1
|
de Souza S, Laumet S, Inyang KE, Hua H, Sim J, Folger JK, Moeser AJ, Laumet G. Mast cell-derived chymases are essential for the resolution of inflammatory pain in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606617. [PMID: 39211156 PMCID: PMC11361099 DOI: 10.1101/2024.08.05.606617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Immune cells play a critical role in the transition from acute to chronic pain. However, the role of mast cells in pain remains under-investigated. Here, we demonstrated that the resolution of inflammatory pain is markedly delayed in mast-cell-deficient mice. In response to Complete Freund Adjuvant (CFA), mast-cell-deficient mice showed greater levels of nitric oxide and altered cytokine/chemokine profile in inflamed skin in both sexes. In Wild-Type (WT) mice, the number of mast cell and mast cell-derived chymases; chymase 1 (CMA1) and mast cell protease 4 (MCPT4) increased in the inflamed skin. Inhibiting chymase enzymatic activity delayed the resolution of inflammatory pain. Consistently, local pharmacological administration of recombinant CMA1 and MCPT4 promoted the resolution of pain hypersensitivity and attenuated the upregulation of cytokines and chemokines under inflammation. We identified CCL9 as a target of MCPT4. Inhibition of CCL9 promoted recruitment of CD206 + myeloid cells and alleviated inflammatory pain. Our work reveals a new role of mast cell-derived chymases in preventing the transition from acute to chronic pain and suggests new therapeutic avenues for the treatment of inflammatory pain. Summary Mast cell-derived chymases play an unexpected role in the resolution of inflammatory pain and regulate the immune response. Graphical abstract
Collapse
|
2
|
El-Fatatry BM, El-Haggar SM, Ibrahim OM, Shalaby KH. Repurposing fexofenadine as a promising candidate for diabetic kidney disease: randomized clinical trial. Int Urol Nephrol 2024; 56:1395-1402. [PMID: 37741921 PMCID: PMC10923951 DOI: 10.1007/s11255-023-03804-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023]
Abstract
PURPOSE Diabetic kidney disease (DKD) is a devastating complication of diabetes mellitus. Inflammation and histamine are potentially involved in the disease progression. This study aimed to evaluate the role of fexofenadine in patients with DKD. METHODS From January 2020 to February 2022, out of 123 patients screened for eligibility, 61 patients completed the study. Patients were randomized into two groups, the fexofenadine group (n = 30): received ramipril plus fexofenadine, and the control group (n = 31): received ramipril only for six months. Changes in urinary albumin to creatinine ratio (UACR) and estimated glomerular filtration rate (eGFR) were considered primary outcomes. Measurements of urinary cyclophilin A, monocyte chemoattractant protein-1 (MCP-1), 8-hydroxy-2' deoxyguanosine (8-OHdG), and podocalyxin (PCX) were considered secondary outcomes. The study was prospectively registered on clinicaltrial.gov on January 13, 2020, with identification code NCT04224428. RESULTS At the end of the study, fexofenadine reduced UACR by 16% (95% CI, - 23.4% to - 9.3%) versus a noticeable rise of 11% (95% CI, 4.1% to 17.8%) in UACR in the control group, (p < 0.001). No significant difference in eGFR was revealed between the two groups. However, the control group showed a significant decrease of - 3.5% (95% CI, - 6.6% to - 0.3%) in eGFR, compared to its baseline value. This reduction was not reported in the fexofenadine group. Fexofenadine use was associated with a significant decline in MCP-1, 8-OHdG, and PCX compared to baseline values. CONCLUSION Fexofenadine is a possible promising adjuvant therapy in patients with DKD. Further large-scale trials are needed to confirm our preliminary results.
Collapse
Affiliation(s)
- Basma Mahrous El-Fatatry
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Al-Guiesh Street, Tanta, 31527, Egypt.
| | - Sahar Mohamed El-Haggar
- Department of Clinical Pharmacy, Faculty of Pharmacy, Professor of Clinical Pharmacy, Tanta University, Al-Geish Street, Tanta, Egypt
| | - Osama Mohamed Ibrahim
- Department of Clinical Pharmacy, Faculty of Pharmacy, Professor of Clinical Pharmacy, Tanta University, Al-Geish Street, Tanta, Egypt
| | - Khaled Hamed Shalaby
- Department of Internal Medicine, Faculty of Medicine, Lecturer of Internal Medicine, Tanta University, Al-Geish Street, Tanta, Egypt
| |
Collapse
|
3
|
Lagard C, Vodovar D, Chevillard L, Callebert J, Caillé F, Pottier G, Liang H, Risède P, Tournier N, Mégarbane B. Investigation of the Mechanisms of Tramadol-Induced Seizures in Overdose in the Rat. Pharmaceuticals (Basel) 2022; 15:ph15101254. [PMID: 36297366 PMCID: PMC9607071 DOI: 10.3390/ph15101254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Tramadol overdose is frequently associated with the onset of seizures, usually considered as serotonin syndrome manifestations. Recently, the serotoninergic mechanism of tramadol-attributed seizures has been questioned. This study’s aim was to identify the mechanisms involved in tramadol-induced seizures in overdose in rats. The investigations included (1) the effects of specific pretreatments on tramadol-induced seizure onset and brain monoamine concentrations, (2) the interaction between tramadol and γ-aminobutyric acid (GABA)A receptors in vivo in the brain using positron emission tomography (PET) imaging and 11C-flumazenil. Diazepam abolished tramadol-induced seizures, in contrast to naloxone, cyproheptadine and fexofenadine pretreatments. Despite seizure abolishment, diazepam significantly enhanced tramadol-induced increase in the brain serotonin (p < 0.01), histamine (p < 0.01), dopamine (p < 0.05) and norepinephrine (p < 0.05). No displacement of 11C-flumazenil brain kinetics was observed following tramadol administration in contrast to diazepam, suggesting that the observed interaction was not related to a competitive mechanism between tramadol and flumazenil at the benzodiazepine-binding site. Our findings do not support the involvement of serotoninergic, histaminergic, dopaminergic, norepinephrine or opioidergic pathways in tramadol-induced seizures in overdose, but they strongly suggest a tramadol-induced allosteric change of the benzodiazepine-binding site of GABAA receptors. Management of tramadol-poisoned patients should take into account that tramadol-induced seizures are mainly related to a GABAergic pathway.
Collapse
Affiliation(s)
- Camille Lagard
- Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, F-75006 Paris, France
| | - Dominique Vodovar
- Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, F-75006 Paris, France
- Department of Medical and Toxicological Critical Care, AP-HP, Lariboisière Hospital, 75010 Paris, France
- Imagerie Moléculaire In Vivo, IMIV, CEA, INSERM, CNRS, Universités Paris-Sud et Paris-Saclay, 91471 Orsay, France
| | - Lucie Chevillard
- Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, F-75006 Paris, France
| | - Jacques Callebert
- Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, F-75006 Paris, France
- Laboratory of Biochemistry and Molecular Biology, AP-HP, Lariboisière Hospital, 75010 Paris, France
| | - Fabien Caillé
- Imagerie Moléculaire In Vivo, IMIV, CEA, INSERM, CNRS, Universités Paris-Sud et Paris-Saclay, 91471 Orsay, France
| | - Géraldine Pottier
- Imagerie Moléculaire In Vivo, IMIV, CEA, INSERM, CNRS, Universités Paris-Sud et Paris-Saclay, 91471 Orsay, France
| | - Hao Liang
- Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, F-75006 Paris, France
| | - Patricia Risède
- Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, F-75006 Paris, France
| | - Nicolas Tournier
- Imagerie Moléculaire In Vivo, IMIV, CEA, INSERM, CNRS, Universités Paris-Sud et Paris-Saclay, 91471 Orsay, France
| | - Bruno Mégarbane
- Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, F-75006 Paris, France
- Department of Medical and Toxicological Critical Care, AP-HP, Lariboisière Hospital, 75010 Paris, France
- Correspondence: ; Tel.: +33-149-958-961; Fax: +33-149-956-578
| |
Collapse
|
4
|
Cronin SJF, Rao S, Tejada MA, Turnes BL, Licht-Mayer S, Omura T, Brenneis C, Jacobs E, Barrett L, Latremoliere A, Andrews N, Channon KM, Latini A, Arvanites AC, Davidow LS, Costigan M, Rubin LL, Penninger JM, Woolf CJ. Phenotypic drug screen uncovers the metabolic GCH1/BH4 pathway as key regulator of EGFR/KRAS-mediated neuropathic pain and lung cancer. Sci Transl Med 2022; 14:eabj1531. [PMID: 36044597 PMCID: PMC9985140 DOI: 10.1126/scitranslmed.abj1531] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Increased tetrahydrobiopterin (BH4) generated in injured sensory neurons contributes to increased pain sensitivity and its persistence. GTP cyclohydrolase 1 (GCH1) is the rate-limiting enzyme in the de novo BH4 synthetic pathway, and human single-nucleotide polymorphism studies, together with mouse genetic modeling, have demonstrated that decreased GCH1 leads to both reduced BH4 and pain. However, little is known about the regulation of Gch1 expression upon nerve injury and whether this could be modulated as an analgesic therapeutic intervention. We performed a phenotypic screen using about 1000 bioactive compounds, many of which are target-annotated FDA-approved drugs, for their effect on regulating Gch1 expression in rodent injured dorsal root ganglion neurons. From this approach, we uncovered relevant pathways that regulate Gch1 expression in sensory neurons. We report that EGFR/KRAS signaling triggers increased Gch1 expression and contributes to neuropathic pain; conversely, inhibiting EGFR suppressed GCH1 and BH4 and exerted analgesic effects, suggesting a molecular link between EGFR/KRAS and pain perception. We also show that GCH1/BH4 acts downstream of KRAS to drive lung cancer, identifying a potentially druggable pathway. Our screen shows that pharmacologic modulation of GCH1 expression and BH4 could be used to develop pharmacological treatments to alleviate pain and identified a critical role for EGFR-regulated GCH1/BH4 expression in neuropathic pain and cancer in rodents.
Collapse
Affiliation(s)
- Shane J. F. Cronin
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Institute of Molecular Biotechnology Austria (IMBA), Dr. Bohrgasse 3, Vienna A-1030, Austria
| | - Shuan Rao
- Institute of Molecular Biotechnology Austria (IMBA), Dr. Bohrgasse 3, Vienna A-1030, Austria
| | - Miguel A. Tejada
- Institute of Molecular Biotechnology Austria (IMBA), Dr. Bohrgasse 3, Vienna A-1030, Austria
| | - Bruna Lenfers Turnes
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Simon Licht-Mayer
- Institute of Molecular Biotechnology Austria (IMBA), Dr. Bohrgasse 3, Vienna A-1030, Austria
| | - Takao Omura
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Christian Brenneis
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Emily Jacobs
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Lee Barrett
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Alban Latremoliere
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Departments of Neurosurgery and Neuroscience, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Nick Andrews
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Keith M. Channon
- Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Alexandra Latini
- LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Anthony C. Arvanites
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave, Cambridge, MA 02138, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Lance S. Davidow
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave, Cambridge, MA 02138, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Michael Costigan
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Lee L. Rubin
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave, Cambridge, MA 02138, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Josef M. Penninger
- Institute of Molecular Biotechnology Austria (IMBA), Dr. Bohrgasse 3, Vienna A-1030, Austria
- Department of Medical Genetics, Life Sciences Institute, UBC, Vancouver, BC V6T 1Z3, Canada
| | - Clifford J. Woolf
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
5
|
Awad-Igbaria Y, Dadon S, Shamir A, Livoff A, Shlapobersky M, Bornstein J, Palzur E. Characterization of Early Inflammatory Events Leading to Provoked Vulvodynia Development in Rats. J Inflamm Res 2022; 15:3901-3923. [PMID: 35845089 PMCID: PMC9286136 DOI: 10.2147/jir.s367193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/16/2022] [Indexed: 11/23/2022] Open
Abstract
Background Provoked vulvodynia (PV) is the main cause of vulvar pain and dyspareunia. The etiology of PV has not yet been elucidated. However, PV is associated with a history of recurrent inflammation, and its often accompanied by increases in the numbers of mast cells (MCs) and sensory hyperinnervation in the vulva. Therefore, this study aimed to examine the role of MCs and the early inflammatory events in the development of chronic vulvar pain in a rat model of PV. Methods Mechanical and thermal vulvar sensitivity was measured for 5 months following zymosan vulvar challenges. Vulvar changes in glutamate and nerve growth factor (NGF) were analyzed using ELISA. Immunofluorescence (IF) staining of the vulvar section after 20, 81, and 160 days of the zymosan challenge were performed to test MCs accumulation, hyperinnervation, and expression of pain channels (transient receptor potential vanilloid/ankyrin-1-TRPV1 & TRPA1) in vulvar neurons. Changes in the development of vulvar pain were evaluated following the administration of the MCs stabilizer ketotifen fumarate (KF) during zymosan vulvar challenges. Results Zymosan-challenged rats developed significant mechanical and thermal vulvar sensitivity that persisted for over 160 days after the zymosan challenge. During inflammation, increased local concentrations of NGF and glutamate and a robust increase in MCs degranulation were observed in zymosan-challenged rats. In addition, zymosan-challenged rats displayed sensory hyperinnervation and an increase in the expression of TRPV1 and TRPA1. Treatment with KF attenuated the upregulated level of NGF during inflammation, modulated the neuronal modifications, reduced MCs accumulation, and enhanced mechanical hypersensitivity after repeated inflammation challenges. Conclusion The present findings suggest that vulvar hypersensitivity is mediated by MCs accumulation, nerve growth, and neuromodulation of TRPV1 and TRPA1. Hence, KF treatment during the critical period of inflammation contributes to preventing chronic vulvar pain development.
Collapse
Affiliation(s)
- Yaseen Awad-Igbaria
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel.,The Research Institute of Galilee Medical Center, Nahariya, Israel
| | - Shilo Dadon
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel.,The Research Institute of Galilee Medical Center, Nahariya, Israel
| | - Alon Shamir
- Psychobiology Research Laboratory, Mazor Mental Health Center, Akko, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Alejandro Livoff
- Pathology Department, Barzilai University Medical Center, Ashkelon, Israel
| | - Mark Shlapobersky
- Pathology Department, Barzilai University Medical Center, Ashkelon, Israel
| | - Jacob Bornstein
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel.,The Research Institute of Galilee Medical Center, Nahariya, Israel
| | - Eilam Palzur
- The Research Institute of Galilee Medical Center, Nahariya, Israel
| |
Collapse
|
6
|
Kim YM, Hussain Z, Lee YJ, Park H. Altered Intestinal Permeability and Drug Repositioning in a Post-operative Ileus Guinea Pig Model. J Neurogastroenterol Motil 2021; 27:639-649. [PMID: 34642285 PMCID: PMC8521477 DOI: 10.5056/jnm21018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/04/2021] [Accepted: 08/17/2021] [Indexed: 11/22/2022] Open
Abstract
Background/Aims The aim of this study is to identify the alteration in intestinal permeability with regard to the development of post-operative ileus (POI). Moreover, we investigated drug repositioning in the treatment of POI. Methods An experimental POI model was developed using guinea pigs. To measure intestinal permeability, harvested intestinal membranes of the ileum and proximal colon was used in an Ussing chamber. To identify the mechanisms associated with altered permeability, we measured leukocyte count and expression of calprotectin, claudin-1, claudin-2, and mast cell tryptase. We compared control, POI, and drug groups (mosapride [0.3 mg/kg and 1 mg/kg, orally], glutamine [500 mg/kg, orally], or ketotifen [1 mg/kg, orally] with regard to these parameters. Results Increased permeability after surgery significantly decreased after administration of mosapride, glutamine, or ketotifen. Leukocyte counts increased in the POI group and decreased significantly after administration of mosapride (0.3 mg/kg) in the ileum, and mosapride (0.3 mg/kg and 1 mg/kg), glutamine, or ketotifen in the proximal colon. Increased expression of calprotectin after surgery decreased after administration of mosapride (0.3 mg/kg), glutamine, or ketotifen in the ileum and proximal colon, and mosapride (1 mg/kg) in the ileum. The expression of claudin-1 decreased significantly and that of claudin-2 increased after operation. After administration of glutamine, the expression of both proteins was restored. Finally, mast cell tryptase levels increased in the POI group and decreased significantly after administration of ketotifen. Conclusions The alteration in intestinal permeability is one of the factors involved in the pathogenesis of POI. We repositioned 3 drugs (mosapride, glutamine, and ketotifen) as novel therapeutic agents for POI.
Collapse
Affiliation(s)
- Young Min Kim
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Zahid Hussain
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young Ju Lee
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyojin Park
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Mast cell stabilizer ketotifen fumarate reverses inflammatory but not neuropathic-induced mechanical pain in mice. Pain Rep 2021; 6:e902. [PMID: 34104835 PMCID: PMC8177879 DOI: 10.1097/pr9.0000000000000902] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/16/2020] [Accepted: 12/18/2020] [Indexed: 12/17/2022] Open
Abstract
Supplemental Digital Content is Available in the Text. Our preclinical findings indicate that ketotifen fumarate's analgesic effects are MC-dependent, and the case series report presented supports its use for the treatment of chronic pain. Introduction: Mast cell (MC) activation could establish a positive feedback loop that perpetuates inflammation and maintains pain. Stabilizing MCs with ketotifen fumarate (KF) may disrupt this loop and relieve pain. Objective: We aimed to test the effect of treatment with KF in pain assays in mice and in a case series of patients with chronic widespread pain. Methods: The analgesic effect of KF was tested in CD-1 mice injected with formalin, complete Freund's adjuvant, or subjected to spared nerve injury. In addition, wild-type (C57BL/6) and MC-deficient (C57BL/6-KitW-sh/W-sh) mice were injected with formalin or complete Freund's adjuvant and treated with KF. Patients with chronic widespread pain (n = 5; age: 13–16 years) who failed to respond to standard of care participated in a 16-week treatment trial with KF (6 mg/d). Ketotifen fumarate's therapeutic effect was evaluated using the patient global impression of change. Results: In the mouse experiments, KF produced dose- and MC-dependent analgesic effects against mechanical allodynia in the acute and chronic inflammatory pain but not neuropathic pain assays. In the patient case series, 4 patients reported that activity limitations, symptoms, emotions, and overall quality of life related to their pain condition were “better” or “a great deal better” since beginning treatment with KF. This was accompanied by improvements in pain comorbid symptoms. Conclusion: Treatment with KF is capable of reducing established inflammatory-induced mechanical nociception in an MC-dependent manner in mice, and it may be beneficial for the treatment of chronic pain conditions.
Collapse
|
8
|
Abdelzaher WY, AboBakr Ali AHS, El-Tahawy NFG. Mast cell stabilizer modulates Sirt1/Nrf2/TNF pathway and inhibits oxidative stress, inflammation, and apoptosis in rat model of cyclophosphamide hepatotoxicity. Immunopharmacol Immunotoxicol 2020; 42:101-109. [PMID: 32066295 DOI: 10.1080/08923973.2020.1727499] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Objectives: Cyclophosphamide (CYC) is the most common cytotoxic alkylating agent which considered as chemotherapy but its clinical usefulness is challenged with different forms of organ damage including hepatotoxicity. Hepatic mast cells (MC) have an important role in the pathophysiology of liver toxicity. We aimed to evaluate the possible protective effect of mast cell stabilizer, ketotifen in CYC induced-hepatotoxicity.Materials and methods: Twenty-four adult male albino Wistar rats were divided into four groups: control group, ketotifen group (received ketotifen 10 mg/kg/day, p.o.) for 14 days, CYC group (received CYC 200 mg/kg i.p.) as a single dose at the ninth day and ketotifen plus CYC group (received ketotifen and CYC). We measured serum enzyme biomarkers [alanine transaminase (ALT) and aspartate transaminase (AST)], total antioxidant capacity (TAC), interluken-1β (IL-1β), tissue malondialdehyde (MDA), nitric oxide (NOx), reduced glutathione (GSH), P-glycoprotein (P-gp), Sirtuin type 1 (Sirt1) and Nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Furthermore; histological changes, tumor necrosis factor (TNF) and caspase-3 immuno-expressions were evaluated.Results: CYC group showed hepatotoxic effect in the form of a significant increase in ALT, AST, MDA, NOx, IL-1β levels; TNF and caspase-3 immuno-expression. Moreover; it showed toxic histological changes of marked liver injury meanwhile, there is a significant decrease in TAC, GSH, P-gp, Sirt1, and Nrf2 levels. Ketotifen showed a significant improvement in all parameters.Conclusion: Mast cell stabilizer, ketotifen possesses potent ameliorative effects against the hepatotoxic effect of CYC by reducing oxidative stress, inflammatory process, and apoptosis through regulation of Sirt1/Nrf2/TNF pathway.
Collapse
|
9
|
Zhu TH, Zou G, Ding SJ, Li TT, Zhu LB, Wang JZ, Yao YX, Zhang XM. Mast cell stabilizer ketotifen reduces hyperalgesia in a rodent model of surgically induced endometriosis. J Pain Res 2019; 12:1359-1369. [PMID: 31118754 PMCID: PMC6500880 DOI: 10.2147/jpr.s195909] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 03/15/2019] [Indexed: 12/12/2022] Open
Abstract
Purpose: This study aimed to investigate the effect of oral treatment with ketotifen, a mast cell (MC) stabilizer, in a rat model of surgically induced endometriosis. Methods: At 14 days after Sprague-Dawley rats had surgery, they were treated with ketotifen (1 or 10 mg/kg/day). Pain behaviors were evaluated 3 days prior to surgery and then at 7, 14, 21, and 28 days after surgery. At day 28, rats were sacrificed and all samples were then processed for biochemical studies. Results: We found that ketotifen-treated rats showed significantly shorter duration of hyperalgesia (p<0.05); smaller cyst diameter (p<0.05) and lower histopathologic score (p<0.001); significantly lower MC number and degranulation (p<0.001), blood vessel number (p<0.001), lower expression levels of nerve growth factor (p<0.001), cyclooxygenase-2 (p<0.001), intercellular cell adhesion molecule-1 (p<0.001), and vascular endothelial growth factor (p<0.05) in cysts, and nerve growth factor (p<0.001) and transient receptor potential cation channel, subfamily V, member 1 (p<0.001) in dorsal root ganglia; and lower histamine (p<0.05) and tumor necrosis factor-alpha (p<0.05) concentrations in serum compared with placebo-treated animal subjects. Conclusion: Oral treatment with ketotifen significantly suppressed the development of hyperalgesia, probably by modulating MC activity in cysts, thereby reducing peripheral sensitization due to noxious signals from endometriotic lesions. Our results suggest that ketotifen may inhibit the development of endometriotic lesions and hyperalgesia in rats.
Collapse
Affiliation(s)
- Tian-Hong Zhu
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Gen Zou
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Shao-Jie Ding
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Tian-Tian Li
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Li-Bo Zhu
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jian-Zhang Wang
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yong-Xing Yao
- Department of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Xin-Mei Zhang
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
10
|
Khalilzadeh E, Azarpey F, Hazrati R, Vafaei Saiah G. Evaluation of different classes of histamine H 1 and H 2 receptor antagonist effects on neuropathic nociceptive behavior following tibial nerve transection in rats. Eur J Pharmacol 2018; 834:221-229. [PMID: 30009812 DOI: 10.1016/j.ejphar.2018.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/02/2018] [Accepted: 07/12/2018] [Indexed: 12/13/2022]
Abstract
It seems that histamine release in the site of neuronal injury could contribute to the neuropathic pain mechanism. In the present study, we investigated the anti-allodynic effects of chronic administration of different classes of histamine H1 and H2 receptor antagonists on neuropathic nociceptive behavior following tibial nerve transection (TNT) in rats. Peripheral neuropathy was induced by TNT surgery. We performed acetone tests (AT) to record cold allodynia, Von Frey tests (VFT) to measure mechanical allodynia, double plate test (DPT) to evaluate thermal place preference/avoidance and open field test (OFT) for evaluation of animal activity. TNT rats showed a significant mechanical and cold allodynia compared to the sham group. Chlorpheniramine (5 and 15 mg/kg, i.p) significantly attenuated cold allodynia and prevented cold plate avoidance behavior and at the dose of 15 mg/kg remarkably decreased mechanical allodynia. Fexofenadine (10 and 30 mg/kg, p.o) significantly attenuated the mechanical allodynia and prevented cold plate avoidance. Ranitidine (5 and 15 mg/kg, i.p) significantly prevented cold plate avoidance behavior and at the dose of 15 mg/kg notably improved mechanical and cold allodynia. Famotidine (1 and 3 mg/kg, p.o) was ineffective on all nociceptive tests. Gabapantin (100 mg/kg, p.o) significantly improved all types of nociceptive behaviors. These results indicate that both blood brain barrier penetrating (chlorpheniramine) and poorly penetrating (fexofenadine) histamine H1 receptor antagonists could improve the neuropathic pain sign, but only the blood brain barrier penetrating histamine H2 receptor antagonist (ranitidine) could produce anti-allodynic effects in the TNT model of neuropathic pain in rats.
Collapse
Affiliation(s)
- Emad Khalilzadeh
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Farzin Azarpey
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Reza Hazrati
- Brain Research Center, Laval University, Quebec, Canada
| | - Gholamreza Vafaei Saiah
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
11
|
Liao CP, Booker RC, Brosseau JP, Chen Z, Mo J, Tchegnon E, Wang Y, Clapp DW, Le LQ. Contributions of inflammation and tumor microenvironment to neurofibroma tumorigenesis. J Clin Invest 2018; 128:2848-2861. [PMID: 29596064 DOI: 10.1172/jci99424] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/27/2018] [Indexed: 12/19/2022] Open
Abstract
Neurofibromatosis type 1 associates with multiple neoplasms, and the Schwann cell tumor neurofibroma is the most prevalent. A hallmark feature of neurofibroma is mast cell infiltration, which is recruited by chemoattractant stem cell factor (SCF) and has been suggested to sustain neurofibroma tumorigenesis. In the present study, we use new, genetically engineered Scf mice to decipher the contributions of tumor-derived SCF and mast cells to neurofibroma development. We demonstrate that mast cell infiltration is dependent on SCF from tumor Schwann cells. However, removal of mast cells by depleting the main SCF source only slightly affects neurofibroma progression. Other inflammation signatures show that all neurofibromas are associated with high levels of macrophages regardless of Scf status. These findings suggest an active inflammation in neurofibromas and partly explain why mast cell removal alone is not sufficient to relieve tumor burden in this experimental neurofibroma model. Furthermore, we show that plexiform neurofibromas are highly associated with injury-prone spinal nerves that are close to flexible vertebras. In summary, our study details the role of inflammation in neurofibromagenesis. Our data indicate that prevention of inflammation and possibly also nerve injury at the observed tumor locations are therapeutic approaches for neurofibroma prophylaxis and that such treatment should be explored.
Collapse
Affiliation(s)
- Chung-Ping Liao
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Reid C Booker
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jean-Philippe Brosseau
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zhiguo Chen
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Juan Mo
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Edem Tchegnon
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yong Wang
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - D Wade Clapp
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Lu Q Le
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Neurofibromatosis Clinic.,Simmons Comprehensive Cancer Center, and.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
12
|
Kirkpatrick DR, McEntire DM, Smith TA, Dueck NP, Kerfeld MJ, Hambsch ZJ, Nelson TJ, Reisbig MD, Agrawal DK. Transmission pathways and mediators as the basis for clinical pharmacology of pain. Expert Rev Clin Pharmacol 2016; 9:1363-1387. [PMID: 27322358 PMCID: PMC5215101 DOI: 10.1080/17512433.2016.1204231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Mediators in pain transmission are the targets of a multitude of different analgesic pharmaceuticals. This review explores the most significant mediators of pain transmission as well as the pharmaceuticals that act on them. Areas covered: The review explores many of the key mediators of pain transmission. In doing so, this review uncovers important areas for further research. It also highlights agents with potential for producing novel analgesics, probes important interactions between pain transmission pathways that could contribute to synergistic analgesia, and emphasizes transmission factors that participate in transforming acute injury into chronic pain. Expert commentary: This review examines current pain research, particularly in the context of identifying novel analgesics, highlighting interactions between analgesic transmission pathways, and discussing factors that may contribute to the development of chronic pain after an acute injury.
Collapse
Affiliation(s)
- Daniel R. Kirkpatrick
- Departments of Clinical and Translational Science and Anesthesiology, Creighton University School of Medicine, Omaha, NE 68178 USA
| | - Dan M. McEntire
- Departments of Clinical and Translational Science and Anesthesiology, Creighton University School of Medicine, Omaha, NE 68178 USA
| | - Tyler A. Smith
- Departments of Clinical and Translational Science and Anesthesiology, Creighton University School of Medicine, Omaha, NE 68178 USA
| | - Nicholas P. Dueck
- Departments of Clinical and Translational Science and Anesthesiology, Creighton University School of Medicine, Omaha, NE 68178 USA
| | - Mitchell J. Kerfeld
- Departments of Clinical and Translational Science and Anesthesiology, Creighton University School of Medicine, Omaha, NE 68178 USA
| | - Zakary J. Hambsch
- Departments of Clinical and Translational Science and Anesthesiology, Creighton University School of Medicine, Omaha, NE 68178 USA
| | - Taylor J. Nelson
- Departments of Clinical and Translational Science and Anesthesiology, Creighton University School of Medicine, Omaha, NE 68178 USA
| | - Mark D. Reisbig
- Departments of Clinical and Translational Science and Anesthesiology, Creighton University School of Medicine, Omaha, NE 68178 USA
| | - Devendra K. Agrawal
- Departments of Clinical and Translational Science and Anesthesiology, Creighton University School of Medicine, Omaha, NE 68178 USA
| |
Collapse
|