Oncology, the Netherlands.
| | - Miranda C A Kramer
- University of Groningen, University Medical Center Groningen, Department of Radiation Oncology, the Netherlands
| | - Daniel Scandurra
- University of Groningen, University Medical Center Groningen, Department of Radiation Oncology, the Netherlands
| | - Daniëlle B P Eekers
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, the Netherlands
| | | | | | - Alejandra Méndez Romero
- Holland Proton Therapy Center, Delft, the Netherlands; Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ida E M Coremans
- Department of Radiation Oncology, Leiden University Medical Center, the Netherlands
| | - Liesbeth Boersma
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, the Netherlands
| | - Marco van Vulpen
- Holland Proton Therapy Center, Delft, the Netherlands; Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Radiation Oncology, Leiden University Medical Center, the Netherlands
| | - Johannes A Langendijk
- University of Groningen, University Medical Center Groningen, Department of Radiation Oncology, the Netherlands
| | | |
Collapse
|
7
|
Dwyer CM, Nguyen LTT, Healy LM, Dutta R, Ludwin S, Antel J, Binder MD, Kilpatrick TJ. Multiple Sclerosis as a Syndrome-Implications for Future Management. Front Neurol 2020; 11:784. [PMID: 32982904 PMCID: PMC7483755 DOI: 10.3389/fneur.2020.00784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/25/2020] [Indexed: 12/25/2022] Open
Abstract
We propose that multiple sclerosis (MS) is best characterized as a syndrome rather than a single disease because different pathogenetic mechanisms can result in the constellation of symptoms and signs by which MS is clinically characterized. We describe several cellular mechanisms that could generate inflammatory demyelination through disruption of homeostatic interactions between immune and neural cells. We illustrate that genomics is important in identifying phenocopies, in particular for primary progressive MS. We posit that molecular profiling, rather than traditional clinical phenotyping, will facilitate meaningful patient stratification, as illustrated by interactions between HLA and a regulator of homeostatic phagocytosis, MERTK. We envisage a personalized approach to MS management where genetic, molecular, and cellular information guides management.
Collapse
Affiliation(s)
- Christopher M Dwyer
- Florey Institute of Neuroscience and Mental Health, Florey Department, The University of Melbourne, Parkville, VIC, Australia.,Department of Neurology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Linda Thien-Trang Nguyen
- Florey Institute of Neuroscience and Mental Health, Florey Department, The University of Melbourne, Parkville, VIC, Australia
| | - Luke M Healy
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Ranjan Dutta
- Department of Neurosciences, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Samuel Ludwin
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jack Antel
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Michele D Binder
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, Australia
| | - Trevor J Kilpatrick
- Florey Institute of Neuroscience and Mental Health, Florey Department, The University of Melbourne, Parkville, VIC, Australia.,Department of Neurology, Royal Melbourne Hospital, Parkville, VIC, Australia
| |
Collapse
|
8
|
Nutma E, Stephenson JA, Gorter RP, de Bruin J, Boucherie DM, Donat CK, Breur M, van der Valk P, Matthews PM, Owen DR, Amor S. A quantitative neuropathological assessment of translocator protein expression in multiple sclerosis. Brain 2020; 142:3440-3455. [PMID: 31578541 PMCID: PMC6821167 DOI: 10.1093/brain/awz287] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/11/2019] [Accepted: 07/25/2019] [Indexed: 01/09/2023] Open
Abstract
The 18 kDa translocator protein (TSPO) is increasingly used to study brain and spinal cord inflammation in degenerative diseases of the CNS such as multiple sclerosis. The enhanced TSPO PET signal that arises during disease is widely considered to reflect activated pathogenic microglia, although quantitative neuropathological data to support this interpretation have not been available. With the increasing interest in the role of chronic microglial activation in multiple sclerosis, characterising the cellular neuropathology associated with TSPO expression is of clear importance for understanding the cellular and pathological processes on which TSPO PET imaging is reporting. Here we have studied the cellular expression of TSPO and specific binding of two TSPO targeting radioligands (3H-PK11195 and 3H-PBR28) in tissue sections from 42 multiple sclerosis cases and 12 age-matched controls. Markers of homeostatic and reactive microglia, astrocytes, and lymphocytes were used to investigate the phenotypes of cells expressing TSPO. There was an approximate 20-fold increase in cells double positive for TSPO and HLA-DR in active lesions and in the rim of chronic active lesion, relative to normal appearing white matter. TSPO was uniformly expressed across myeloid cells irrespective of their phenotype, rather than being preferentially associated with pro-inflammatory microglia or macrophages. TSPO+ astrocytes were increased up to 7-fold compared to normal-appearing white matter across all lesion subtypes and accounted for 25% of the TSPO+ cells in these lesions. To relate TSPO protein expression to ligand binding, specific binding of the TSPO ligands 3H-PK11195 and 3H-PBR28 was determined in the same lesions. TSPO radioligand binding was increased up to seven times for 3H-PBR28 and up to two times for 3H-PK11195 in active lesions and the centre of chronic active lesions and a strong correlation was found between the radioligand binding signal for both tracers and the number of TSPO+ cells across all of the tissues examined. In summary, in multiple sclerosis, TSPO expression arises from microglia of different phenotypes, rather than being restricted to microglia which express classical pro-inflammatory markers. While the majority of cells expressing TSPO in active lesions or chronic active rims are microglia/macrophages, our findings also emphasize the significant contribution of activated astrocytes, as well as smaller contributions from endothelial cells. These observations establish a quantitative framework for interpretation of TSPO in multiple sclerosis and highlight the need for neuropathological characterization of TSPO expression for the interpretation of TSPO PET in other neurodegenerative disorders.
Collapse
Affiliation(s)
- Erik Nutma
- Department of Pathology, Amsterdam UMC, Location VUmc, The Netherlands
| | - Jodie A Stephenson
- Department of Pathology, Amsterdam UMC, Location VUmc, The Netherlands.,Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Rianne P Gorter
- Department of Pathology, Amsterdam UMC, Location VUmc, The Netherlands
| | - Joy de Bruin
- Department of Pathology, Amsterdam UMC, Location VUmc, The Netherlands
| | | | | | - Marjolein Breur
- Department of Pathology, Amsterdam UMC, Location VUmc, The Netherlands
| | - Paul van der Valk
- Department of Pathology, Amsterdam UMC, Location VUmc, The Netherlands
| | - Paul M Matthews
- Department of Brain Sciences, Imperial College London, UK.,UK Dementia Research Institute, Imperial College London, UK
| | - David R Owen
- Department of Brain Sciences, Imperial College London, UK
| | - Sandra Amor
- Department of Pathology, Amsterdam UMC, Location VUmc, The Netherlands.,Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| |
Collapse
|
9
|
Sollini M, Berchiolli R, Kirienko M, Rossi A, Glaudemans AWJM, Slart R, Erba PA. PET/MRI in Infection and Inflammation. Semin Nucl Med 2018; 48:225-241. [PMID: 29626940 DOI: 10.1053/j.semnuclmed.2018.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hybrid positron emission tomography/magnetic resonance imaging (PET/MR) systems are now more and more available for clinical use. PET/MR combines the unique features of MR including excellent soft tissue contrast, diffusion-weighted imaging, dynamic contrast-enhanced imaging, fMRI and other specialized sequences as well as MR spectroscopy with the quantitative physiologic information that is provided by PET. Most of the evidence of the potential clinical utility of PET/MRI is available for neuroimaging. Other areas, where PET/MR can play a larger role include head and neck, upper abdominal, and pelvic tumours. Although the role of PET/MR in infection and inflammation of the cardiovascular system and in musculoskeletal applications are promising, these areas of clinical investigation are still in the early phase and it may be a little longer before these areas reach their full potential in clinical practice. In this review, we outline the potential of hybrid PET/MR for imaging infection and inflammation. A background to the main radiopharmaceuticals and some technical considerations are also included.
Collapse
Affiliation(s)
- Martina Sollini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Raffaella Berchiolli
- Vascular Surgery Unit Department of Translational Research and Advanced Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Margarita Kirienko
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Alexia Rossi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - A W J M Glaudemans
- University of Groningen, University Medical Center Groningen, Medical Imaging Center, Groningen, The Netherlands
| | - Riemer Slart
- University of Groningen, University Medical Center Groningen, Medical Imaging Center, Groningen, The Netherlands.; University of Twente, Faculty of Science and Technology, Biomedical Photonic Imaging, Enschede, The Netherlands
| | - Paola Anna Erba
- Regional Center of Nuclear Medicine, Department of Translational Research and Advanced, Technologies in Medicine, University of Pisa, Pisa, Italy..
| |
Collapse
|
10
|
Abstract
Multiple sclerosis is a multifactorial disease with heterogeneous pathogenetic mechanisms, which deserve to be studied to evaluate new possible targets for treatments and improve patient management. MR spectroscopy and PET allow assessing in vivo the molecular and metabolic mechanisms underlying the pathogenesis of multiple sclerosis. This article focuses on the relationship between these imaging techniques and the biologic and chemical pathways leading to multiple sclerosis pathology and its clinical features. Future directions of research are also presented.
Collapse
Affiliation(s)
- Marcello Moccia
- NMR Research Unit, Queen Square MS Centre, University College London, Institute of Neurology, 10-12 Russell Square, London WC1B 5EH, UK; MS Clinical Care and Research Centre, Department of Neuroscience, Federico II University, Via Sergio Pansini 5, Naples 80131, Italy
| | - Olga Ciccarelli
- NMR Research Unit, Queen Square MS Centre, University College London, Institute of Neurology, 10-12 Russell Square, London WC1B 5EH, UK; NIHR University College London Hospitals, Biomedical Research Centre, Maple House Suite A 1st floor, 149 Tottenham Court Road, London W1T 7DN, UK.
| |
Collapse
|
11
|
Stangel M, Kuhlmann T, Matthews PM, Kilpatrick TJ. Achievements and obstacles of remyelinating therapies in multiple sclerosis. Nat Rev Neurol 2017; 13:742-754. [PMID: 29146953 DOI: 10.1038/nrneurol.2017.139] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Remyelination in the CNS is the natural process of damage repair in demyelinating diseases such as multiple sclerosis (MS). However, remyelination becomes inadequate in many people with MS, which results in axonal degeneration and clinical disability. Enhancement of remyelination is a logical therapeutic goal; nevertheless, all currently licensed therapies for MS are immunomodulatory and do not support remyelination directly. Several molecular pathways have been identified as potential therapeutic targets to induce remyelination, and some of these have now been assessed in proof-of-concept clinical trials. However, trial design faces several obstacles: optimal clinical or paraclinical outcome measures to assess remyelination remain ill-defined, and identification of the ideal timing of therapy is also a crucial issue. In addition, realistic expectations are needed concerning the probable benefits of such therapies. Nevertheless, approaches that enhance remyelination are likely to be protective for axons and so could prevent long-term neurodegeneration. Future MS treatment paradigms, therefore, are likely to comprise a combinatorial approach that involves both immunomodulatory and regenerative treatments.
Collapse
Affiliation(s)
- Martin Stangel
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, Pottkamp 2, 48149 Münster, Germany
| | - Paul M Matthews
- Division of Brain Sciences, Department of Medicine, and UK Dementia Research Institute, Imperial College London, Burlington Danes, Hammersmith Hospital, DuCane Road, London W12 0NN, UK
| | - Trevor J Kilpatrick
- Department of Anatomy and Neuroscience and Melbourne Neuroscience Institute, University of Melbourne, 30 Royal Parade, Parkville, Victoria 3010, Australia
| |
Collapse
|
12
|
Moccia M, de Stefano N, Barkhof F. Imaging outcome measures for progressive multiple sclerosis trials. Mult Scler 2017; 23:1614-1626. [PMID: 29041865 PMCID: PMC5650056 DOI: 10.1177/1352458517729456] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 07/28/2017] [Indexed: 11/16/2022]
Abstract
Imaging markers that are reliable, reproducible and sensitive to neurodegenerative changes in progressive multiple sclerosis (MS) can enhance the development of new medications with a neuroprotective mode-of-action. Accordingly, in recent years, a considerable number of imaging biomarkers have been included in phase 2 and 3 clinical trials in primary and secondary progressive MS. Brain lesion count and volume are markers of inflammation and demyelination and are important outcomes even in progressive MS trials. Brain and, more recently, spinal cord atrophy are gaining relevance, considering their strong association with disability accrual; ongoing improvements in analysis methods will enhance their applicability in clinical trials, especially for cord atrophy. Advanced magnetic resonance imaging (MRI) techniques (e.g. magnetization transfer ratio (MTR), diffusion tensor imaging (DTI), spectroscopy) have been included in few trials so far and hold promise for the future, as they can reflect specific pathological changes targeted by neuroprotective treatments. Positron emission tomography (PET) and optical coherence tomography have yet to be included. Applications, limitations and future perspectives of these techniques in clinical trials in progressive MS are discussed, with emphasis on measurement sensitivity, reliability and sample size calculation.
Collapse
Affiliation(s)
- Marcello Moccia
- NMR Research Unit, Queen Square MS Centre, UCL Institute of Neurology, University College London, London, UK; Multiple Sclerosis Clinical Care and Research Centre, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples, Italy
| | - Nicola de Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Frederik Barkhof
- NMR Research Unit, Queen Square MS Centre, UCL Institute of Neurology, University College London, London, UK; Translational Imaging Group, UCL Institute of Healthcare Engineering, University College London, London, UK; Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Datta G, Colasanti A, Rabiner EA, Gunn RN, Malik O, Ciccarelli O, Nicholas R, Van Vlierberghe E, Van Hecke W, Searle G, Santos-Ribeiro A, Matthews PM. Neuroinflammation and its relationship to changes in brain volume and white matter lesions in multiple sclerosis. Brain 2017; 140:2927-2938. [DOI: 10.1093/brain/awx228] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/17/2017] [Indexed: 12/30/2022] Open
|
14
|
Lagarde J, Sarazin M, Bottlaender M. In vivo PET imaging of neuroinflammation in Alzheimer's disease. J Neural Transm (Vienna) 2017; 125:847-867. [PMID: 28516240 DOI: 10.1007/s00702-017-1731-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/01/2017] [Indexed: 12/15/2022]
Abstract
Increasing evidence suggests that neuroinflammation contributes to the pathophysiology of many neurodegenerative diseases, especially Alzheimer's disease (AD). Molecular imaging by PET may be a useful tool to assess neuroinflammation in vivo, thus helping to decipher the complex role of inflammatory processes in the pathophysiology of neurodegenerative diseases and providing a potential means of monitoring the effect of new therapeutic approaches. For this objective, the main target of PET studies is the 18 kDa translocator protein (TSPO), as it is overexpressed by activated microglia. In the present review, we describe the most widely used PET tracers targeting the TSPO, the methodological issues in tracer quantification and summarize the results obtained by TSPO PET imaging in AD, as well as in neurodegenerative disorders associated with AD, in psychiatric disorders and ageing. We also briefly describe alternative PET targets and imaging modalities to study neuroinflammation. Lastly, we question the meaning of PET imaging data in the context of a highly complex and multifaceted role of neuroinflammation in neurodegenerative diseases. This overview leads to the conclusion that PET imaging of neuroinflammation is a promising way of deciphering the enigma of the pathophysiology of AD and of monitoring the effect of new therapies.
Collapse
Affiliation(s)
- Julien Lagarde
- Unit of Neurology of Memory and Language, Centre de Psychiatrie et Neurosciences, INSERM UMR S894, Centre Hospitalier Sainte-Anne and Université Paris Descartes, Sorbonne Paris Cité, 75014, Paris, France
| | - Marie Sarazin
- Unit of Neurology of Memory and Language, Centre de Psychiatrie et Neurosciences, INSERM UMR S894, Centre Hospitalier Sainte-Anne and Université Paris Descartes, Sorbonne Paris Cité, 75014, Paris, France
| | - Michel Bottlaender
- UNIACT, NeuroSpin, Institut d'Imagerie Biomédicale, Direction de la Recherche Fondamentale, Commissariat à l'Energie Atomique, 91191, Gif-sur-Yvette, France. .,Laboratoire Imagerie Moléculaire in Vivo, UMR 1023, Service Hospitalier Frédéric Joliot, Institut d'Imagerie Biomédicale, Direction de la Recherche Fondamentale, Commissariat à l'Energie Atomique, 91400, Orsay, France.
| |
Collapse
|
15
|
Tronel C, Largeau B, Santiago Ribeiro MJ, Guilloteau D, Dupont AC, Arlicot N. Molecular Targets for PET Imaging of Activated Microglia: The Current Situation and Future Expectations. Int J Mol Sci 2017; 18:ijms18040802. [PMID: 28398245 PMCID: PMC5412386 DOI: 10.3390/ijms18040802] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/15/2017] [Accepted: 03/28/2017] [Indexed: 12/13/2022] Open
Abstract
Microglia, as cellular mediators of neuroinflammation, are implicated in the pathogenesis of a wide range of neurodegenerative diseases. Positron emission tomography (PET) imaging of microglia has matured over the last 20 years, through the development of radiopharmaceuticals targeting several molecular biomarkers of microglial activation and, among these, mainly the translocator protein-18 kDa (TSPO). Nevertheless, current limitations of TSPO as a PET microglial biomarker exist, such as low brain density, even in a neurodegenerative setting, expression by other cells than the microglia (astrocytes, peripheral macrophages in the case of blood brain barrier breakdown), genetic polymorphism, inducing a variation for most of TSPO PET radiopharmaceuticals’ binding affinity, or similar expression in activated microglia regardless of its polarization (pro- or anti-inflammatory state), and these limitations narrow its potential interest. We overview alternative molecular targets, for which dedicated radiopharmaceuticals have been proposed, including receptors (purinergic receptors P2X7, cannabinoid receptors, α7 and α4β2 nicotinic acetylcholine receptors, adenosine 2A receptor, folate receptor β) and enzymes (cyclooxygenase, nitric oxide synthase, matrix metalloproteinase, β-glucuronidase, and enzymes of the kynurenine pathway), with a particular focus on their respective contribution for the understanding of microglial involvement in neurodegenerative diseases. We discuss opportunities for these potential molecular targets for PET imaging regarding their selectivity for microglia expression and polarization, in relation to the mechanisms by which microglia actively participate in both toxic and neuroprotective actions in brain diseases, and then take into account current clinicians’ expectations.
Collapse
Affiliation(s)
- Claire Tronel
- INSERM U930, Université François Rabelais de Tours, 10 boulevard Tonnelé, 37032 Tours, France.
| | | | - Maria Joao Santiago Ribeiro
- INSERM U930, Université François Rabelais de Tours, 10 boulevard Tonnelé, 37032 Tours, France.
- CHRU de Tours, 37044 Tours, France.
| | - Denis Guilloteau
- INSERM U930, Université François Rabelais de Tours, 10 boulevard Tonnelé, 37032 Tours, France.
- CHRU de Tours, 37044 Tours, France.
| | - Anne-Claire Dupont
- INSERM U930, Université François Rabelais de Tours, 10 boulevard Tonnelé, 37032 Tours, France.
- CHRU de Tours, 37044 Tours, France.
| | - Nicolas Arlicot
- INSERM U930, Université François Rabelais de Tours, 10 boulevard Tonnelé, 37032 Tours, France.
- CHRU de Tours, 37044 Tours, France.
| |
Collapse
|
16
|
Yankam Njiwa J, Costes N, Bouillot C, Bouvard S, Fieux S, Becker G, Levigoureux E, Kocevar G, Stamile C, Langlois JB, Bolbos R, Bonnet C, Bezin L, Zimmer L, Hammers A. Quantitative longitudinal imaging of activated microglia as a marker of inflammation in the pilocarpine rat model of epilepsy using [ 11C]-( R)-PK11195 PET and MRI. J Cereb Blood Flow Metab 2017; 37:1251-1263. [PMID: 27381824 PMCID: PMC5414902 DOI: 10.1177/0271678x16653615] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Inflammation may play a role in the development of epilepsy after brain insults. [11C]-( R)-PK11195 binds to TSPO, expressed by activated microglia. We quantified [11C]-( R)-PK11195 binding during epileptogenesis after pilocarpine-induced status epilepticus (SE), a model of temporal lobe epilepsy. Nine male rats were studied thrice (D0-1, D0 + 6, D0 + 35, D0 = SE induction). In the same session, 7T T2-weighted images and DTI for mean diffusivity (MD) and fractional anisotropy (FA) maps were acquired, followed by dynamic PET/CT. On D0 + 35, femoral arterial blood was sampled for rat-specific metabolite-corrected arterial plasma input functions (AIFs). In multiple MR-derived ROIs, we assessed four kinetic models (two with AIFs; two using a reference region), standard uptake values (SUVs), and a model with a mean AIF. All models showed large (up to two-fold) and significant TSPO binding increases in regions expected to be affected, and comparatively little change in the brainstem, at D0 + 6. Some individuals showed increases at D0 + 35. AIF models yielded more consistent increases at D0 + 6. FA values were decreased at D0 + 6 and had recovered by D0 + 35. MD was increased at D0 + 6 and more so at D0 + 35. [11C]-( R)-PK11195 PET binding and MR biomarker changes could be detected with only nine rats, highlighting the potential of longitudinal imaging studies.
Collapse
Affiliation(s)
| | - N Costes
- 2 CERMEP-Imagerie du Vivant, Lyon, France
| | - C Bouillot
- 2 CERMEP-Imagerie du Vivant, Lyon, France
| | - S Bouvard
- 2 CERMEP-Imagerie du Vivant, Lyon, France.,3 Lyon Neuroscience Research Center, University Claude Bernard Lyon 1, Lyon, France
| | - S Fieux
- 2 CERMEP-Imagerie du Vivant, Lyon, France
| | - G Becker
- 2 CERMEP-Imagerie du Vivant, Lyon, France
| | - E Levigoureux
- 3 Lyon Neuroscience Research Center, University Claude Bernard Lyon 1, Lyon, France.,4 Hospices Civils de Lyon, France
| | | | | | | | - R Bolbos
- 3 Lyon Neuroscience Research Center, University Claude Bernard Lyon 1, Lyon, France
| | - C Bonnet
- 3 Lyon Neuroscience Research Center, University Claude Bernard Lyon 1, Lyon, France
| | - L Bezin
- 3 Lyon Neuroscience Research Center, University Claude Bernard Lyon 1, Lyon, France
| | - L Zimmer
- 2 CERMEP-Imagerie du Vivant, Lyon, France.,3 Lyon Neuroscience Research Center, University Claude Bernard Lyon 1, Lyon, France.,4 Hospices Civils de Lyon, France
| | - A Hammers
- 1 Neurodis Foundation, Lyon, France.,6 Division of Imaging Sciences and Biomedical Engineering, King's College London & Guy's and St Thomas' PET Centre, King's College London, London, UK
| |
Collapse
|
17
|
Madhusudanan P, Reade S, Shankarappa SA. Neuroglia as targets for drug delivery systems: A review. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:667-679. [DOI: 10.1016/j.nano.2016.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/01/2016] [Accepted: 08/04/2016] [Indexed: 12/13/2022]
|
18
|
PET brain imaging in HIV-associated neurocognitive disorders (HAND) in the era of combination antiretroviral therapy. Eur J Nucl Med Mol Imaging 2017; 44:895-902. [PMID: 28058461 DOI: 10.1007/s00259-016-3602-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/16/2016] [Indexed: 10/20/2022]
Abstract
Effective combination antiretroviral therapy (cART) has lead to a significant reduction in the prevalence and incidence of central nervous system (CNS) HIV-associated brain disease, particularly CNS opportunistic infections and HIV encephalitis. Despite this, cognitive deficits in people living with HIV, also known as HIV-associated neurocognitive disorders (HAND) have become more prevalent in recent years. The pathogenesis of HAND is likely to be multifactorial, however recent evidence suggests that brain microglial activation is the most likely pathogenic mechanism. Recent developments in positron emission tomography (PET) brain neuroimaging using novel brain radioligands targeting a variety of physiological changes in the brains of HIV-positive individuals have improved our understanding of the mechanisms associated with the development of HAND. This review will highlight recent PET brain neuroimaging studies in the cART era, focusing on physiological and neurochemical changes associated with HAND in people living with HIV.
Collapse
|
19
|
Datta G, Violante IR, Scott G, Zimmerman K, Santos-Ribeiro A, Rabiner EA, Gunn RN, Malik O, Ciccarelli O, Nicholas R, Matthews PM. Translocator positron-emission tomography and magnetic resonance spectroscopic imaging of brain glial cell activation in multiple sclerosis. Mult Scler 2016; 23:1469-1478. [PMID: 27903933 DOI: 10.1177/1352458516681504] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is characterised by a diffuse inflammatory response mediated by microglia and astrocytes. Brain translocator protein (TSPO) positron-emission tomography (PET) and [myo-inositol] magnetic resonance spectroscopy (MRS) were used together to assess this. OBJECTIVE To explore the in vivo relationships between MRS and PET [11C]PBR28 in MS over a range of brain inflammatory burden. METHODS A total of 23 patients were studied. TSPO PET imaging with [11C]PBR28, single voxel MRS and conventional magnetic resonance imaging (MRI) sequences were undertaken. Disability was assessed by Expanded Disability Status Scale (EDSS) and Multiple Sclerosis Functional Composite (MSFC). RESULTS [11C]PBR28 uptake and [ myo-inositol] were not associated. When the whole cohort was stratified by higher [11C]PBR28 inflammatory burden, [ myo-inositol] was positively correlated to [11C]PBR28 uptake (Spearman's ρ = 0.685, p = 0.014). Moderate correlations were found between [11C]PBR28 uptake and both MRS creatine normalised N-acetyl aspartate (NAA) concentration and grey matter volume. MSFC was correlated with grey matter volume (ρ = 0.535, p = 0.009). There were no associations between other imaging or clinical measures. CONCLUSION MRS [ myo-inositol] and PET [11C]PBR28 measure independent inflammatory processes which may be more commonly found together with more severe inflammatory disease. Microglial activation measured by [11C]PBR28 uptake was associated with loss of neuronal integrity and grey matter atrophy.
Collapse
Affiliation(s)
- Gourab Datta
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Ines R Violante
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Gregory Scott
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Karl Zimmerman
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Andre Santos-Ribeiro
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Eugenii A Rabiner
- Imanova Ltd, Imperial College London, London, UK/Centre for Neuroimaging Sciences, King's College London, London, UK
| | - Roger N Gunn
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK/manova Ltd, Imperial College London, London, UK
| | - Omar Malik
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Olga Ciccarelli
- Queen Square Multiple Sclerosis Centre, Institute of Neurology, University College London, London, UK
| | - Richard Nicholas
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Paul M Matthews
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
20
|
Garden GA, Campbell BM. Glial biomarkers in human central nervous system disease. Glia 2016; 64:1755-71. [PMID: 27228454 PMCID: PMC5575821 DOI: 10.1002/glia.22998] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/07/2016] [Accepted: 04/13/2016] [Indexed: 12/13/2022]
Abstract
There is a growing understanding that aberrant GLIA function is an underlying factor in psychiatric and neurological disorders. As drug discovery efforts begin to focus on glia-related targets, a key gap in knowledge includes the availability of validated biomarkers to help determine which patients suffer from dysfunction of glial cells or who may best respond by targeting glia-related drug mechanisms. Biomarkers are biological variables with a significant relationship to parameters of disease states and can be used as surrogate markers of disease pathology, progression, and/or responses to drug treatment. For example, imaging studies of the CNS enable localization and characterization of anatomical lesions without the need to isolate tissue for biopsy. Many biomarkers of disease pathology in the CNS involve assays of glial cell function and/or response to injury. Each major glia subtype (oligodendroglia, astroglia and microglia) are connected to a number of important and useful biomarkers. Here, we describe current and emerging glial based biomarker approaches for acute CNS injury and the major categories of chronic nervous system dysfunction including neurodegenerative, neuropsychiatric, neoplastic, and autoimmune disorders of the CNS. These descriptions are highlighted in the context of how biomarkers are employed to better understand the role of glia in human CNS disease and in the development of novel therapeutic treatments. GLIA 2016;64:1755-1771.
Collapse
Affiliation(s)
- Gwenn A. Garden
- Department of Neurology, University of Washington, Seattle, Washington
| | | |
Collapse
|
21
|
Tarkkonen A, Rissanen E, Tuokkola T, Airas L. Utilization of PET imaging in differential diagnostics between a tumefactive multiple sclerosis lesion and low-grade glioma. Mult Scler Relat Disord 2016; 9:147-9. [PMID: 27645363 DOI: 10.1016/j.msard.2016.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/25/2016] [Accepted: 07/25/2016] [Indexed: 10/21/2022]
Abstract
We present a case where a 30-year-old man with a history of combined MS and Charcot-Marie-Tooth (CMT I) disease was additionally diagnosed and treated for grade II glioma (astrocytoma). Tumefactive MS and gliomas are sometimes difficult to distinguish from one another based on conventional magnetic resonance imaging (MRI). In our case, positron emission tomography (PET) scans with(11)C-methionine ((11)C-MET) and (11)C-PK11195 radioligands were performed to aid in differential diagnostics. The diagnosis was confirmed finally by brain biopsy. The usefulness of PET imaging in differential diagnostics between tumefactive MS and glioma is discussed.
Collapse
Affiliation(s)
- Aleksi Tarkkonen
- Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland.
| | - Eero Rissanen
- Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland; Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Terhi Tuokkola
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Laura Airas
- Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland; Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
22
|
Vera JH, Guo Q, Cole JH, Boasso A, Greathead L, Kelleher P, Rabiner EA, Kalk N, Bishop C, Gunn RN, Matthews PM, Winston A. Neuroinflammation in treated HIV-positive individuals: A TSPO PET study. Neurology 2016; 86:1425-1432. [PMID: 26911637 DOI: 10.1212/wnl.0000000000002485] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 01/06/2015] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To explore the effects of microglial activation on brain function and structure, and its relationship with peripheral inflammatory markers, in treated, HIV-positive individuals, using in vivo [(11)C]PBR28 PET (to measure the 18 kDa translocator protein [TSPO]). METHODS Cognitively healthy HIV-positive individuals on suppressive antiretroviral therapy and HIV-negative individuals (controls) underwent brain [(11)C]PBR28 PET and MRI. HIV-positive patients completed neuropsychological testing and CSF testing for chemokines. The concentration of bacterial ribosomal 16sDNA in plasma was measured as a marker of microbial translocation. RESULTS HIV-positive individuals showed global increases in TSPO expression compared to controls (corrected p < 0.01), with significant regional increases in the parietal (p = 0.001) and occipital (p = 0.046) lobes and in the globus pallidus (p = 0.035). TSPO binding in the hippocampus, amygdala, and thalamus were associated with poorer global cognitive performance in tasks assessing verbal and visual memory (p < 0.05). Increased TSPO binding was associated with increased brain white matter diffusion MRI mean diffusivity in HIV-positive individuals, a lower CD4/CD8 ratio, and both high pretreatment HIV RNA and plasma concentration ribosomal 16s DNA (p < 0.05). CONCLUSIONS Cognitively healthy HIV-positive individuals show evidence for a chronically activated brain innate immune response and elevated blood markers of microbial translocation despite effective control of plasma viremia. Increased brain inflammation is associated with poorer cognitive performance and white matter microstructural pathology, suggesting a possible role in cognitive impairments found in some HIV-positive patients despite effective treatment.
Collapse
Affiliation(s)
- Jaime H Vera
- From the Division of Medicine, Section of Infectious Diseases (J.H.V., A.W.), Division of Brain Sciences (J.H.C., R.N.G., P.M.M.), and Centre for Immunology and Vaccinology (A.B., L.G., P.K.), Imperial College London; Division of Medicine (J.H.V.), Brighton and Sussex Medical School; Imanova Centre for Imaging Sciences (Q.G., E.A.R., N.K., C.B., R.N.G.), London; and Chelsea and Westminster Hospital (A.B., L.G., P.K.), London, UK.
| | - Qi Guo
- From the Division of Medicine, Section of Infectious Diseases (J.H.V., A.W.), Division of Brain Sciences (J.H.C., R.N.G., P.M.M.), and Centre for Immunology and Vaccinology (A.B., L.G., P.K.), Imperial College London; Division of Medicine (J.H.V.), Brighton and Sussex Medical School; Imanova Centre for Imaging Sciences (Q.G., E.A.R., N.K., C.B., R.N.G.), London; and Chelsea and Westminster Hospital (A.B., L.G., P.K.), London, UK
| | - James H Cole
- From the Division of Medicine, Section of Infectious Diseases (J.H.V., A.W.), Division of Brain Sciences (J.H.C., R.N.G., P.M.M.), and Centre for Immunology and Vaccinology (A.B., L.G., P.K.), Imperial College London; Division of Medicine (J.H.V.), Brighton and Sussex Medical School; Imanova Centre for Imaging Sciences (Q.G., E.A.R., N.K., C.B., R.N.G.), London; and Chelsea and Westminster Hospital (A.B., L.G., P.K.), London, UK
| | - Adriano Boasso
- From the Division of Medicine, Section of Infectious Diseases (J.H.V., A.W.), Division of Brain Sciences (J.H.C., R.N.G., P.M.M.), and Centre for Immunology and Vaccinology (A.B., L.G., P.K.), Imperial College London; Division of Medicine (J.H.V.), Brighton and Sussex Medical School; Imanova Centre for Imaging Sciences (Q.G., E.A.R., N.K., C.B., R.N.G.), London; and Chelsea and Westminster Hospital (A.B., L.G., P.K.), London, UK
| | - Louise Greathead
- From the Division of Medicine, Section of Infectious Diseases (J.H.V., A.W.), Division of Brain Sciences (J.H.C., R.N.G., P.M.M.), and Centre for Immunology and Vaccinology (A.B., L.G., P.K.), Imperial College London; Division of Medicine (J.H.V.), Brighton and Sussex Medical School; Imanova Centre for Imaging Sciences (Q.G., E.A.R., N.K., C.B., R.N.G.), London; and Chelsea and Westminster Hospital (A.B., L.G., P.K.), London, UK
| | - Peter Kelleher
- From the Division of Medicine, Section of Infectious Diseases (J.H.V., A.W.), Division of Brain Sciences (J.H.C., R.N.G., P.M.M.), and Centre for Immunology and Vaccinology (A.B., L.G., P.K.), Imperial College London; Division of Medicine (J.H.V.), Brighton and Sussex Medical School; Imanova Centre for Imaging Sciences (Q.G., E.A.R., N.K., C.B., R.N.G.), London; and Chelsea and Westminster Hospital (A.B., L.G., P.K.), London, UK
| | - Eugenii A Rabiner
- From the Division of Medicine, Section of Infectious Diseases (J.H.V., A.W.), Division of Brain Sciences (J.H.C., R.N.G., P.M.M.), and Centre for Immunology and Vaccinology (A.B., L.G., P.K.), Imperial College London; Division of Medicine (J.H.V.), Brighton and Sussex Medical School; Imanova Centre for Imaging Sciences (Q.G., E.A.R., N.K., C.B., R.N.G.), London; and Chelsea and Westminster Hospital (A.B., L.G., P.K.), London, UK
| | - Nicola Kalk
- From the Division of Medicine, Section of Infectious Diseases (J.H.V., A.W.), Division of Brain Sciences (J.H.C., R.N.G., P.M.M.), and Centre for Immunology and Vaccinology (A.B., L.G., P.K.), Imperial College London; Division of Medicine (J.H.V.), Brighton and Sussex Medical School; Imanova Centre for Imaging Sciences (Q.G., E.A.R., N.K., C.B., R.N.G.), London; and Chelsea and Westminster Hospital (A.B., L.G., P.K.), London, UK
| | - Courtney Bishop
- From the Division of Medicine, Section of Infectious Diseases (J.H.V., A.W.), Division of Brain Sciences (J.H.C., R.N.G., P.M.M.), and Centre for Immunology and Vaccinology (A.B., L.G., P.K.), Imperial College London; Division of Medicine (J.H.V.), Brighton and Sussex Medical School; Imanova Centre for Imaging Sciences (Q.G., E.A.R., N.K., C.B., R.N.G.), London; and Chelsea and Westminster Hospital (A.B., L.G., P.K.), London, UK
| | - Roger N Gunn
- From the Division of Medicine, Section of Infectious Diseases (J.H.V., A.W.), Division of Brain Sciences (J.H.C., R.N.G., P.M.M.), and Centre for Immunology and Vaccinology (A.B., L.G., P.K.), Imperial College London; Division of Medicine (J.H.V.), Brighton and Sussex Medical School; Imanova Centre for Imaging Sciences (Q.G., E.A.R., N.K., C.B., R.N.G.), London; and Chelsea and Westminster Hospital (A.B., L.G., P.K.), London, UK
| | - Paul M Matthews
- From the Division of Medicine, Section of Infectious Diseases (J.H.V., A.W.), Division of Brain Sciences (J.H.C., R.N.G., P.M.M.), and Centre for Immunology and Vaccinology (A.B., L.G., P.K.), Imperial College London; Division of Medicine (J.H.V.), Brighton and Sussex Medical School; Imanova Centre for Imaging Sciences (Q.G., E.A.R., N.K., C.B., R.N.G.), London; and Chelsea and Westminster Hospital (A.B., L.G., P.K.), London, UK
| | - Alan Winston
- From the Division of Medicine, Section of Infectious Diseases (J.H.V., A.W.), Division of Brain Sciences (J.H.C., R.N.G., P.M.M.), and Centre for Immunology and Vaccinology (A.B., L.G., P.K.), Imperial College London; Division of Medicine (J.H.V.), Brighton and Sussex Medical School; Imanova Centre for Imaging Sciences (Q.G., E.A.R., N.K., C.B., R.N.G.), London; and Chelsea and Westminster Hospital (A.B., L.G., P.K.), London, UK
| |
Collapse
|
23
|
Janssen B, Vugts DJ, Funke U, Molenaar GT, Kruijer PS, van Berckel BNM, Lammertsma AA, Windhorst AD. Imaging of neuroinflammation in Alzheimer's disease, multiple sclerosis and stroke: Recent developments in positron emission tomography. Biochim Biophys Acta Mol Basis Dis 2015; 1862:425-41. [PMID: 26643549 DOI: 10.1016/j.bbadis.2015.11.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/09/2015] [Accepted: 11/19/2015] [Indexed: 12/13/2022]
Abstract
Neuroinflammation is thought to play a pivotal role in many diseases affecting the brain, including Alzheimer's disease, multiple sclerosis and stroke. Neuroinflammation is characterised predominantly by microglial activation, which can be visualised using positron emission tomography (PET). Traditionally, translocator protein 18kDa (TSPO) is the target for imaging of neuroinflammation using PET. In this review, recent preclinical and clinical research using PET in Alzheimer's disease, multiple sclerosis and stroke is summarised. In addition, new molecular targets for imaging of neuroinflammation, such as monoamine oxidases, adenosine receptors and cannabinoid receptor type 2, are discussed. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger.
Collapse
Affiliation(s)
- Bieneke Janssen
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands.
| | - Danielle J Vugts
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Uta Funke
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands; BV Cyclotron VU, Amsterdam, The Netherlands
| | - Ger T Molenaar
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands; BV Cyclotron VU, Amsterdam, The Netherlands
| | | | - Bart N M van Berckel
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Adriaan A Lammertsma
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Albert D Windhorst
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Matías-Guiu JA, Cabrera-Martín MN, Matías-Guiu J, Oreja-Guevara C, Riola-Parada C, Moreno-Ramos T, Arrazola J, Carreras JL. Amyloid PET imaging in multiple sclerosis: an (18)F-florbetaben study. BMC Neurol 2015; 15:243. [PMID: 26607782 PMCID: PMC4660647 DOI: 10.1186/s12883-015-0502-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/20/2015] [Indexed: 12/20/2022] Open
Abstract
Background Positron emission tomography (PET) images with amyloid tracers show normal uptake in healthy white matter, which suggests that amyloid tracers are potentially useful for studying such white matter diseases as multiple sclerosis (MS). Methods Twelve patients diagnosed with MS (5 with RRMS, 5 with SPMS, and 2 with PPMS) and 3 healthy controls underwent studies with MRI and 18F-florbetaben-PET imaging. Images were preprocessed using Statistical Parametric Mapping software. We analysed 18F-florbetaben uptake in demyelinating plaques (appearing as hyperintense lesions in FLAIR sequences), in normal-appearing white matter, and in grey matter. Results Mean standardized uptake value relative to cerebellum was higher in normally appearing white matter (NAWM) (1.51 ± 0.12) than in damaged white matter (DWM) (1.24 ± 0.12; P = .002). Mean percentage of change between NAWM and DWM was −17.56 % ± 6.22 %. This percentage of change correlated negatively with EDSS scores (r = −0.61, p < .05) and with age (r = −0.83, p < 0.01). Progressive forms of MS showed a more pronounced reduction of the uptake in DWM in comparison to relapsing-remitting form. Conclusions Uptake of 18F-florbetaben in damaged white matter is lower than that occurring in normally-appearing white matter. These findings indicate that amyloid tracers may be useful in studies of MS, although further research is needed to evaluate the utility of amyloid-PET in monitoring MS progression. Electronic supplementary material The online version of this article (doi:10.1186/s12883-015-0502-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jordi A Matías-Guiu
- Department of Neurology, Hospital Clínico San Carlos. San Carlos Institute for Health Research (IdISSC), Universidad Complutense de Madrid, Calle Profesor Martín Lagos, S/N, Madrid, 28040, Spain.
| | - María Nieves Cabrera-Martín
- Department of Nuclear Medicine, Hospital Clínico San Carlos. San Carlos Institute for Health Research (IdISSC), Universidad Complutense de Madrid, Calle Profesor Martín Lagos, S/N, Madrid, 28040, Spain.
| | - Jorge Matías-Guiu
- Department of Neurology, Hospital Clínico San Carlos. San Carlos Institute for Health Research (IdISSC), Universidad Complutense de Madrid, Calle Profesor Martín Lagos, S/N, Madrid, 28040, Spain.
| | - Celia Oreja-Guevara
- Department of Neurology, Hospital Clínico San Carlos. San Carlos Institute for Health Research (IdISSC), Universidad Complutense de Madrid, Calle Profesor Martín Lagos, S/N, Madrid, 28040, Spain.
| | - Cristina Riola-Parada
- Department of Nuclear Medicine, Hospital Clínico San Carlos. San Carlos Institute for Health Research (IdISSC), Universidad Complutense de Madrid, Calle Profesor Martín Lagos, S/N, Madrid, 28040, Spain.
| | - Teresa Moreno-Ramos
- Department of Neurology, Hospital Clínico San Carlos. San Carlos Institute for Health Research (IdISSC), Universidad Complutense de Madrid, Calle Profesor Martín Lagos, S/N, Madrid, 28040, Spain.
| | - Juan Arrazola
- Department of Radiology, Hospital Clínico San Carlos. San Carlos Institute for Health Research (IdISSC), Universidad Complutense de Madrid, Calle Profesor Martín Lagos, S/N, Madrid, 28040, Spain.
| | - José Luis Carreras
- Department of Nuclear Medicine, Hospital Clínico San Carlos. San Carlos Institute for Health Research (IdISSC), Universidad Complutense de Madrid, Calle Profesor Martín Lagos, S/N, Madrid, 28040, Spain.
| |
Collapse
|