1
|
Lv J, Wu P, Fang Y, Zhang W, Liu D, Wu M, Shang L, Li H, Zhao Y. Deep Eutectic Solvents Based on L-Arginine and 2-Hydroxypropyl-β-Cyclodextrin for Drug Carrier and Penetration Enhancement. AAPS PharmSciTech 2023; 24:187. [PMID: 37700066 DOI: 10.1208/s12249-023-02638-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
By selecting L-arginine as the hydrogen bond acceptor (HBA) and 2-hydroxypropyl-β-cyclodextrin (2HPβCD) as the hydrogen bond donor (HBD), deep eutectic solvents (DESs) with various water content were prepared at the 4:1 mass ratio of L-arginine to 2HPβCD with 40 to 60% of water, and were studied for its application in transdermal drug delivery system (TDDS). The hydrogen bond networks and internal chemistry structures of the DESs were measured by attenuated total reflection Fourier transform infrared (ATR-FTIR) and 1H-nuclear magnetic resonance spectroscopy (1H-NMR), which demonstrated the successful synthesis of DESs. The viscosity of DES was decreased from 10,324.9 to 3219.6 mPa s, while glass transition temperature (Tg) of the DESs was increased from - 60.8 to - 51.4 °C, as the added water was increased from 45 to 60%. The solubility of ibuprofen, norfloxacin, and nateglinide in DES with 45% of water were increased by 79.3, 44.1, and 3.2 times higher than that in water, respectively. The vitro study of transdermal absorption of lidocaine in DESs showed that the cumulative amounts of lidocaine reached 252.4 µg/cm2, 226.1 µg/cm2, and 286.1 µg/cm2 at 8 h for DESs with 45%, 50%, and 60% of water, respectively. The permeation mechanism of DES with lower content of water (45%) was mainly by changing the fluidization of lipids, while changing the secondary structure of keratin in stratum corneum (SC) at higher water content (50% and 60%). These nonirritant and viscous fluid like DESs with good drug solubility and permeation enhancing effects have broad application prospect in the field of drug solubilization and transdermal drug delivery system.
Collapse
Affiliation(s)
- Jianhua Lv
- Jihua Laboratory, Jihua Institute of Biomedical Engineering and Technology, Foshan, 528000, People's Republic of China
| | - Pan Wu
- Jihua Laboratory, Jihua Institute of Biomedical Engineering and Technology, Foshan, 528000, People's Republic of China
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, People's Republic of China
| | - Yaru Fang
- Jihua Laboratory, Jihua Institute of Biomedical Engineering and Technology, Foshan, 528000, People's Republic of China
| | - Wenchang Zhang
- Jihua Laboratory, Jihua Institute of Biomedical Engineering and Technology, Foshan, 528000, People's Republic of China
| | - Dongwen Liu
- Foshan Hospital of TCM, Foshan, Guangdong, 528000, People's Republic of China
| | - Mi Wu
- Jihua Laboratory, Jihua Institute of Biomedical Engineering and Technology, Foshan, 528000, People's Republic of China.
| | - Lei Shang
- Jihua Laboratory, Jihua Institute of Biomedical Engineering and Technology, Foshan, 528000, People's Republic of China.
- Suzhou Biomedical Research & Development Center, Suzhou, 215000, People's Republic of China.
| | - Huaiguo Li
- Foshan Hospital of TCM, Foshan, Guangdong, 528000, People's Republic of China.
| | - Yan Zhao
- Jihua Laboratory, Jihua Institute of Biomedical Engineering and Technology, Foshan, 528000, People's Republic of China.
| |
Collapse
|
2
|
Kumbhar PS, Manjappa AS, Shah RR, Nadaf SJ, Disouza JI. Nanostructured Lipid Carrier-Based Gel for Repurposing Simvastatin in Localized Treatment of Breast Cancer: Formulation Design, Development, and In Vitro and In Vivo Characterization. AAPS PharmSciTech 2023; 24:106. [PMID: 37085596 DOI: 10.1208/s12249-023-02565-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/04/2023] [Indexed: 04/23/2023] Open
Abstract
Simvastatin (SMV) is noticed as a repurposed candidate to be effective against breast cancer (BC). However, poor solubility, dose-limiting toxicities, and side effects are critical hurdles in its use against BC. The above drawbacks necessitate the site-specific (localized) delivery of SMV via suitable nanocarriers. Therefore, the present study intended to develop SMV nanostructured lipid carrier (NLC)-based gel using carbopol-934 as a gelling agent to achieve local delivery and improve patient compliance while combating BC. The SMV NLCs were fabricated by melt-emulsification ultrasonication technique using stearic acid as solid lipid, olive oil (OO) as liquid lipid, tween 20 as a surfactant, and PEG-200 as a co-surfactant, and optimized by Box-Behnken design. The optimized SMV-loaded NLCs displayed % entrapment efficiency of 91.66 ± 5.2% and particle size of 182 ± 11.9 nm. The pH of NLC-based gels prepared using a 2.0% w/v of carbopol-934 was found in the range of 5.3-5.6 while the viscosity was in the range of 5.1-6.6 Pa.S. Besides, NLC-based gels exhibited higher and controlled SMV release (71-76%) at pH 6.8 and (78-84%) at pH 5.5 after 48 h than SMV conventional gel (37%) at both pH 6.8 and 5.5 after 48 h. The ex vivo permeation of SMV from NLC-based gel was 3.8 to 4.5 times more than conventional gel. Notably, SMV-loaded NLCs displayed ameliorated cytotoxicity than plain SMV against MCF-7 and MDA-MB-231 BC cells. No substantial difference was noticed in the cytotoxicity of NLC-based gels and pure SMV against both cell lines. The SMV NLC-based gel exhibited the absence of skin irritation in vivo in the mice following topical application. In addition, the histopathological study revealed no alteration in the mice skin anatomy. Furthermore, the SMV-loaded NLCs and NLC-based gels were stable for 6 months at refrigerator conditions (4°C ± 2°C). Thus, the present research confirms that NLC-based gel can be a safe, efficacious, and novel alternative to treat BC.
Collapse
Affiliation(s)
- Popat S Kumbhar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist , Kolhapur, Maharashtra, India, 416113
| | - Arehalli S Manjappa
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist , Kolhapur, Maharashtra, India, 416113
| | - Rohit R Shah
- Appasaheb Birnale College of Pharmacy, Sangli, Maharashtra, India, 416416
| | - Sameer J Nadaf
- Sant Gajanan Maharaj College of Pharmacy, Mahagaon, Gadhinglaj, Maharashtra, India
| | - John I Disouza
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist , Kolhapur, Maharashtra, India, 416113.
| |
Collapse
|
3
|
Estabragh MAR, Bami MS, Dehghannoudeh G, Noudeh YD, Moghimipour E. Cellulose derivatives and natural gums as gelling agents for preparation of emulgel-based dosage forms: A brief review. Int J Biol Macromol 2023; 241:124538. [PMID: 37085064 DOI: 10.1016/j.ijbiomac.2023.124538] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
Incorporation of an emulsion onto a gel base develops a drug delivery system with improved characteristics, known as emulgel, that can envelop both hydrophilic and lipophilic molecules, and therefore increase stability and penetration of topical formulations. Such a drug delivery system provides controlled drug release that has more patient compliance and higher therapeutic efficacy. Emulgel is prepared in three main stages, preparation of water-in-oil or oil-in-water emulsion, providing the gel base, and incorporation of prepared emulsion onto gel base with continuous stirring. Various materials such as different oils (e.g. sesame oil, balsam oil, and mineral oil), emulsifiers (e.g. Tween® and Span® as the non-ionic surfactant, polyvinyl alcohol), and gelling agents including cellulose derivatives such as hydroxypropyl methylcellulose (HPMC), hydroxyethylcellulose (HEC) and carboxymethyl cellulose (CMC) in different concentrations are used in emulgel preparation. The physical properties, particle size distribution, spreadability, permeation, and drug release rate are evaluated in their development and characterization. They are used in skin disorders and other diseases such as chronic anal fisher. Also, anti-acne, analgesic, and anti-inflammatory drugs have been formulated as emulgel delivery system and their effects have been studied. In this article, the subject is to review the characteristics, preparation methods, and therapeutic efficacy as well as the potential clinical use of emulgels.
Collapse
Affiliation(s)
| | - Marzieh Sajadi Bami
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Dehghannoudeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Yasmin Dehghan Noudeh
- University of Saskatchewan, College of Medicine, Department of Anatomy, Physiology, Pharmacology, Canada
| | - Eskandar Moghimipour
- Nanotechnology Research Center, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahwaz, Iran.
| |
Collapse
|
4
|
Rostamkalaei SS, Iman M, Ataee R, Bahari Z. The effects of Lavandula angustifolia essential oil on analgesic effects and percutaneous absorption of naproxen sodium gel; an in vivo and in vitro study. Clin Exp Pharmacol Physiol 2023; 50:298-306. [PMID: 36573522 DOI: 10.1111/1440-1681.13747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 12/03/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022]
Abstract
The percutaneous bioavailability of naproxen is low and several technologies have been utilized to overcome the problem. Although, some studies have reported the permeation-enhancing properties of natural essential oils, no research has reflected the effectiveness of Lavandula angustifolia essential oil (LAEO) on increasing the percutaneous absorption of naproxen sodium from a topical gel. Therefore, the present study was designed to investigate whether LAEO increased the percutaneous absorption and the analgesic effects of naproxen sodium topical gel. In the present study, naproxen topical gel was formulated using carbopol 940 (a gelling agent) and several vehicles such as PEG 400, ethanol, and water and the properties of gels were measured. Percutaneous absorption-enhancing properties of LAEO were measured too. Based on our data, the essential oil-containing formulation of naproxen represented greater penetration into (222.19 ± 24.87 vs. 107.65 ± 6.38 μg/cm2 ), and also across (22.07 ± 4.42 vs. 13.14 ± 2.87 μg/cm2 ) skin layers compared to the naproxen gel. Additionally, a significant analgesic property was observed in the naproxen topical gel containing 0.5% essential oil during both first and late phases of formalin test, as well as the late phase of tail-flick test. It could be concluded that LAEO significantly enhanced naproxen percutaneous absorption and also its analgesic effects.
Collapse
Affiliation(s)
- Seyyed Sohrab Rostamkalaei
- Department of Pharmaceutics, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Islamic Azad University, Ayatollah Amoli Branch, Amol, Iran
| | - Maryam Iman
- Department of Pharmaceutics, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Nano Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ramin Ataee
- Department of Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Bahari
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Xu Y, Cai Y, Meng Y, Wu L, Chen J, Cao W, Chu X. Liposome and microemulsion loaded with ibuprofen: from preparation to mechanism of drug transport. J Microencapsul 2022; 39:539-551. [PMID: 36190415 DOI: 10.1080/02652048.2022.2131920] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To compare the difference between liposome (LP) and microemulsion (ME) in delivering ibuprofen (IBU) transdermally and explore relative mechanism. IBU-LP and IBU-ME were prepared by ethanol injection and spontaneous emulsification, respectively. The percutaneous delivery was evaluated using Franz diffusion cells. Fourier transform infra-red spectroscopy (FTIR), differential scanning calorimetry (DSC), activation energy (Ea), and confocal laser scanning microscopy (CLSM) were used to investigate the transdermal mechanism. The particle size and encapsulation efficiency were 228.00 ± 8.60 nm, 86.68 ± 1.43%(w/w) for IBU-LP, and 56.74 ± 7.11 nm, 91.08 ± 3.27%(w/w) for IBU-ME. Percutaneous study showed that formulations enhanced permeation and drug retention in the skin. FTIR and DSC showed that the permeation occurred due to the interaction of the formulations with the lipid bilayer and the protein. The decrease in Ea (1.506 and 0.939 kcal/mol) revealed that the stratum corneum (SC) lipid bilayers were significantly disrupted and this destructive effect of IBU-LP was stronger. IBU-LP was superior to IBU-ME in the aspects of transdermal delivery of IBU.
Collapse
Affiliation(s)
- Yuhang Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
| | - Ye Cai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
| | - Yun Meng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
| | - Long Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
| | - Jingbao Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
| | - Wenxuan Cao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
| | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China.,Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, PR China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, PR China
| |
Collapse
|
6
|
Asghar A, Aamir MN, Sheikh FA, Ahmad N, Elsherif MA, Abbas Bukhari SN. Co-Combination of Pregabalin and Withaniacoagulans-Extract-Loaded Topical Gel Alleviates Allodynia and Hyperalgesia in the Chronic Sciatic Nerve Constriction Injury for Neuropathic Pain in Animal Model. Molecules 2022; 27:4433. [PMID: 35889307 PMCID: PMC9317976 DOI: 10.3390/molecules27144433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 12/04/2022] Open
Abstract
The current study reports the fabrication of co-combination gel using Pregabalin and Withania coagulans fruit extract to validate its effectiveness for neuropathic pain in chronic constriction injury (CCI) rat models. Three topical gels were prepared using Carbopol 934 through a pseudo-ternary phase diagram incorporating the Pregabalin (2.5%), Withania coagulans extract (2%), and co-combination of both Pregabalin (2.5%) and Withania coagulans extract (2%). Gels were characterized. FTIR showed a successful polymeric network of the gel without any interaction. The drug distribution at the molecular level was confirmed by XRD. The AFM images topographically indicated the rough surface of gels with a size range from 0.25 to 330 nm. DSC showed the disappearance of sharp peaks of the drug and extract, showing successful incorporation into the polymeric network of gels. The in vitro drug release of co-combination gel was 73% over 48 h. The mechanism of drug release by combination gel was Higuchi+ fickian with values of n (0.282) and R2 (0.947). An in vivo study for pain assessment via four methods: (i) heat hyperalgesia, (ii) cold allodynia, (iii) mechano-hyperalgesia, and (iv) dynamic mechano-allodynia, confirmed that topical treatment with co-combination gel reduced the pain significantly as indicated by the p value: R1 (p < 0.001), R2 (p < 0.001), R3 (p < 0.015), and R4 (p < 0.0344). The significance order was R2 (****) > R1 (***) > R3 (**) > R4 (*) > R5 (ns).
Collapse
Affiliation(s)
- Anam Asghar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Punjab 38000, Pakistan;
| | - Muhammad Naeem Aamir
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- School of Pharmacy, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | | | - Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Al Jouf, Saudi Arabia;
| | - Mervat A. Elsherif
- Chemistry Department, College of Science, Jouf University, Sakaka 72388, Al Jouf, Saudi Arabia;
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Al Jouf, Saudi Arabia;
| |
Collapse
|
7
|
Asghar A, Aamir MN, Sheikh FA, Ahmad N, Alotaibi NF, Bukhari SNA. Preparation, Characterization of Pregabalin and Withania coagulans Extract-Loaded Topical Gel and Their Comparative Effect on Burn Injury. Gels 2022; 8:gels8070402. [PMID: 35877487 PMCID: PMC9318109 DOI: 10.3390/gels8070402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/24/2022] Open
Abstract
The current study depicts the comparative effects of nanogel using Withania coagulans extract, pregabalin alone, and a co-combination gel. The gels prepared were then analyzed for conductivity, viscosity, spread ability, globule size, zeta potential, polydispersity index, and TEM. The globule size of the co-combination gel, determined by zeta sizer, was found to be (329 ± 0.573 nm). FTIR analysis confirms the successful development of gel, without any interaction. Drug distribution at the molecular level was confirmed by XRD. DSC revealed no bigger thermal changes. TEM images revealed spherical molecules with sizes of 200 nm for the co-combination gel. In vivo studies were carried out by infliction of third degree burn wounds on rat skin, and they confirmed that pregabalin and Withania coagulans heals the wound more effectively, with a wound contraction rate of 89.95%, compared to remaining groups. Anti-inflammatory activity (IL-6 and TNF-α), determined by the ELISA technique, shows that the co-combination gel group reduces the maximum inflammation with TNF-α value (132.2 pg/mL), compared to the control (140.22 pg/mL). Similarly, the IL-6 value was found to be (78 pg/mL) for the co-combination gel and (81 pg/mL) in the case of the control. Histopathologically, the co-combination gel heals wounds more quickly, compared to individual gel. These outcomes depict that a co-combination gel using plant extracts and drugs can be successfully used to treat burn injury.
Collapse
Affiliation(s)
- Anam Asghar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Muhammad Naeem Aamir
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Correspondence: or
| | | | - Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Nasser F. Alotaibi
- Chemistry Department, College of Science, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia;
| |
Collapse
|
8
|
Mechanisms of Penetration Enhancement and Transport Utilizing Skin Keratine Liposomes for the Topical Delivery of Licochalcone A. Molecules 2022; 27:molecules27082504. [PMID: 35458701 PMCID: PMC9029797 DOI: 10.3390/molecules27082504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 12/04/2022] Open
Abstract
Keratin liposomes have emerged as a useful topical drug delivery system given theirenhanced ability to penetrate the skin, making them ideal as topical drug vehicles. However, the mechanisms of the drug penetration enhancement of keratin liposomes have not been clearly elucidated. Therefore, licochalcone A(LA)-loaded skin keratin liposomes (LALs) were prepared to investigate their mechanisms of penetration enhancement on the skin and inB16F10 cells. Skin deposition studies, differential scanning calorimetry (DSC), attenuated total reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR), and skin distribution and intracellular distribution studies were carried out to demonstrate the drug enhancement mechanisms of LALs. We found that the optimal application of LALs enhanced drug permeation via alterations in the components, structure, and thermodynamic properties of the stratum corneum (SC), that is, by enhancing the lipid fluidization, altering the skin keratin, and changing the thermodynamic properties of the SC. Moreover, hair follicles were the main penetration pathways for the LA delivery, which occurred in a time-dependent manner. In the B16F10 cells, the skin keratin liposomes effectively delivered LA into the cytoplasm without cytotoxicity. Thus, LAL nanoparticles are promising topical drug delivery systems for pharmaceutical and cosmetic applications.
Collapse
|
9
|
Wang Z, Xue Y, Chen T, Du Q, Zhu Z, Wang Y, Wu Y, Zeng Q, Shen C, Jiang C, Yang Z, Zhu H, Liu L, Liu Q. Glycyrrhiza acid micelles loaded with licochalcone A for topical delivery: Co-penetration and anti-melanogenic effect. Eur J Pharm Sci 2021; 167:106029. [PMID: 34601069 DOI: 10.1016/j.ejps.2021.106029] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/07/2021] [Accepted: 09/29/2021] [Indexed: 01/19/2023]
Abstract
The co-penetration of micellar vehicles and the encapsulated drugs into the skin layers, as well as the mechanisms underlying the penetration enhancement have not been clearly elucidated. We developed licochalcone A (LA)-loaded glycyrrhiza acid (GA) (GA+LA) micelles for topical delivery of LA into the epidermis. The in vitro co-penetration, penetration pathways, mechanism of interaction between skin and the micelles, and the in vitro and in vivo whitening effect of GA+LA micelles were evaluated. Co-penetration and penetration pathways were visualized on the abdominal skin of rats model with confocal laser scanning microscopy (CLSM) using a nile blue A-labeled GA (GA-NB). We found that GA significantly increased the transport of LA into the skin predominantly via the hair follicles and GA mainly accumulated in the SC and epidermis, while LA was localized in the epidermis and dermis. Moreover, 73.4% of the LA deposited into the epidermis within 12 h and approximately 9.32% of the LA permeated across the SC in the form of entire micelles within 24 h. GA-NB+LA micelles disaggregated and accumulated in the specific skin layers, and the LA released from the carrier penetrated into deeper layers. Moreover, the GA+LA micelles promoted drug penetration via intracellular or intercellular routes by loosening the skin surface and enhancing fluidization through lipid distortion and keratin denaturation. Furthermore, GA+LA micelles exhibited synergistic whitening effect on B16 cells and UVB-exposed C57BL/6 mice. Collectively, GA micelles can enhance penetration of LA to the epidermis mainly via the hair follicles following topical application, and reduce skin pigmentation.
Collapse
Affiliation(s)
- Zhuxian Wang
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou 510515, China
| | - Yaqi Xue
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou 510515, China
| | - Tingting Chen
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou 510515, China
| | - Qunqun Du
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou 510515, China
| | - Zhaoming Zhu
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou 510515, China
| | - Yuan Wang
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou 510515, China
| | - Yufang Wu
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou 510515, China
| | - Quanfu Zeng
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou 510515, China
| | - Chunyan Shen
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou 510515, China
| | - Cuiping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou 510515, China
| | - Zhijun Yang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Hongxia Zhu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou 510515, China.
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou 510515, China.
| |
Collapse
|
10
|
Ullah I, Shah SU, Khan MK, Shah KU, Khan BA. Chitosan (Poly-(D) glucosamine) based solid lipid nanoparticles of dexibuprofen for topical delivery: Formulation development and characterizations. MAIN GROUP CHEMISTRY 2021. [DOI: 10.3233/mgc-210055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Chitosan a poly-(D) glucosamine is a polysaccharide made by treating shrimp and other crustacean shells with the alkali sodium hydroxide. It is a hydrophilic polymer that helps to retain the drug inside the solid lipid nanoparticles (SLN’s) and prolongs the release of drug from the carrier system. The purpose of the study was to formulate Chitosan decorated SLN’s for the topical delivery of dexibuprofen by hot pressure homogenization technique. Blank SLN’s, drug loaded SLN’s and Chitosan decorated SLN’s were prepared. Particle size, zeta potential and PDI were determined. FTIR study was conducted to evaluate the compatibility of excipients with the active drug. Surface morphology of SLN’s was determined by field emission scanning electron microscope. Drug content and entrapment efficiency of SLN’s were determined using indirect method. In vitro release and ex vivo permeation study of SLN’s were carried out using Franz diffusion cell. The droplet size fell into the nano range i.e. 132±7 to 424±2 nm which is effective for topical drug delivery system. The PDI of formulations range from 0.21 to 0.42 which depicts the homogeneity of all the SLN’s formulations. Vibrational analysis indicates that there is no interaction between active drug and excipient used in the formulation. The surface morphology revealed the spherical shape of Chitosan decorated SLN’s. The in vitro release of formulations showed 79.91±1.07 to 89.94±1.8 % drug release. The drug permeation study showed high permeation of drug into the skin. The percent drug permeation ranges from 64.15±0.93 to 71.80±0.88% indicating good permeation of drug across the skin. Overall, SLN’s are an effective carrier for topical delivery of dexibuprofen and thus bypasses side effects associated with oral delivery.
Collapse
Affiliation(s)
- Irshad Ullah
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, D.I. Khan, KPK, Pakistan
| | - Shefaat Ullah Shah
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, D.I. Khan, KPK, Pakistan
- Gomal Centre for Skin/Regenerative Medicine and Drug Delivery Research (GCSRDDR), Faculty of Pharmacy, Gomal University, D.I. Khan, KPK, Pakistan
| | - Muhammad Khalid Khan
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, D.I. Khan, KPK, Pakistan
| | - Kifayat Ullah Shah
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, D.I. Khan, KPK, Pakistan
| | - Barkat Ali Khan
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, D.I. Khan, KPK, Pakistan
| |
Collapse
|
11
|
Shah H, Nair AB, Shah J, Jacob S, Bharadia P, Haroun M. Proniosomal vesicles as an effective strategy to optimize naproxen transdermal delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102479] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
12
|
Effect of Penetration Enhancers on Toenail Delivery of Efinaconazole from Hydroalcoholic Preparations. Molecules 2021; 26:molecules26061650. [PMID: 33809569 PMCID: PMC8000921 DOI: 10.3390/molecules26061650] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/23/2021] [Accepted: 03/09/2021] [Indexed: 12/28/2022] Open
Abstract
The incorporation of permeation enhancers in topical preparations has been recognized as a simple and valuable approach to improve the penetration of antifungal agents into toenails. In this study, to improve the toenail delivery of efinaconazole (EFN), a triazole derivative for onychomycosis treatment, topical solutions containing different penetration enhancers were designed, and the permeation profiles were evaluated using bovine hoof models. In an in vitro permeation study in a Franz diffusion cell, hydroalcoholic solutions (HSs) containing lipophilic enhancers, particularly prepared with propylene glycol dicaprylocaprate (Labrafac PG), had 41% higher penetration than the HS base. Moreover, the combination of hydroxypropyl-β-cyclodextrin with Labrafac PG further facilitated the penetration of EFN across the hoof membrane. In addition, this novel topical solution prepared with both lipophilic and hydrophilic enhancers was physicochemically stable, with no drug degradation under ambient conditions (25 °C, for 10 months). Therefore, this HS system can be a promising tool for enhancing the toenail permeability and therapeutic efficacy of EFN.
Collapse
|
13
|
Imran M, Iqubal MK, Imtiyaz K, Saleem S, Mittal S, Rizvi MMA, Ali J, Baboota S. Topical nanostructured lipid carrier gel of quercetin and resveratrol: Formulation, optimization, in vitro and ex vivo study for the treatment of skin cancer. Int J Pharm 2020; 587:119705. [DOI: 10.1016/j.ijpharm.2020.119705] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 12/16/2022]
|
14
|
Wang H, Tian Q, Quan P, Liu C, Fang L. Probing the Role of Ion-Pair Strategy in Controlling Dexmedetomidine Penetrate Through Drug-in-Adhesive Patch: Mechanistic Insights Based on Release and Percutaneous Absorption Process. AAPS PharmSciTech 2019; 21:4. [PMID: 31728769 DOI: 10.1208/s12249-019-1539-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/14/2019] [Indexed: 12/21/2022] Open
Abstract
The purpose of present study was to develop a controlled release drug-in-adhesive patch for transdermal delivery of dexmedetomidine (Dex) using ion-pair technique. Based on the in vitro transdermal experiment, the role of ion-pair on the Dex release behavior and percutaneous absorption process was also investigated. Fourier transform infrared spectroscopy (FTIR), molecular modeling, differential scanning calorimetry (DSC), and rheological test were conducted to probe the effect of ion-pair on the Dex release from patch. Besides, the tape stripping test, attenuated total reflectance Fourier transform infrared (ATR-FTIR), and molecular simulation were carried out to elaborate the action of ion-pair on the Dex percutaneous permeation process. Results showed that the optimized patch prepared with Dex-salicylic acid (SA) showed zero-order skin permeation profile within 24 h; Dex-SA had greater hydrogen bonding formation potential with pressure sensitive adhesive (PSA) than Dex, which resulted in the decrease in the formation ability of free volume of PSA and the increase with the improvement of mechanical strength and chain stiffness of PSA and thus controlled the release rate of Dex from transdermal patch. Besides, the physicochemical properties of Dex such as molecular weight and octanol/water partition coefficient were changed after forming ion-pair with SA, which decreased the permeation ability of Dex. In conclusion, a controlled release drug-adhesive patch for Dex was developed and the mechanism study of ion-pair on the Dex release and percutaneous permeation process was proposed at molecular level.
Collapse
|
15
|
Niu XQ, Zhang DP, Bian Q, Feng XF, Li H, Rao YF, Shen YM, Geng FN, Yuan AR, Ying XY, Gao JQ. Mechanism investigation of ethosomes transdermal permeation. INTERNATIONAL JOURNAL OF PHARMACEUTICS-X 2019; 1:100027. [PMID: 31517292 PMCID: PMC6733291 DOI: 10.1016/j.ijpx.2019.100027] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/16/2019] [Accepted: 08/04/2019] [Indexed: 11/25/2022]
Abstract
Ethosomes are widely used to promote transdermal permeation of both lipophilic and hydrophilic drugs, but the mechanism of interaction between the ethosomes and the skin remains unclear. In this work, it was exploded with several technologies and facilities. Firstly, physical techniques such as attenuated total reflectance fourier-transform infrared and laser confocal Raman were used and the results indicated that the phospholipids configuration of stratum corneum changes from steady state to unstable state with the treatment of ethosomes. Differential scanning calorimetry reflected the thermodynamics change in stratum corneum after treatment with ethosomes. The results revealed that the skin of Bama mini-pigs, which is similar to human skin, treated by ethosomes had a relatively low Tm and enthalpy. Scanning electron microscopy and transmission electron microscopy showed that the microstructure and ultrastructure of stratum corneum was not damaged by ethosomes treatment. Furthermore, confocal laser scanning microscopy revealed that lipid labeled ethosomes could penetrate the skin via stratum corneum mainly through intercellular route, while during the process of penetration, phospholipids were retained in the upper epidermis. Cell experiments confirmed that ethosomes were distributed mainly on the cell membrane. Further study showed that only the drug-loaded ethosomes increased the amount of permeated drug. The current study, for the first time, elucidated the mechanistic behavior of ethosomes in transdermal application from molecular configuration, thermodynamic properties, ultrastructure, fluorescent labeling and cellular study. It is anticipated that the approaches and results described in the present study will benefit for better design of drug-loaded ethosomes.
Collapse
Affiliation(s)
- Xiao-Qian Niu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China.,Jiangsu Engineering Research Center for New-Type External and Transdermal Preparations, PR China
| | - Dan-Ping Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Qiong Bian
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xing-Fu Feng
- Ningbo Saiyusi Biotechnology Co., Ltd., Ningbo 315806, PR China
| | - Hao Li
- Sanova Bioscience Inc., 42 Nagog Park, STE110, Acton, MA 01741, USA
| | - Yue-Feng Rao
- Department of Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Yong-Mei Shen
- Sichuan Gooddoctor Pharmaceutical Group Co., Ltd, Chengdu 610000, PR China
| | - Fu-Neng Geng
- Sichuan Gooddoctor Pharmaceutical Group Co., Ltd, Chengdu 610000, PR China
| | - An-Ran Yuan
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xiao-Ying Ying
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jian-Qing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China.,Jiangsu Engineering Research Center for New-Type External and Transdermal Preparations, PR China
| |
Collapse
|
16
|
Ha ES, Lee SK, Choi DH, Jeong SH, Hwang SJ, Kim MS. Application of diethylene glycol monoethyl ether in solubilization of poorly water-soluble drugs. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00454-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Suñer-Carbó J, Calpena-Campmany A, Halbaut-Bellowa L, Clares-Naveros B, Rodriguez-Lagunas MJ, Barbolini E, Zamarbide-Losada J, Boix-Montañés A. Biopharmaceutical Development of a Bifonazole Multiple Emulsion for Enhanced Epidermal Delivery. Pharmaceutics 2019; 11:E66. [PMID: 30717419 PMCID: PMC6409818 DOI: 10.3390/pharmaceutics11020066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 11/16/2022] Open
Abstract
Efficient topical delivery of imidazolic antifungals faces the challenge of overcoming its limited water solubility and its required long-lasting duration of treatments. In this paper, a hydrophilic multiple emulsion (ME) of Bifonazole (BFZ) is shown to maximize its skin retention, minimize its skin permeation, and maintain an acceptable level of being harmless in vivo. The formulations were pharmaceutically characterized and application properties were assessed based on viscosity measurements. Non-Newtonian pseudoplastic shear thinning with apparent thixotropy was observed, facilitating the formulation retention over the skin. The in vitro release profile with vertical diffusion cells showed a predominant square-root release kinetic suggesting an infinite dose depletion from the formulation. Ex vivo human skin permeation and penetration was additionally evaluated. Respective skin permeation was lower than values obtained with a commercial O/W formulation. The combination of amphoteric and non-ionic surfactants increased the bifonazole epidermal accumulation by a factor of twenty. This fact makes the possibility of increasing its current 24 h administration frequency more likely. Eventual alterations of skin integrity caused by the formulations were examined with epidermal histological analysis and in vivo preclinical measurements of skin elasticity and water retrograde permeation. Histological analysis demonstrated that the multiple emulsions were harmless. Additionally, modifications of in vivo skin integrity descriptors were considered as negligible.
Collapse
Affiliation(s)
- Joaquim Suñer-Carbó
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| | - Ana Calpena-Campmany
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| | - Lyda Halbaut-Bellowa
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| | - Beatriz Clares-Naveros
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Diagonal 645, 08028 Barcelona, Spain.
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus de la Cartuja, s/n. 18071 Granada, Spain.
| | - María José Rodriguez-Lagunas
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain.
| | - Elena Barbolini
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain.
| | - Joanna Zamarbide-Losada
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain.
| | - Antonio Boix-Montañés
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| |
Collapse
|
18
|
Osborne DW, Musakhanian J. Skin Penetration and Permeation Properties of Transcutol®-Neat or Diluted Mixtures. AAPS PharmSciTech 2018; 19:3512-3533. [PMID: 30421383 PMCID: PMC6848246 DOI: 10.1208/s12249-018-1196-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/24/2018] [Indexed: 01/14/2023] Open
Abstract
A heightened interest in (trans)dermal delivery is in part driven by the need to improve the existing skin therapies and also the demand for alternative routes of administration, notably for pharmaceutical actives with undesirable oral absorption characteristics. The premise of delivering difficult actives to the skin or via the skin however is weighed down by the barrier function properties of the stratum corneum. Short of disrupting the skin by physical means, scientists have resorted to formulation with excipients known to enhance the skin penetration and permeation of drugs. A vehicle that has emerged over the years as a safe solubilizer and enhancer for a broad range of drug actives is the highly purified NF/EP grade of diethylene glycol monoethyl ether (DEGEE) commercially known as Transcutol®. Whereas numerous studies affirm its enhancing effect on drug solubilization, percutaneous absorption rate, and/or drug retention in the skin, there are few publications that unite the body of the published literature in describing the precise role and mechanisms of action for Transcutol®. In view of the current mechanistic understanding of skin barrier properties, this paper takes on a retrospective review of the published works and critically evaluates the data for potential misses due to experimental variables such as formulation design, skin model, skin hydration levels, and drug properties. The goal of this review is to mitigate the incongruence of the published works and to construct a unified, comprehensive understanding of how Transcutol® influences skin penetration and permeation. Graphical Abstract Transcutol has affinity for the hydrophilic head groups of the stratum corneum structures.
Collapse
|
19
|
Silymarin loaded nanostructured lipid carrier: From design and dermatokinetic study to mechanistic analysis of epidermal drug deposition enhancement. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.01.141] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|