1
|
Lund NLT, Westgate CSJ, Søborg MLK, Snoer AH, Jensen RH, Hansen TF, Petersen AS. Distinct Alterations of Inflammatory Biomarkers in Cluster Headache: A Case Control Study. Ann Neurol 2025. [PMID: 39981939 DOI: 10.1002/ana.27205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/22/2025]
Abstract
OBJECTIVE Investigate the immune system's role in cluster headache by analyzing cytokines in people with cluster headache and headache-free controls, and explore if certain cytokines could predict a specific phenotype. METHODS We measured 45 cytokines in adult participants from the Danish Cluster Headache Biobank in a prospective case-control setup. People with cluster headache were diagnosed according to the International Classification of Headache Disorders third-edition. Controls were matched for age and sex. RESULTS A total of 412 were analyzed deriving from 99 with chronic cluster headache, 108 with episodic cluster headache (ECH) in bout, 105 with ECH in remission, and 100 successfully matched controls. Compared with controls, 13 cytokines were altered for ECH in bout (p < 0.05), 3 in remission (p < 0.05), and 10 for chronic cluster headache (p < 0.05). Oncostatin m was significantly elevated in all 3 disease states compared with controls (p < 0.05). Overall, the investigated cytokines showed distinct patterns of alterations between chronic cluster headache and episodic cluster headache in bout and, interestingly, IL-1β was significantly associated with having chronic cluster headache rather than episodic in bout in a logistic regression model adjusting for potential confounders (p < 0.05). INTERPRETATION Findings show that the immune system is altered in all 3 states of cluster headache compared with controls. Oncostatin m was elevated, constituting a promising target for future studies. The distinct alterations between episodic and chronic cluster headache are striking and urges further research of the immune system in cluster headache to better understand its potential role in prediction of disease activity and treatment response. ANN NEUROL 2025.
Collapse
Affiliation(s)
- Nunu Laura Timotheussen Lund
- Danish Headache Center, Department of Neurology Rigshospitalet - Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Connar Stanley James Westgate
- Danish Headache Center, Department of Neurology Rigshospitalet - Glostrup, University of Copenhagen, Glostrup, Denmark
- BRAWA, Translational Research Center, Rigshospitalet, Glostrup, Denmark
| | - Marie-Louise Kulas Søborg
- Danish Headache Center, Department of Neurology Rigshospitalet - Glostrup, University of Copenhagen, Glostrup, Denmark
| | | | - Rigmor Højland Jensen
- Danish Headache Center, Department of Neurology Rigshospitalet - Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Thomas Folkman Hansen
- Danish Headache Center, Department of Neurology Rigshospitalet - Glostrup, University of Copenhagen, Glostrup, Denmark
- Neurogenomics group, Danish Headache Center, Translational Research Centre, Rigshospitalet Glostrup, Glostrup, Denmark
- Danish Multiple Sclerosis Center, Department of Neurology Rigshospitalet - Glostrup, Glostrup, Denmark
| | - Anja Sofie Petersen
- Danish Headache Center, Department of Neurology Rigshospitalet - Glostrup, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
2
|
Esfandiari N, Saadati Ardestani N, Alwi RS, Rojas A, Garlapati C, Sajadian SA. Solubility measurement of verapamil for the preparation of developed nanomedicines using supercritical fluid. Sci Rep 2023; 13:17089. [PMID: 37816767 PMCID: PMC10564778 DOI: 10.1038/s41598-023-44280-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023] Open
Abstract
A static method is employed to determine the solubilities of verapamil in supercritical carbon dioxide (SC-CO2) at temperatures between 308 and 338 K and pressures between 12 and 30 MPa. The solubility of verapamil in SC-CO2 expressed as mole fraction are in the range of 3.6 × 10-6 to 7.14 × 10-5. Using four semi-empirical density-based models, the solubility data are correlated: Chrastil, Bartle, Kumar-Johnston (K-J), and Mendez-Santiago and Teja (MST), two equations of state (SRK and PC-SAFT EoS), expanded liquid models (modified Wilson's models), and regular solution model. The obtained results indicated that the regular solution and PC-SAFT models showed the most noteworthy exactness with AARD% of 1.68 and 7.45, respectively. The total heat, vaporization heat, and solvation heat of verapamil are calculated at 39.62, 60.03, and - 20.41 kJ/mol, respectively. Regarding the poor solubility of verapamil in SC-CO2, supercritical anti-solvent methods can be an appropriate choice to produce fine particles of this drug.
Collapse
Affiliation(s)
- Nadia Esfandiari
- Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Nedasadat Saadati Ardestani
- Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), P.O. Box 14857-336, Tehran, Iran
| | - Ratna Surya Alwi
- National Research and Innovation Agency (BRIN), Jl. Raya Jakarta-Bogor KM 46, Cibinong, Indonesia
| | - Adrián Rojas
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170124, Santiago, Chile
- Packaging Innovation Center (LABEN), Department of Science and Food Technology, Faculty of Technology, University of Santiago of Chile (USACH), Obispo Umaña 050, 9170201, Santiago, Chile
| | - Chandrasekhar Garlapati
- Department of Chemical Engineering, Pondicherry Technological University, Puducherry, 605014, India.
| | - Seyed Ali Sajadian
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan, Kashan, 87317-53153, Iran.
- South Zagros Oil and Gas Production, National Iranian Oil Company, Postal Code, Shiraz, 7135717991, Iran.
| |
Collapse
|
3
|
Abdel-Hamid NM, Zakaria SM, Ansary AM, El-Senduny FF, El-Shishtawy MM. The expression of tuftelin 1 as a new theranostic marker in early diagnosis and as a therapeutic target in hepatocellular carcinoma. Cell Biochem Funct 2023; 41:788-800. [PMID: 37470499 DOI: 10.1002/cbf.3828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/06/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
Currently, many challenges are associated with hepatocellular carcinoma (HCC) as the failure of early diagnosis, and the lack of effective therapy. This study aimed to investigate the possible role of tuftelin 1 (TUFT 1) in the early diagnosis of HCC and evaluate the potential contribution of the TUFT 1/Ca+2 /phosphinositol 3 kinase (PI3K) pathway in dantrolene sodium (Dan) therapeutic outcomes. The study was performed on two sets of rats, the staging (30 rats) and treatment sets (80 rats). HCC was induced by a single dose of diethylnitrosamine (DENA). The hepatic content of TUFT 1 protein was assayed via western blot and immunohistochemistry (IHC), while PI3K, vascular endothelial growth factor (VEGF), Cyclin D1, and matrix-metalloproteinase-9 (MMP-9) contents were assessed using enzyme-linked immunosorbent assay. Hepatic and serum calcium were measured colorimetrically. Furthermore, the nuclear proliferation marker, (Ki-67), (Kiel [Ki] where the antibody was produced in the University Department of Pathology and the original clone number is 67)-expression was assessed by IHC. TUFT 1/Ca+2 /PI3K signaling pathway was progressively activated in the 3 studied stages of HCC with subsequent upregulation of angiogenesis, cell cycle, and metastasis. More interestingly, Dan led to TUFT 1/Ca+2 /PI3K pathway disruption by diminution of the hepatic contents of TUFT 1, calcium, PI3K, VEGF, Cyclin D1, and MMP-9 in a dose-dependent pattern. TUFT 1 can serve as a theranostic biomarker in HCC. Moreover, Dan exerted an antineoplastic effect against HCC via the interruption of TUFT 1/Ca+2 /PI3K pathway.
Collapse
Affiliation(s)
- Nabil M Abdel-Hamid
- Department of Biochemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Sherin M Zakaria
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Abeer M Ansary
- Department of Biochemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Fardous F El-Senduny
- Department of Chemistry (Biochemistry Division), Faculty of Science, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
4
|
Wang C, Kim IJ, Seong HR, Noh CH, Park S, Kim TM, Jeong HS, Kim KY, Kim ST, Yuk HG, Kwon SC, Choi EK, Kim YB. Antioxidative and Anti-Inflammatory Activities of Rosebud Extracts of Newly Crossbred Roses. Nutrients 2023; 15:nu15102376. [PMID: 37242259 DOI: 10.3390/nu15102376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Oxidative stress and inflammation are basic pathogenic factors involved in tissue injury and pain, as well as acute and chronic diseases. Since long-term uses of synthetic steroids and non-steroidal anti-inflammatory drugs (NSAIDs) cause severe adverse effects, novel effective materials with minimal side effects are required. In this study, polyphenol content and antioxidative activity of rosebud extracts from 24 newly crossbred Korean roses were analyzed. Among them, Pretty Velvet rosebud extract (PVRE) was found to contain high polyphenols and to show in vitro antioxidative and anti-inflammatory activities. In RAW 264.7 cells stimulated with lipopolysaccharide (LPS), PVRE down-regulated mRNA expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and thereby decreased nitric oxide (NO) and prostaglandin E2 (PGE2) production. In a subcutaneous air-pouch inflammation model, treatment with PVRE decreased λ-carrageenan-induced tissue exudation, infiltration of inflammatory cells, and inflammatory cytokines such as tumor necrosis factor-α and interleukin-1β concentrations, as achieved with dexamethasone (a representative steroid). Notably, PVRE also inhibited PGE2, similar to dexamethasone and indomethacin (a representative NSAID). The anti-inflammatory effects of PVRE were confirmed by microscopic findings, attenuating tissue erythema, edema, and inflammatory cell infiltration. These results indicate that PVRE exhibits dual (steroid- and NSAID-like) anti-inflammatory activities by blocking both the iNOS-NO and COX-2-PG pathways, and that PVRE could be a potential candidate as an anti-inflammatory material for diverse tissue injuries.
Collapse
Affiliation(s)
- Cuicui Wang
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - In-Jeong Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hye-Rim Seong
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Republic of Korea
| | - Chan Ho Noh
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Republic of Korea
| | - Sangryong Park
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Republic of Korea
| | - Tae Myoung Kim
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Republic of Korea
| | - Heon Sang Jeong
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Ka Young Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Seung Tae Kim
- Gumi Floriculture Research Institute, Gyeongsanbuk-do Agricultural Research & Extension Services, Gumi 39102, Republic of Korea
| | - Hyun-Gyun Yuk
- Department of Food Science and Biotechnology, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea
| | - Sang-Chul Kwon
- Department of Food Science and Biotechnology, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea
| | - Ehn-Kyoung Choi
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Republic of Korea
| | - Yun-Bae Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Republic of Korea
| |
Collapse
|
5
|
Chapola H, de Bastiani MA, Duarte MM, Freitas MB, Schuster JS, de Vargas DM, Klamt F. A comparative study of COVID-19 transcriptional signatures between clinical samples and preclinical cell models in the search for disease master regulators and drug repositioning candidates. Virus Res 2023; 326:199053. [PMID: 36709793 PMCID: PMC9877318 DOI: 10.1016/j.virusres.2023.199053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/29/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is an acute viral disease with millions of cases worldwide. Although the number of daily new cases and deaths has been dropping, there is still a need for therapeutic alternatives to deal with severe cases. A promising strategy to prospect new therapeutic candidates is to investigate the regulatory mechanisms involved in COVID-19 progression using integrated transcriptomics approaches. In this work, we aimed to identify COVID-19 Master Regulators (MRs) using a series of publicly available gene expression datasets of lung tissue from patients which developed the severe form of the disease. We were able to identify a set of six potential COVID-19 MRs related to its severe form, namely TAL1, TEAD4, EPAS1, ATOH8, ERG, and ARNTL2. In addition, using the Connectivity Map drug repositioning approach, we identified 52 different drugs which could be used to revert the disease signature, thus being candidates for the design of novel clinical treatments. Furthermore, we compared the identified signature and drugs with the ones obtained from the analysis of nasopharyngeal swab samples from infected patients and preclinical cell models. This comparison showed significant similarities between them, although also revealing some limitations on the overlap between clinical and preclinical data in COVID-19, highlighting the need for careful selection of the best model for each disease stage.
Collapse
Affiliation(s)
- Henrique Chapola
- Laboratory of Cellular Biochemistry, Biochemistry Department, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS 90035-003, Brazil
| | - Marco Antônio de Bastiani
- Laboratory of Cellular Biochemistry, Biochemistry Department, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS 90035-003, Brazil; Zimmer Lab, Biochemistry Department, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS 90035-003, Brazil
| | - Marcelo Mendes Duarte
- Laboratory of Cellular Biochemistry, Biochemistry Department, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS 90035-003, Brazil
| | - Matheus Becker Freitas
- Estacio College of Rio Grande do Sul (ESTACIO FARGS), Porto Alegre, RS 90020-060, Brazil
| | | | - Daiani Machado de Vargas
- Laboratory of Cellular Biochemistry, Biochemistry Department, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS 90035-003, Brazil.
| | - Fábio Klamt
- Laboratory of Cellular Biochemistry, Biochemistry Department, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS 90035-003, Brazil; Zimmer Lab, Biochemistry Department, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS 90035-003, Brazil; National Institutes of Science & Technology, Translational Medicine (INCT-TM), Porto Alegre, RS 90035-903, Brazil; IMMUNESHARE - MCTI Trial (CNPq/MCTI #137541939766794), Brazil
| |
Collapse
|
6
|
Fadil KHA, Mahmoud EM, El-Ahl SAHS, Abd-Elaal AA, El-Shafaey AAAM, Badr MSEDZ, Elesawy YF, Mahfoz A, Hamed AMR, Abdel-Shafi IR, Reda AM, Elsayed MDA, Abdeltawab MSA. Investigation of the effect of the calcium channel blocker, verapamil, on the parasite burden, inflammatory response and angiogenesis in experimental Trichinella spiralis infection in mice. Food Waterborne Parasitol 2022; 26:e00144. [PMID: 35146144 PMCID: PMC8802000 DOI: 10.1016/j.fawpar.2022.e00144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 11/15/2022] Open
Abstract
Trichinella spiralis larvae have very special characters that make them able to completely transform the function of the affected muscle cells towards a self-serving environment, offering them nourishment and protection via what is known as “nurse cells”. This setting may be affected by drugs that are used for the treatment of co-morbidities and co-infections as calcium channel blockers, which are widely used in clinical practice. In the present study, the effects of verapamil, ivermectin (IVM), and their combined administration on the parasitic burden, immuno-pathology and angiogenesis were investigated during experimental trichinellosis. Estimation of intestinal adult parasitic stages and muscle larvae was done. VEGF gene expression and CD31 immunohistochemical local expression were measured to investigate angiogenesis, in addition to histopathological examination to explore the extent of inflammation. Although verapamil did not have an effect on the adult worm count during the intestinal phase, it induced an anti-inflammatory effect on intestinal pathology. During the muscle phase, it was very effective in reducing the larval count by 93.78%. IVM effectively reduced the worm count by 85.34%, and the muscle larval count by 97.84%, while combined verapamil and IVM administration resulted in a significant reduction in both adult parasites by 69.5% and larval stages by 99%. Both verapamil and IVM and their combination induced a potent decrease in local CD31 protein expression and VEGF gene expression. The important role of calcium and calcium channels during the pathology of trichinellosis, in addition to the pivotal role of calcium on biological processes such as immunity and angiogenesis, make calcium-channel blockers promising candidates for drug repurposing in the management of helminthic infection. Verapamil reduces larval count during the muscle phase of trichinellosis. The anti-inflammatory effect of verapamil is more prominent in the muscle phase. Verapamil and ivermectin reduce microvessel density in T. spiralis-infected muscles. Ivermectin is more potent on reducing VEGF mRNA expression than verapamil.
Collapse
|
7
|
Baliou S, Sofopoulos M, Goulielmaki M, Spandidos DA, Ioannou P, Kyriakopoulos AM, Zoumpourlis V. Bromamine T, a stable active bromine compound, prevents the LPS‑induced inflammatory response. Int J Mol Med 2021; 47:37. [PMID: 33537817 PMCID: PMC7891821 DOI: 10.3892/ijmm.2021.4870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/26/2021] [Indexed: 12/28/2022] Open
Abstract
Inflammation is the most common cause of most acute and chronic debilitating diseases. Towards unveiling novel therapeutic options for patients with such complications, N‑bromotaurine (TauNHBr) has emerged as a potential anti‑inflammatory agent; however, its therapeutic efficacy is hindered due to its relatively poor stability. To address this challenge, the present study focused on examining the effects of a stable active bromine compound, named bromamine T (BAT). The present study examined the protective properties of BAT against lipopolysaccharide (LPS)‑mediated inflammation in vitro, by using LPS‑stimulated murine J774.A1 macrophages (Mφs), as well as in vivo, by using a murine LPS‑mediated air‑pouch model. Additionally, its efficacy was compared with that of taurine, a known potent anti‑inflammatory molecule. In LPS‑stimulated J774A.1 Mφs, BAT and taurine were very effective in reducing the secretion of pro‑inflammatory mediators. The in vitro experiments indicated that LPS‑mediated inflammation was attenuated due to the protective properties of BAT and of taurine, probably through the inhibition of phosphorylated p65 NF‑κB subunit (Ser 536) nuclear translocation. The in vivo experiments also revealed that BAT and taurine inhibited LPS‑mediated inflammation by reducing total cell/polymorphonuclear cell (PMN) infiltration in the air‑pouch and by decreasing pouch wall thickness. The analysis of exudates obtained from pouches highlighted that the inhibitory effects of BAT and taurine on the secretion of pro‑inflammatory cytokines were similar to those observed in vitro. Notably, the effect of BAT at the highest concentration tested was superior to that of taurine at the highest concentration. Taken together, the findings of the present study indicate that BAT prevents the LPS‑induced inflammatory response both in vitro and in vivo.
Collapse
Affiliation(s)
- Stella Baliou
- National Hellenic Research Foundation, 11635 Athens, Greece
| | - Michael Sofopoulos
- Department of Surgical Pathology, Saint Savvas Anticancer Hospital of Athens, 11522 Athens, Greece
| | | | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Petros Ioannou
- Department of Internal Medicine and Infectious Diseases, University Hospital of Heraklion, 71110 Heraklion, Greece
| | | | | |
Collapse
|
8
|
Eissa LD, Ghobashy WA, El-Azab MF. Inhibition of thioredoxin-interacting protein and inflammasome assembly using verapamil mitigates diabetic retinopathy and pancreatic injury. Eur J Pharmacol 2021; 901:174061. [PMID: 33766618 DOI: 10.1016/j.ejphar.2021.174061] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/07/2021] [Accepted: 03/17/2021] [Indexed: 12/15/2022]
Abstract
It has been previously demonstrated by our group that genetic inhibition of thioredoxin-interacting-protein (TXNIP) preserved retinal neuronal function in chemically-induced retinopathy. Moreover, elevated intracellular levels of TXNIP and calcium ions play important roles in hyperglycemia-induced oxidative stress and inflammation. Current study aimed to appraise the potential therapeutic benefits of pharmacological inhibition of TXNIP using verapamil in diabetic retinopathy. Diabetic retinopathy was assessed in type-1 diabetes rat model induced by a single intravenous injection of streptozotocin (45 mg/kg), with or without daily treatment with verapamil (10 mg/kg, oral) for 4 months. Verapamil treatment commenced 48 h post-streptozotocin insult and continued for 16 weeks. Untreated diabetic rats exhibited higher expression of toll-like-receptor-4 (TLR4), TXNIP, nucleotide-binding domain-like receptor protein-3 (NLRP3), caspase-1, cytochrome-c, and ssDNA as assessed immunohistochemically in both retinal and pancreatic tissues 16 weeks post-diabetes induction. This was associated with a reduced thioredoxin reductase (Trx-R) activity, increased release of TNF-α and IL-1β into vitreous fluid along with retinal ganglion cell (RGC) loss, pancreatic islets shrinkage, and enhanced CD34 expression. The treatment with verapamil enhanced Trx-R activity, significantly inhibited TLR4 mediated NLRP3-inflammasome assembly with subsequent diminishing of inflammatory markers (TNF-α and IL-1β) release into the vitreous, suppression of pathological angiogenesis, and preservation of RGC count and pancreatic islets diameter. Current study showed that using the calcium channel blocker, verapamil, interferes with the pathogenesis of diabetic retinopathy and pancreatic islets damage at multiple levels mainly through the inhibition of TLR4, TXNIP and NLRP3-inflammasome, suggesting its promising role as an anti-diabetic and a neuroprotective agent.
Collapse
Affiliation(s)
| | - Waleed A Ghobashy
- Department of Ophthalmology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Mona F El-Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| |
Collapse
|
9
|
Lectin from red algae Amansia multifida Lamouroux: Extraction, characterization and anti-inflammatory activity. Int J Biol Macromol 2020; 170:532-539. [PMID: 33388321 DOI: 10.1016/j.ijbiomac.2020.12.203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 12/20/2022]
Abstract
Seaweed lectins are very promising biotechnological tools that also gain prominence when applied to the pharmacology field. The purpose of the present work was to isolate and characterize lectin from the red algae Amansia multifida and subsequently test it in general inflammation models. The lectin was purified by ion exchange chromatography, characterized with two-dimensional electrophoresis, automated analysis of amino acid sequences and circular dichroism spectroscopy. The pharmacological tests performed were paw edema induced by carrageenan or rapid inflammatory mediators, peritonitis induced by carrageenan and myeloperoxidase leukocyte count assays, glutathione and cytokine concentration. Our results have identified a 30 KDa molecular weight protein that presents a major secondary structure arranged in β-strand elements (~43%). A fragment of 20 amino acid residues was sequenced and presented low identity to the known classes of lectins from marine alga. This lectin was able to modulate inflammatory parameters such as paw edema, leukocyte migration, oxidative stress and proinflammatory cytokines. Thus, the lectin from the seaweed Amansia multifida has evident anti-inflammatory properties because it acts by reducing the formation of edema by modulating the effect of vascular mediators, migration of neutrophils, proinflammatory cytokines and oxidative stress control.
Collapse
|
10
|
Abo Mansour HE, El-Batsh MM, Badawy NS, Mehanna ET, Mesbah NM, Abo-Elmatty DM. Effect of co-treatment with doxorubicin and verapamil loaded into chitosan nanoparticles on diethylnitrosamine-induced hepatocellular carcinoma in mice. Hum Exp Toxicol 2020; 39:1528-1544. [PMID: 32519553 DOI: 10.1177/0960327120930266] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This study aimed to investigate the potential role of co-treatment with doxorubicin (DOX) and verapamil (VRP) nanoparticles in experimentally induced hepatocellular carcinoma in mice and to investigate the possible mechanisms behind the potential favorable effect of the co-treatment. DOX and VRP were loaded into chitosan nanoparticles (CHNPs), and cytotoxicity of loaded and unloaded drugs against HepG2 cells was evaluated. Male albino mice were divided into eight groups (n = 15): (1) normal control, (2) diethylnitrosamine, (3) CHNPs, (4) free DOX, (5) CHNPs DOX, (6) free VRP, (7) CHNPs VRP, and (8) CHNPs DOX + CHNPs VRP. Either VRP or DOX loaded into CHNPs showed stronger growth inhibition of HepG2 cells than their free forms. DOX or VRP nanoparticles displayed pronounced anticancer activity in vivo through the decline of vascular endothelial growth factor and B cell lymphoma-2 contents in liver tissues, upregulation of antioxidant enzymes, and downregulation of multidrug resistance 1. Moreover, reduced cardiotoxicity was evident from decreased level of tumor necrosis factor-α and malondialdehyde in heart tissues coupled with decreased serum activity of creatine kinase-myocardial band and lactate dehydrogenase. Co-treatment with CHNPs DOX and CHNPs VRP showed superior results versus other treatments. Liver sections from the co-treatment group revealed the absence of necrosis, enhanced apoptosis, and nearly normal hepatic lobule architecture. Co-treatment with CHNPs DOX and CHNPs VRP revealed enhanced anticancer activity and decreased cardiotoxicity versus the corresponding free forms.
Collapse
Affiliation(s)
- H E Abo Mansour
- Department of Biochemistry, Faculty of Pharmacy, Menoufia University, Shibin el Kom, Egypt
| | - M M El-Batsh
- Department of Clinical Pharmacology, Faculty of Medicine, Menoufia University, Shibin el Kom, Egypt
| | - N S Badawy
- Department of Histology and Cell Biology, Faculty of Medicine, Menoufia University, Shibin el Kom, Egypt
| | - E T Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - N M Mesbah
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - D M Abo-Elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
11
|
Elberry AA, Sharkawi SMZ, Wahba MR. Antinociceptive and anti-inflammatory effects of N-acetylcysteine and verapamil in Wistar rats. Korean J Pain 2019; 32:256-263. [PMID: 31569917 PMCID: PMC6813896 DOI: 10.3344/kjp.2019.32.4.256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/06/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023] Open
Abstract
Background Antinociceptive anti-inflammatory drugs have many adverse effects. The goal of this investigation is to study the probable anti-inflammatory and analgesic effects of verapamil and N-acetylcysteine (NAC) in experimental rats. Methods Adult male Wistar rats were randomly divided into 4 groups in the antinociceptive study, each containing 6 rats; the normal control group, which received saline (1 mL/kg); the diclofenac group, which received diclofenac sodium (5 mg/kg); the NAC group, which received NAC (125 mg/kg); and the verapamil group, which received verapamil (8 mg/kg). In the anti-inflammatory study, 5 groups were used, the 4 previous groups with the addition of an edema control group, received saline and were subjected to formalin test. Hot plate latency time was recorded for antinociceptive evaluation. Paw edema thickness and biochemical parameters were recorded for anti-inflammatory evaluation. Results Administration of NAC showed significant prolongation of hot plate latency time at 1 hour when compared to the control group while verapamil showed a significant prolongation of hot plate latency time at 1 and 2 hours when compared to the control group and NAC group values. Administration of NAC and verapamil significantly decreased paw edema thickness at 2, 4, and 8 hours when compared to edema control values. Regarding biochemical markers, NAC and verapamil significantly decreased serum nitric oxide synthase, C-reactive protein, and cyclooxygenase- 2 levels compared to the edema control value. In accordance, a marked improvement of histopathological findings was observed with both drugs. Conclusions NAC and verapamil have antinociceptive and anti-inflammatory effects comparable to diclofenac sodium.
Collapse
Affiliation(s)
| | | | - Mariam Rofaiel Wahba
- Department of Pharmacology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
12
|
Mohamed MZ, Hafez HM, Hassan M, Ibrahim MA. PI3K/Akt and Nrf2/HO-1 pathways involved in the hepatoprotective effect of verapamil against thioacetamide toxicity in rats. Hum Exp Toxicol 2018; 38:381-388. [PMID: 30526075 DOI: 10.1177/0960327118817099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Liver is a precious organ to maintain body life. Hepatotoxicity is a worldwide health problem that is still a challenge for research. Although countless pharmaceutical drugs and herbal compounds were screened for their hepatoprotective effects, the death from hepatotoxicity is increasing. Thus, there is continuous necessity of searching for the hepatoprotective effect of commonly used drugs. Accordingly, our aim was to examine a hepatoprotective potential for the antihypertensive drug, verapamil, and searching for new insights underlie its protective mechanism. Four groups of adult male rats were randomly arranged as controls, thioacetamide (TAA) hepatotoxic, and TAA + verapamil treated. Serum liver enzyme, hepatic antioxidant, lipid peroxidation, and inflammatory parameters were assessed. Gene relative expression for heme oxygenase-1 (HO-1), nuclear factor-erythroid 2-related factor 2 (Nrf2), phosphoinositide 3-kinase (PI3K), and serine/threonine-specific protein kinase (Akt) were quantified in hepatic tissue. TAA caused hepatic injury evident both histopathologically and biochemically by a decrease in all gene expressions. Verapamil alleviated the injury via its antioxidant and anti-inflammatory effects that were suggested to be via upregulation of the previous gene expressions. In conclusion, the calcium channel blocker, verapamil, that is used widely as antihypertensive exhibits a valuable hepatoprotective effect. The protection partially rests on activation of Nrf2/HO-1 and PI3K/Akt pathways.
Collapse
Affiliation(s)
- M Z Mohamed
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| | - H M Hafez
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| | - M Hassan
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| | - M A Ibrahim
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|