1
|
Plank JR, Gozdas E, Dai E, McGhee CA, Raman MM, Green T. Elucidating Microstructural Alterations in Neurodevelopmental Disorders: Application of Advanced Diffusion-Weighted Imaging in Children With Rasopathies. Hum Brain Mapp 2024; 45:e70087. [PMID: 39665502 PMCID: PMC11635693 DOI: 10.1002/hbm.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/01/2024] [Accepted: 11/17/2024] [Indexed: 12/13/2024] Open
Abstract
Neurodevelopmental disorders (NDDs) can severely impact functioning yet effective treatments are limited. Greater insight into the neurobiology underlying NDDs is critical to the development of successful treatments. Using a genetics-first approach, we investigated the potential of advanced diffusion-weighted imaging (DWI) techniques to characterize the neural microstructure unique to neurofibromatosis type 1 (NF1) and Noonan syndrome (NS). In this prospective study, children with NF1, NS, and typical developing (TD) were scanned using a multi-shell DWI sequence optimized for neurite orientation density and dispersion imaging (NODDI) and diffusion kurtosis imaging (DKI). Region-of-interest and tract-based analysis were conducted on subcortical regions and white matter tracts. Analysis of covariance, principal components, and linear discriminant analysis compared between three groups. 88 participants (Mage = 9.36, SDage = 2.61; 44 male) were included: 31 NS, 25 NF1, and 32 TD. Subcortical regions differed between NF1 and NS, particularly in the thalamus where the neurite density index (NDI; estimated difference 0.044 [95% CI: -0.034, 0.053], d = 2.36), orientation dispersion index (ODI; estimate 0.018 [95% CI: 0.010, 0.026], d = 1.39), and mean kurtosis (MK; estimate 0.049 [95% CI: 0.025, 0.072], d = 1.39) were lower in NF1 compared with NS (all p < 0.0001). Reduced NDI was found in NF1 and NS compared with TD in all 39 white matter tracts investigated (p < 0.0001). Reduced MK was found in a majority of the tracts in NF1 and NS relative to TD, while fewer differences in ODI were observed. The middle cerebellar peduncle showed lower NDI (estimate 0.038 [95% CI: 0.021, 0.056], p < 0.0001) and MK (estimate 0.057 [95% CI: 0.026, 0.089], p < 0.0001) in NF1 compared to NS. Multivariate analyses distinguished between groups using NDI, ODI, and MK measures. Principal components analysis confirmed that the clinical groups differ most from TD in white matter tract-based NDI and MK, whereas ODI values appear similar across the groups. The subcortical regions showed several differences between NF1 and NS, to the extent that a linear discriminant analysis could classify participants with NF1 with an accuracy rate of 97%. Differences in neural microstructure were detected between NF1 and NS, particularly in subcortical regions and the middle cerebellar peduncle, in line with pre-clinical evidence. Advanced DWI techniques detected subtle alterations not found in prior work using conventional diffusion tensor imaging.
Collapse
Affiliation(s)
- Julia R. Plank
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral SciencesStanford UniversityPalo AltoCaliforniaUSA
| | - Elveda Gozdas
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral SciencesStanford UniversityPalo AltoCaliforniaUSA
| | - Erpeng Dai
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
| | - Chloe A. McGhee
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral SciencesStanford UniversityPalo AltoCaliforniaUSA
| | - Mira M. Raman
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral SciencesStanford UniversityPalo AltoCaliforniaUSA
| | - Tamar Green
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral SciencesStanford UniversityPalo AltoCaliforniaUSA
| |
Collapse
|
2
|
Yasumitsu-Lovell K, Thompson L, Fernell E, Eitoku M, Suganuma N, Gillberg C. Validity of the ESSENCE-Q neurodevelopmental screening tool in Japan. Dev Med Child Neurol 2024; 66:1611-1621. [PMID: 38760958 DOI: 10.1111/dmcn.15956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 05/20/2024]
Abstract
AIM To assess the validity of the Early Symptomatic Syndromes Eliciting Neurodevelopmental Clinical Examinations-Questionnaire (ESSENCE-Q), a simple screening tool for neurodevelopmental problems, in Japan. METHOD Parents/caregivers completed the 11-item ESSENCE-Q for 77 612 children aged 2 years 6 months included in a national birth cohort study. Information about neurodevelopmental disorders (NDDs: autism spectrum disorder; intellectual disability and/or developmental language disorder; motor delay/motor disorder) was collected at age 3 years. Each ESSENCE-Q item was scored on a binary (0,1) scale, with a total score range of 0 to 11. Total scores and individual items were compared across children with and without NDDs. RESULTS NDDs were recorded in 854 children (1.1%). With a total ESSENCE-Q score cut-off of ≥3, receiver operating characteristic curve analysis showed an area under the curve of 0.91, with sensitivity 84.9%, specificity 84.8%, positive predictive value 5.9%, and negative predictive value 99.8%. The proportion of parental concerns at 2 years 6 months differed significantly by NDD status for communication (89.5% vs 14.2%) and general development (80.2% vs 7.4%). ESSENCE-Q total scores were moderately negatively correlated (-0.36, p < 0.001) with Japanese Ages and Stages Questionnaire scores. INTERPRETATION The parent/caregiver-completed ESSENCE-Q is useful as a tool for screening out children with neurotypical development at this early age. Further research into longer-term predictive validity will be possible as more NDD diagnoses are given as the children grow up.
Collapse
Affiliation(s)
- Kahoko Yasumitsu-Lovell
- Gillberg Neuropsychiatry Centre, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Kochi Gillberg Neuropsychiatry Centre, Kochi, Japan
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Kochi, Japan
| | - Lucy Thompson
- Gillberg Neuropsychiatry Centre, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Applied Health Sciences, University of Aberdeen, Aberdeen, UK
| | - Elisabeth Fernell
- Gillberg Neuropsychiatry Centre, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Masamitsu Eitoku
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Kochi, Japan
| | - Narufumi Suganuma
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Kochi, Japan
| | - Christopher Gillberg
- Gillberg Neuropsychiatry Centre, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Kochi Gillberg Neuropsychiatry Centre, Kochi, Japan
- Department of Environmental Medicine, Kochi Medical School, Kochi University, Kochi, Japan
- School of Health and Wellbeing, University of Glasgow, Glasgow, UK
| |
Collapse
|
3
|
Brown RE. Measuring the replicability of our own research. J Neurosci Methods 2024; 406:110111. [PMID: 38521128 DOI: 10.1016/j.jneumeth.2024.110111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
In the study of transgenic mouse models of neurodevelopmental and neurodegenerative disorders, we use batteries of tests to measure deficits in behaviour and from the results of these tests, we make inferences about the mental states of the mice that we interpret as deficits in "learning", "memory", "anxiety", "depression", etc. This paper discusses the problems of determining whether a particular transgenic mouse is a valid mouse model of disease X, the problem of background strains, and the question of whether our behavioural tests are measuring what we say they are. The problem of the reliability of results is then discussed: are they replicable between labs and can we replicate our results in our own lab? This involves the study of intra- and inter- experimenter reliability. The variables that influence replicability and the importance of conducting a complete behavioural phenotype: sensory, motor, cognitive and social emotional behaviour are discussed. Then the thorny question of failure to replicate is examined: Is it a curse or a blessing? Finally, the role of failure in research and what it tells us about our research paradigms is examined.
Collapse
Affiliation(s)
- Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
4
|
Cho CH, Deyneko IV, Cordova-Martinez D, Vazquez J, Maguire AS, Diaz JR, Carbonell AU, Tindi JO, Cui MH, Fleysher R, Molholm S, Lipton ML, Branch CA, Hodgson L, Jordan BA. ANKS1B encoded AIDA-1 regulates social behaviors by controlling oligodendrocyte function. Nat Commun 2023; 14:8499. [PMID: 38129387 PMCID: PMC10739966 DOI: 10.1038/s41467-023-43438-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 11/09/2023] [Indexed: 12/23/2023] Open
Abstract
Heterozygous deletions in the ANKS1B gene cause ANKS1B neurodevelopmental syndrome (ANDS), a rare genetic disease characterized by autism spectrum disorder (ASD), attention deficit/hyperactivity disorder, and speech and motor deficits. The ANKS1B gene encodes for AIDA-1, a protein that is enriched at neuronal synapses and regulates synaptic plasticity. Here we report an unexpected role for oligodendroglial deficits in ANDS pathophysiology. We show that Anks1b-deficient mouse models display deficits in oligodendrocyte maturation, myelination, and Rac1 function, and recapitulate white matter abnormalities observed in ANDS patients. Selective loss of Anks1b from the oligodendrocyte lineage, but not from neuronal populations, leads to deficits in social preference and sensory reactivity previously observed in a brain-wide Anks1b haploinsufficiency model. Furthermore, we find that clemastine, an antihistamine shown to increase oligodendrocyte precursor cell maturation and central nervous system myelination, rescues deficits in social preference in 7-month-old Anks1b-deficient mice. Our work shows that deficits in social behaviors present in ANDS may originate from abnormal Rac1 activity within oligodendrocytes.
Collapse
Affiliation(s)
- Chang Hoon Cho
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Human Pathobiology and OMNI Reverse Translation, Genentech, Inc., San Francisco, CA, USA
| | - Ilana Vasilisa Deyneko
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dylann Cordova-Martinez
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Juan Vazquez
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anne S Maguire
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jenny R Diaz
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Abigail U Carbonell
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jaafar O Tindi
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Min-Hui Cui
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Roman Fleysher
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sophie Molholm
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michael L Lipton
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Craig A Branch
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Louis Hodgson
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bryen A Jordan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
5
|
Genetically modified mice for research on human diseases: A triumph for Biotechnology or a work in progress? THE EUROBIOTECH JOURNAL 2022. [DOI: 10.2478/ebtj-2022-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
Abstract
Genetically modified mice are engineered as models for human diseases. These mouse models include inbred strains, mutants, gene knockouts, gene knockins, and ‘humanized’ mice. Each mouse model is engineered to mimic a specific disease based on a theory of the genetic basis of that disease. For example, to test the amyloid theory of Alzheimer’s disease, mice with amyloid precursor protein genes are engineered, and to test the tau theory, mice with tau genes are engineered. This paper discusses the importance of mouse models in basic research, drug discovery, and translational research, and examines the question of how to define the “best” mouse model of a disease. The critiques of animal models and the caveats in translating the results from animal models to the treatment of human disease are discussed. Since many diseases are heritable, multigenic, age-related and experience-dependent, resulting from multiple gene-gene and gene-environment interactions, it will be essential to develop mouse models that reflect these genetic, epigenetic and environmental factors from a developmental perspective. Such models would provide further insight into disease emergence, progression and the ability to model two-hit and multi-hit theories of disease. The summary examines the biotechnology for creating genetically modified mice which reflect these factors and how they might be used to discover new treatments for complex human diseases such as cancers, neurodevelopmental and neurodegenerative diseases.
Collapse
|
6
|
Sanz FJ, Solana-Manrique C, Torres J, Masiá E, Vicent MJ, Paricio N. A High-Throughput Chemical Screen in DJ-1β Mutant Flies Identifies Zaprinast as a Potential Parkinson's Disease Treatment. Neurotherapeutics 2021; 18:2565-2578. [PMID: 34697772 PMCID: PMC8804136 DOI: 10.1007/s13311-021-01134-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Dopamine replacement represents the standard therapy for Parkinson's disease (PD), a common, chronic, and incurable neurological disorder; however, this approach only treats the symptoms of this devastating disease. In the search for novel disease-modifying therapies that target other relevant molecular and cellular mechanisms, Drosophila has emerged as a valuable tool to study neurodegenerative diseases due to the presence of a complex central nervous system, the blood-brain barrier, and a similar neurotransmitter profile to humans. Human PD-related genes also display conservation in flies; DJ-1β is the fly ortholog of DJ-1, a gene for which mutations prompt early-onset recessive PD. Interestingly, flies mutant for DJ-1β exhibit PD-related phenotypes, including motor defects, high oxidative stress (OS) levels and metabolic alterations. To identify novel therapies for PD, we performed an in vivo high-throughput screening assay using DJ-1β mutant flies and compounds from the Prestwick® chemical library. Drugs that improved motor performance in DJ-1ß mutant flies were validated in DJ-1-deficient human neural-like cells, revealing that zaprinast displayed the most significant ability to suppress OS-induced cell death. Zaprinast inhibits phosphodiesterases and activates GPR35, an orphan G-protein-coupled receptor not previously associated with PD. We found that zaprinast exerts its beneficial effect in both fly and human PD models through several disease-modifying mechanisms, including reduced OS levels, attenuated apoptosis, increased mitochondrial viability, and enhanced glycolysis. Therefore, our results support zaprinast as a potential therapeutic for PD in future clinical trials.
Collapse
Affiliation(s)
- Francisco José Sanz
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100, Burjassot, Spain
- Instituto Universitario de Biotecnología Y Biomedicina (BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain
| | - Cristina Solana-Manrique
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100, Burjassot, Spain
- Instituto Universitario de Biotecnología Y Biomedicina (BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain
| | - Josema Torres
- Departamento de Biología Celular, Biología Funcional Y Antropología Física, Facultad CC Biológicas, Universidad de Valencia, 46100, Burjassot, Spain
| | - Esther Masiá
- Polymer Therapeutics Lab and Screening Platform, Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain
| | - María J Vicent
- Polymer Therapeutics Lab and Screening Platform, Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain
| | - Nuria Paricio
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100, Burjassot, Spain.
- Instituto Universitario de Biotecnología Y Biomedicina (BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain.
| |
Collapse
|
7
|
Quantitative neurogenetics: applications in understanding disease. Biochem Soc Trans 2021; 49:1621-1631. [PMID: 34282824 DOI: 10.1042/bst20200732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/11/2021] [Accepted: 06/21/2021] [Indexed: 12/31/2022]
Abstract
Neurodevelopmental and neurodegenerative disorders (NNDs) are a group of conditions with a broad range of core and co-morbidities, associated with dysfunction of the central nervous system. Improvements in high throughput sequencing have led to the detection of putative risk genetic loci for NNDs, however, quantitative neurogenetic approaches need to be further developed in order to establish causality and underlying molecular genetic mechanisms of pathogenesis. Here, we discuss an approach for prioritizing the contribution of genetic risk loci to complex-NND pathogenesis by estimating the possible impacts of these loci on gene regulation. Furthermore, we highlight the use of a tissue-specificity gene expression index and the application of artificial intelligence (AI) to improve the interpretation of the role of genetic risk elements in NND pathogenesis. Given that NND symptoms are associated with brain dysfunction, risk loci with direct, causative actions would comprise genes with essential functions in neural cells that are highly expressed in the brain. Indeed, NND risk genes implicated in brain dysfunction are disproportionately enriched in the brain compared with other tissues, which we refer to as brain-specific expressed genes. In addition, the tissue-specificity gene expression index can be used as a handle to identify non-brain contexts that are involved in NND pathogenesis. Lastly, we discuss how using an AI approach provides the opportunity to integrate the biological impacts of risk loci to identify those putative combinations of causative relationships through which genetic factors contribute to NND pathogenesis.
Collapse
|
8
|
Demin KA, Lakstygal AM, Alekseeva PA, Sysoev M, de Abreu MS, Alpyshov ET, Serikuly N, Wang D, Wang M, Tang Z, Yan D, Strekalova TV, Volgin AD, Amstislavskaya TG, Wang J, Song C, Kalueff AV. The role of intraspecies variation in fish neurobehavioral and neuropharmacological phenotypes in aquatic models. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 210:44-55. [PMID: 30822702 DOI: 10.1016/j.aquatox.2019.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Intraspecies variation is common in both clinical and animal research of various brain disorders. Relatively well-studied in mammals, intraspecies variation in aquatic fish models and its role in their behavioral and pharmacological responses remain poorly understood. Like humans and mammals, fishes show high variance of behavioral and drug-evoked responses, modulated both genetically and environmentally. The zebrafish (Danio rerio) has emerged as a particularly useful model organism tool to access neurobehavioral and drug-evoked responses. Here, we discuss recent findings and the role of the intraspecies variance in neurobehavioral, pharmacological and toxicological studies utilizing zebrafish and other fish models. We also critically evaluate common sources of intraspecies variation and outline potential strategies to improve data reproducibility and translatability.
Collapse
Affiliation(s)
- Konstantin A Demin
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Anton M Lakstygal
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Granov Russian Research Centre of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Polina A Alekseeva
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Maxim Sysoev
- Granov Russian Research Centre of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Murilo S de Abreu
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA; Bioscience Institute, University of Passo Fundo, Passo Fundo, RS, Brazil
| | | | - Nazar Serikuly
- School of Pharmacy, Southwest University, Chongqing, China
| | - DongMei Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - MengYao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - ZhiChong Tang
- School of Pharmacy, Southwest University, Chongqing, China
| | - DongNi Yan
- School of Pharmacy, Southwest University, Chongqing, China
| | - Tatyana V Strekalova
- Department of Neuroscience, Maastricht University, Maastricht, Netherlands; Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Andrey D Volgin
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | | | - JiaJia Wang
- Research Institute of Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Cai Song
- Research Institute of Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA; Ural Federal University, Ekaterinburg, Russia; ZENEREI Research Center, Slidell, LA, USA; Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Granov Russian Research Centre of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.
| |
Collapse
|
9
|
Zucker I. Psychoactive drug exposure during breastfeeding: a critical need for preclinical behavioral testing. Psychopharmacology (Berl) 2018; 235:1335-1346. [PMID: 29549392 DOI: 10.1007/s00213-018-4873-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/26/2018] [Indexed: 12/11/2022]
Abstract
Breastfeeding women are excluded from clinical trials of psychoactive drugs because of ethical concerns. Animal testing, which often is predictive of adverse effects in humans, represents the only avenue available for assessing drug safety for human offspring exposed to drugs during lactation. I determined whether behavioral outcomes for children exposed during breastfeeding to antidepressants, anxiolytics, antipsychotics, anti-seizure medications, analgesics, sedatives, and marijuana can be predicted by rodent studies of offspring exposed to drugs during lactation. Animal data were available for only 10 of 80 CNS-active drugs canvassed. Behavioral deficits in adolescence or adulthood in rats and mice after various drug exposures during lactation included reductions in sexual behavior, increased anxiety, hyperactivity, and impaired learning and memory. Whether similar adverse effects will emerge in adulthood in children exposed to drugs during breastfeeding is unknown. Rodent research has the potential to forecast impairments in breastfed children long before information emerges from post-marketing reports and should be prioritized during preclinical drug evaluation by the FDA for new drugs and for drugs currently prescribed off-label for lactating women.
Collapse
Affiliation(s)
- Irving Zucker
- Departments of Psychology and Integrative Biology, University of California, Berkeley, CA, 94720, USA. .,Psychology Department, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
10
|
Bednarz HM, Kana RK. Advances, challenges, and promises in pediatric neuroimaging of neurodevelopmental disorders. Neurosci Biobehav Rev 2018; 90:50-69. [PMID: 29608989 DOI: 10.1016/j.neubiorev.2018.03.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/26/2018] [Accepted: 03/22/2018] [Indexed: 10/17/2022]
Abstract
Recent years have witnessed the proliferation of neuroimaging studies of neurodevelopmental disorders (NDDs), particularly of children with autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), and Tourette's syndrome (TS). Neuroimaging offers immense potential in understanding the biology of these disorders, and how it relates to clinical symptoms. Neuroimaging techniques, in the long run, may help identify neurobiological markers to assist clinical diagnosis and treatment. However, methodological challenges have affected the progress of clinical neuroimaging. This paper reviews the methodological challenges involved in imaging children with NDDs. Specific topics include correcting for head motion, normalization using pediatric brain templates, accounting for psychotropic medication use, delineating complex developmental trajectories, and overcoming smaller sample sizes. The potential of neuroimaging-based biomarkers and the utility of implementing neuroimaging in a clinical setting are also discussed. Data-sharing approaches, technological advances, and an increase in the number of longitudinal, prospective studies are recommended as future directions. Significant advances have been made already, and future decades will continue to see innovative progress in neuroimaging research endeavors of NDDs.
Collapse
Affiliation(s)
- Haley M Bednarz
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajesh K Kana
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
11
|
Stevanovic D, Knez R, Zorcec T, Anderluh M, Kodrič J, Petrov P, Hadžagić Ćatibušić F, Deljković A, Brkic Cvetkovic S, Vrljičak Davidovic N, Kuzmanić Šamija R, Đorić A, Gillberg C. ESSENCE-Q: Slavic language versions for developmental screening in young children. Neuropsychiatr Dis Treat 2018; 14:2141-2148. [PMID: 30197517 PMCID: PMC6112800 DOI: 10.2147/ndt.s171359] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The Early Symptomatic Syndromes Eliciting Neurodevelopmental Clinical Examinations - Questionnaire (ESSENCE-Q) was developed as a brief screener to identify children with developmental concerns who might have neurodevelopmental disorders (NDDs). This study aimed to translate the ESSENCE-Q into south Slavic languages, namely, Bosnian, Bulgarian, Croatian, Macedonian, Montenegrin, Serbian, and Slovenian, and to evaluate its psychometric properties for screening purposes in clinical settings. PATIENTS AND METHODS In the study, the ESSENCE-Q was completed for 251 "typically developing" children and 200 children with 1 or more diagnosed NDDs, all aged 1-6 years. Internal consistency and construct validity were tested first, followed by generating receiver operating characteristic curves and the area under the curve. Optimal cutoff values were then explored. RESULTS The Cronbach's α coefficients were 0.91, 0.88, and 0.86 for ESSENCE-Q parent-completed form, and the telephone and direct interview forms administered by trained nurse or specialist, respectively. The 3 versions produced area under the curve values (95% confidence interval): 0.96 (0.93-0.99), 0.91 (0.86-0.95), and 0.91 (0.86-0.97), respectively. An optimal cutoff for ESSENCE-Q parent-completed form was found to be ≥3 points, while for the telephone and direct interviews, it was ≥5 points. CONCLUSION We found adequate measurement properties of the south Slavic languages versions of the ESSENCE-Q as a screener for NDDs in clinical settings. This study provided additional data supporting sound psychometric properties of the ESSENCE-Q.
Collapse
Affiliation(s)
- Dejan Stevanovic
- Psychiatry Department, Clinic for Neurology and Psychiatry for Children and Youth, Belgrade, Serbia,
| | - Rajna Knez
- Department of Child and Adolescent Psychiatry, Skaraborgs Hospital, Skövde, Sweden.,Department of Psychiatry and Psychological Medicine, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Tatjana Zorcec
- Developmental Department, University Children's Hospital, Skopje, Macedonia
| | - Marija Anderluh
- Department of Child Psychiatry, University Children's Hospital, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Jana Kodrič
- Department of Child Psychiatry, University Children's Hospital, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Petar Petrov
- Department of Child and Adolescent Psychiatry, University Hospital St Marina, Varna, Bulgaria
| | | | - Azra Deljković
- Psychiatry Department, Mental Health Center Pljevlja, Pljevlja, Montenegro
| | - Slavica Brkic Cvetkovic
- Psychiatry Department, Clinic for Neurology and Psychiatry for Children and Youth, Belgrade, Serbia,
| | | | | | - Ana Đorić
- Center of Applied Psychology, Faculty of Humanity and Social Sciences, University of Rijeka, Rijeka, Croatia
| | | |
Collapse
|
12
|
McArthur RA. Aligning physiology with psychology: Translational neuroscience in neuropsychiatric drug discovery. Neurosci Biobehav Rev 2017; 76:4-21. [DOI: 10.1016/j.neubiorev.2017.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 02/03/2017] [Indexed: 12/12/2022]
|
13
|
Neurogenetics of developmental dyslexia: from genes to behavior through brain neuroimaging and cognitive and sensorial mechanisms. Transl Psychiatry 2017; 7:e987. [PMID: 28045463 PMCID: PMC5545717 DOI: 10.1038/tp.2016.240] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 10/15/2016] [Indexed: 01/18/2023] Open
Abstract
Developmental dyslexia (DD) is a complex neurodevelopmental deficit characterized by impaired reading acquisition, in spite of adequate neurological and sensorial conditions, educational opportunities and normal intelligence. Despite the successful characterization of DD-susceptibility genes, we are far from understanding the molecular etiological pathways underlying the development of reading (dis)ability. By focusing mainly on clinical phenotypes, the molecular genetics approach has yielded mixed results. More optimally reduced measures of functioning, that is, intermediate phenotypes (IPs), represent a target for researching disease-associated genetic variants and for elucidating the underlying mechanisms. Imaging data provide a viable IP for complex neurobehavioral disorders and have been extensively used to investigate both morphological, structural and functional brain abnormalities in DD. Performing joint genetic and neuroimaging studies in humans is an emerging strategy to link DD-candidate genes to the brain structure and function. A limited number of studies has already pursued the imaging-genetics integration in DD. However, the results are still not sufficient to unravel the complexity of the reading circuit due to heterogeneous study design and data processing. Here, we propose an interdisciplinary, multilevel, imaging-genetic approach to disentangle the pathways from genes to behavior. As the presence of putative functional genetic variants has been provided and as genetic associations with specific cognitive/sensorial mechanisms have been reported, new hypothesis-driven imaging-genetic studies must gain momentum. This approach would lead to the optimization of diagnostic criteria and to the early identification of 'biologically at-risk' children, supporting the definition of adequate and well-timed prevention strategies and the implementation of novel, specific remediation approach.
Collapse
|
14
|
Morozova A, Zubkov E, Strekalova T, Kekelidze Z, Storozeva Z, Schroeter CA, Bazhenova N, Lesch KP, Cline BH, Chekhonin V. Ultrasound of alternating frequencies and variable emotional impact evokes depressive syndrome in mice and rats. Prog Neuropsychopharmacol Biol Psychiatry 2016; 68:52-63. [PMID: 27036099 DOI: 10.1016/j.pnpbp.2016.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/29/2016] [Accepted: 03/11/2016] [Indexed: 01/06/2023]
Abstract
Emotional stress is primarily triggered by the cognitive processing of negative input; it is regarded as a serious pathogenetic factor of depression that is challenging to model in animals. While available stress paradigms achieve considerable face and construct validity in modelling depressive disorders, broader use of naturalistic stressors instead of the more prevalent models with artificial challenges inducing physical discomfort or pain may substantially contribute to the development of novel antidepressants. Here, we investigated whether a 3-week exposure of Wistar rats and Balb/c mice to unpredictably alternating frequencies of ultrasound between the ranges of 20-25 and 25-45kHz, which are known to correspond with an emotionally negative and with a neutral emotional state, respectively, for small rodents in nature, can induce behavioural and molecular depressive-like changes. Both rats and mice displayed decreased sucrose preference, elevated "despair" behaviour in a swim test, reduced locomotion and social exploration. Rats showed an increased expression of SERT and 5-HT2A receptor, a decreased expression of 5-HT1A receptor in the prefrontal cortex and hippocampus, diminished BDNF on gene and protein levels in the hippocampus. Fluoxetine, administered to rats at the dose of 10mg/kg, largely precluded behavioural depressive-like changes. Thus, the here applied paradigm of emotional stress is generating an experimental depressive state in rodents, which is not related to any physical stressors or pain. In essence, this ultrasound stress model, besides enhancing animal welfare, is likely to provide improved validity in the modelling of clinical depression and may help advance translational research and drug discovery for this disorder.
Collapse
Affiliation(s)
- Anna Morozova
- Department of Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Center for Psychiatry and Narcology, Moscow, Russia; Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Eugene Zubkov
- Department of Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Center for Psychiatry and Narcology, Moscow, Russia; Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Tatyana Strekalova
- Department of Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Zurab Kekelidze
- Department of Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - Zinaida Storozeva
- Department of Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | | | - Nataliia Bazhenova
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Brandon H Cline
- INSERM U1119, FMTS, Université de Strasbourg, Faculté de Médecine, Strasbourg, France.
| | - Vladimir Chekhonin
- Department of Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Center for Psychiatry and Narcology, Moscow, Russia; Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia.
| |
Collapse
|