1
|
Hussain A, Azam S, Maqsood R, Anwar R, Akash MSH, Hussain H, Wang D, Imran M, Kotwica-Mojzych K, Khan S, Hussain S, Ayub MA. Chemistry, biosynthesis, and theranostics of antioxidant flavonoids and polyphenolics of genus Rhododendron: an overview. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1171-1214. [PMID: 39276249 DOI: 10.1007/s00210-024-03428-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024]
Abstract
The genus Rhododendron is an ancient and most widely distributed genus of the family Ericaceae consisting of evergreen plant species that have been utilized as traditional medicine since a very long time for the treatment of various ailments including pain, asthma, inflammation, cold, and acute bronchitis. The chemistry of polyphenolics isolated from a number of species of the genus Rhododendron has been investigated. During the currently designed study, an in-depth study on the phytochemistry, natural distribution, biosynthesis, and pharmacological properties including their potential capability as free radical scavengers has been conducted. This work provides structural characteristics of phenolic compounds isolated from the species of Rhododendron with remarkable antioxidant potential. In addition, biosynthesis and theranostic study have also been encompassed with the aims to furnish a wide platform of valuable information for designing of new drug entities. The detailed information including names, structural features, origins, classification, biosynthetic pathways, theranostics, and pharmacological effects of about 171 phenolics and flavonoids isolated from the 36 plant species of the genus Rhododendron with the antioxidant potential has been covered in this manuscript. This study demonstrated that species of Rhododendron genus have excellent antioxidant activities and great potential as a source for natural health products. This comprehensive review might serve as a foundation for more investigation into the Rhododendron genus.
Collapse
Affiliation(s)
- Amjad Hussain
- Institute of Chemistry, University of Okara, Okara, 56300, Pakistan.
| | - Sajjad Azam
- Institute of Chemistry, University of Okara, Okara, 56300, Pakistan
| | - Rabia Maqsood
- Institute of Chemistry, University of Okara, Okara, 56300, Pakistan
| | - Riaz Anwar
- Institute of Chemistry, University of Okara, Okara, 56300, Pakistan
| | | | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120, Halle (Saale), Germany
| | - Daijie Wang
- School of Pharmaceutical Sciences and Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Katarzyna Kotwica-Mojzych
- Chair of Fundamental Sciences, Department of Histology, Embryology and Cytophysiology, Medical University of Lublin, Radziwillowska 11, 20-080, Lublin, Poland
| | - Shoaib Khan
- Department of Chemistry, Abbottabad University of Science and Technology (AUST), Havelian, Abbottabad, Pakistan
| | - Shabbir Hussain
- Department of Chemistry, Karakoram International University (KIU), Gilgit, Gilgit-Baltistan, 15100, Pakistan
| | | |
Collapse
|
2
|
Sabaghi V, Davar F, Rashidi-Ranjbar P, Sharif-Paghaleh E. Hierarchical design of intelligent α-MnO2-based theranostics nanoplatform for TME-activated drug delivery and T1-weighted MRI. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
3
|
Patil TV, Lim KT. Fundamental in Polymer-/Nanohybrid-Based Nanorobotics for Theranostics. NANOROBOTICS AND NANODIAGNOSTICS IN INTEGRATIVE BIOLOGY AND BIOMEDICINE 2023:79-108. [DOI: 10.1007/978-3-031-16084-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Simões JCS, Sarpaki S, Papadimitroulas P, Therrien B, Loudos G. Conjugated Photosensitizers for Imaging and PDT in Cancer Research. J Med Chem 2020; 63:14119-14150. [PMID: 32990442 DOI: 10.1021/acs.jmedchem.0c00047] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Early cancer detection and perfect understanding of the disease are imperative toward efficient treatments. It is straightforward that, for choosing a specific cancer treatment methodology, diagnostic agents undertake a critical role. Imaging is an extremely intriguing tool since it assumes a follow up to treatments to survey the accomplishment of the treatment and to recognize any conceivable repeating injuries. It also permits analysis of the disease, as well as to pursue treatment and monitor the possible changes that happen on the tumor. Likewise, it allows screening the adequacy of treatment and visualizing the state of the tumor. Additionally, when the treatment is finished, observing the patient is imperative to evaluate the treatment methodology and adjust the treatment if necessary. The goal of this review is to present an overview of conjugated photosensitizers for imaging and therapy.
Collapse
Affiliation(s)
- João C S Simões
- Institute of Chemistry, University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland.,BioEmission Technology Solutions, Alexandras Avenue 116, 11472 Athens, Greece
| | - Sophia Sarpaki
- BioEmission Technology Solutions, Alexandras Avenue 116, 11472 Athens, Greece
| | | | - Bruno Therrien
- Institute of Chemistry, University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland
| | - George Loudos
- BioEmission Technology Solutions, Alexandras Avenue 116, 11472 Athens, Greece
| |
Collapse
|
5
|
Wu C, Wu KJ, Liu JB, Zhou XM, Leung CH, Ma DL. A dual-functional molecular strategy for in situ suppressing and visualizing of neuraminidase in aqueous solution using iridium(iii) complexes. Chem Commun (Camb) 2019; 55:6353-6356. [PMID: 31065657 DOI: 10.1039/c9cc02189b] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have designed for the first time a dual-functional luminescent probe and inhibitor of neuraminidase (NA), a key influenza target. The lead iridium(iii) complex exhibited enhanced inhibition against NA compared to the FDA-approved antiviral drug, oseltamivir, and could detect NA even in the presence of an autofluorescent background.
Collapse
Affiliation(s)
- Chun Wu
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, China.
| | | | | | | | | | | |
Collapse
|
6
|
Tayeb HH, Sainsbury F. Nanoemulsions in drug delivery: formulation to medical application. Nanomedicine (Lond) 2018; 13:2507-2525. [DOI: 10.2217/nnm-2018-0088] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Nanoscale oil-in-water emulsions (NEs), heterogeneous systems of two immiscible liquids stabilized by emulsifiers or surfactants, show great potential in medical applications because of their attractive characteristics for drug delivery. NEs have been explored as therapeutic carriers for hydrophobic compounds via various routes of administration. NEs provide opportunities to improve drug delivery via alternative administration routes. However, deep understanding of the NE manufacturing and functionalization fundamentals, and how they relate to the choice of administration route and pharmacological profile is still needed to ease the clinical translation of NEs. Here, we review the diversity of medical applications for NEs and how that governs their formulation, route of administration, and the emergence of increasing sophistication in NE design for specific application.
Collapse
Affiliation(s)
- Hossam H Tayeb
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- Faculty of Applied Medical Sciences, King Abdul Abdul-Aziz University, Jeddah, Kingdom of Saudi Arabia
| | - Frank Sainsbury
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
7
|
Awojoyogbe BO, Dada MO. Computational Design of an RF Controlled Theranostic Model for Evaluation of Tissue Biothermal Response. J Med Biol Eng 2018. [DOI: 10.1007/s40846-018-0386-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
8
|
Polyelectrolyte nanocapsules containing iron oxide nanoparticles as MRI detectable drug delivery system. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.04.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Blau R, Krivitsky A, Epshtein Y, Satchi-Fainaro R. Are nanotheranostics and nanodiagnostics-guided drug delivery stepping stones towards precision medicine? Drug Resist Updat 2016; 27:39-58. [PMID: 27449597 DOI: 10.1016/j.drup.2016.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/01/2016] [Accepted: 06/09/2016] [Indexed: 12/12/2022]
Abstract
The progress in medical research has led to the understanding that cancer is a large group of heterogeneous diseases, with high variability between and within individuals. This variability sprouted the ambitious goal to improve therapeutic outcomes, while minimizing drug adverse effects through stratification of patients by the differences in their disease markers, in a personalized manner, as opposed to the strategy of "one therapy fits all". Nanotheranostics, composed of nanoparticles (NPs) carrying therapeutic and/or diagnostics probes, have the potential to revolutionize personalized medicine. There are different modalities to combine these two distinct fields into one system for a synergistic outcome. The addition of a nanocarrier to a theranostic system holds great promise. Nanocarriers possess high surface area, enabling sophisticated functionalization with imaging agents, thus gaining enhanced diagnostic ability in real-time. Yet, most of the FDA-approved theranostic approaches are based on small molecules. The theranostic approaches that are reviewed herein are paving the road towards personalized medicine through all stages of patient care: starting from screening and diagnostics, proceeding to treatment and ending with treatment follow-up. Our current review provides a broad background and highlights new insights for the rational design of theranostic nanosystems for desired therapeutic niches, while summoning the hurdles on their way to become first-line diagnostics and therapeutics for cancer patients.
Collapse
Affiliation(s)
- Rachel Blau
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adva Krivitsky
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yana Epshtein
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
10
|
Crawley N, Thompson M, Romaschin A. Theranostics in the Growing Field of Personalized Medicine: An Analytical Chemistry Perspective. Anal Chem 2013; 86:130-60. [DOI: 10.1021/ac4038812] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Niall Crawley
- Department
of Chemistry and
Institute for Biomaterials and Biomedical Engineering, University of Toronto, 80 St. George Street, Toronto, Ontario M5 S 3H6, Canada
| | - Michael Thompson
- Department
of Chemistry and
Institute for Biomaterials and Biomedical Engineering, University of Toronto, 80 St. George Street, Toronto, Ontario M5 S 3H6, Canada
| | - Alexander Romaschin
- Keenan Research Centre and
Clinical Biochemistry, St. Michael’s Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada
| |
Collapse
|
11
|
Abstract
Employing theranostic nanoparticles, which combine both therapeutic and diagnostic capabilities in one dose, has promise to propel the biomedical field toward personalized medicine. This review presents an overview of different theranostic strategies developed for the diagnosis and treatment of disease, with an emphasis on cancer. Herein, therapeutic strategies such as nucleic acid delivery, chemotherapy, hyperthermia (photothermal ablation), photodynamic, and radiation therapy are combined with one or more imaging functionalities for both in vitro and in vivo studies. Different imaging probes, such as MRI contrast agents (T(1) and T(2) agents), fluorescent markers (organic dyes and inorganic quantum dots), and nuclear imaging agents (PET/SPECT agents), can be decorated onto therapeutic agents or therapeutic delivery vehicles in order to facilitate their imaging and, in so doing, gain information about the trafficking pathway, kinetics of delivery, and therapeutic efficacy; several such strategies are outlined. The creative approaches being developed for these classes of therapies and imaging modalities are discussed, and the recent developments in this field along with examples of technologies that hold promise for the future of cancer medicine are highlighted.
Collapse
Affiliation(s)
- Sneha S Kelkar
- Department of Chemistry and Macromolecular and Interfaces Institute Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, United States
| | | |
Collapse
|