1
|
Işıldar B, Özkan S, Koyutürk M. Preconditioning of Human Umbilical Cord Mesenchymal Stem Cells with a Histone Deacetylase Inhibitor: Valproic Acid. Balkan Med J 2024; 41:369-376. [PMID: 39239940 DOI: 10.4274/balkanmedj.galenos.2024.2024-6-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Background Mesenchymal stem cells (MSCs) play a key role in regenerative medicine due to their capacity to differentiate into multiple cell lines, regulate the immune system, and exert paracrine effects. The therapeutic impact of MSCs is primarily mediated through their secretome. The secretory and therapeutic potential of MSCs can be improved through preconditioning, which entails the application of hypoxic environments, 3-dimensional cell cultures, and pharmacological agents. Valproic acid (VPA) is a histone deacetylase inhibitor that is employed in medical practice for treating epilepsy and bipolar disorder. Hence, preconditioning MSCs with VPA is expected to induce histone acetylation, enhance gene expression, and beneficially modify the cells' secretomes. Aims To assess the effectiveness of VPA in enhancing and regulating the therapeutic potential of cells as well as its impact on MSC secretome profiles and ultrastructural morphologies. Study Design Expiremental study. Methods Human umbilical cord MSCs were preconditioned with 2 mM VPA for 24 and 48 hours; untreated MSCs served as controls. The secretome secreted by the cells was assessed for its total protein content. Subsequently, interferon-gamma (IFN-γ), interleukin-17 (IL-17), IL-10, vascular endothelial growth factor, nerve growth factor (NGF), glial cell line-derived neurotrophic factor, and brain-derived neurotrophic factor (BDNF) levels in the secretome were analyzed using the ELISA method. The ultrastructural properties of the cells were studied under transmission electron microscopy. Results Ultrastructural examinations revealed that the chromatin content of VPA-treated cells was reduced. VPA-preconditioned cells exhibited a higher density of rough endoplasmic reticulum, autophagic vesicles, and myelin figures on cytoplasmic structure analysis, which was indicative of increased secretion. Protein secretion was elevated in those cells, with notable increases in NGF and BDNF levels. Furthermore, the cytoskeletal rearrangement and elevated autophagic activity observed in the 48-hour preconditioned cells could indicate the initiation of neuronal differentiation. IL-10, IL-17, and IFN-γ were not detected in the secretome. Conclusion This study indicate that preconditioning with VPA enhances MSC activity and subsequently modifies the secretome content.
Collapse
Affiliation(s)
- Başak Işıldar
- Department of Histology and Embryology, İstanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, İstanbul, Türkiye
- Department of Histology and Embryology, Balıkesir University Faculty of Medicine, Balıkesir, Türkiye
| | - Serbay Özkan
- Department of Histology and Embryology, İstanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, İstanbul, Türkiye
- Department of Histology and Embryology, İzmir Katip Çelebi University Faculty of Medicine, İzmir, Türkiye
| | - Meral Koyutürk
- Department of Histology and Embryology, İstanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, İstanbul, Türkiye
| |
Collapse
|
2
|
Azarbarz N, Nejaddehbashi F, Khorsandi L, Bijan Nejad D, Sayyahi A. Autophagy enhances the differentiation of insulin-producing cells from Wharton's jelly-derived mesenchymal stem cells. Tissue Cell 2024; 88:102384. [PMID: 38626526 DOI: 10.1016/j.tice.2024.102384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/31/2024] [Accepted: 04/10/2024] [Indexed: 04/18/2024]
Abstract
Autophagy disruption suppresses insulin production and induces diabetes. The role of autophagy in the differentiation of Wharton's jelly (WJ)-derived mesenchymal stem cells (WJSCs) into insulin-producing cells (IPCs) was investigated in this experimental study. The WJSCs were incubated in a differentiation medium (DM) with or without an autophagy inhibitor (3-methyladenine: 3MA). The differentiation of IPCs was confirmed by flow cytometry analysis of PDX-1 and insulin-positive cells, insulin secretion, and the high expression of β cell-specific genes, Glucose transporter 2 (GLUT-2), and INSULIN. Autophagy has been assessed by calculating the percentage of Acridine orange (AO)-positive cells, expression of autophagy-related genes, and the LC3B/LC3A ratio. β cell-specific genes were up-regulated in the DM group, and 3MA decreased their expression. In the DM+3MA-treated cells, the expression of GLUT-2 and INSULIN genes and insulin secretion decreased compared to the DM group. In cells treated with 3MA, there was a significant decrease in the percentage of PDX-1 and insulin-positive cells compared to 3MA-untreated cells. Additionally, in the group receiving both DM and 3MA treatment, the expression of autophagy-related genes, the LC3B/LC3A protein ratio, and the percentage of AO-stained cells were significantly reduced compared to the group receiving only DM treatment. These findings suggest autophagy is essential for β cell differentiation and insulin secretion.
Collapse
Affiliation(s)
- Nastaran Azarbarz
- Department of Anatomical Sciences, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Fereshteh Nejaddehbashi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Dariuosh Bijan Nejad
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Sayyahi
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
3
|
Shokeir AA, Awadalla A, Hamam ET, Hussein AM, Mahdi MR, Abosteta AN, Shahin M, Barakat N, El-Adl M, El-Sherbiny M, Eldesoqui M, AlMadani M, Ali SK, El-Sherbini ES, Khirallah SM. Human Wharton's jelly-derived mesenchymal stromal stem cells preconditioned with valproic acid promote cell migration and reduce renal inflammation in ischemia/reperfusion injury by activating the AKT/P13K and SDF1/CXCR4 pathways. Arch Biochem Biophys 2024; 755:109985. [PMID: 38579957 DOI: 10.1016/j.abb.2024.109985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
OBJECTIVE To determine whether WJ-MSCs pretreated with VPA would enhance their migration to improve functional recovery of renal IRI in rats. METHODS 150 Sprague-Dawley rats were distributed into 5 groups; Sham, IRI, WJ-MSC, VPA, and WJ-MSCs + VPA. 10 rats were sacrificed after 3, 5, and 7 days. Role of WJ-MSCs pretreated with VPA was evaluated by assessment of renal function, antioxidant enzymes together with renal histopathological and immunohistopathological analyses and finally by molecular studies. RESULTS WJ-MSCs and VPA significantly improved renal function and increased antioxidants compared to IRI group. Regarding gene expression, WJ-MSCs and VPA decreased BAX and TGF-β1, up-regulated Akt, PI3K, BCL2, SDF1α, and CXCR4 related to IRI. Additionally, WJ-MSCs pretreated with VPA improved the measured parameters more than either treatment alone. CONCLUSION WJ-MSCs isolated from the umbilical cord and pretreated with VPA defended the kidney against IRI by more easily homing to the site of injury.
Collapse
Affiliation(s)
- Ahmed A Shokeir
- Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Amira Awadalla
- Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Eman T Hamam
- Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt; Nanomedicine Research Unit, Faculty of Medicine, Delta University for Science and Technology, Gamasa, Egypt
| | - Abdelaziz M Hussein
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed R Mahdi
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt; Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Suez, Egypt
| | - Alyaa Naeem Abosteta
- Biochemistry Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mirna Shahin
- Mansoura Manchester Medical Program for Medical Education, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nashwa Barakat
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Adl
- Departement of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyah, 13713, Riyadh, Saudi Arabia
| | - Mamdouh Eldesoqui
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt; Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyah, 13713, Riyadh, Saudi Arabia
| | - Moneer AlMadani
- Department of Clinical Medical Sciences, College of Medicine, AlMaarefa University, Diriyah, 13713, Riyadh, Saudi Arabia
| | - Sahar K Ali
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - El-Said El-Sherbini
- Biochemistry Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Salma M Khirallah
- Chemistry Department (Biochemistry Division), Faculty of Science, Port Said University, Port Said, 42526, Egypt.
| |
Collapse
|
4
|
Ghorbaninejad M, Khademi-Shirvan M, Hosseini S, Baghaban Eslaminejad M. Epidrugs: novel epigenetic regulators that open a new window for targeting osteoblast differentiation. Stem Cell Res Ther 2020; 11:456. [PMID: 33115508 PMCID: PMC7594482 DOI: 10.1186/s13287-020-01966-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/05/2020] [Indexed: 01/01/2023] Open
Abstract
Efficient osteogenic differentiation of mesenchymal stem cells (MSCs) is a critical step in the treatment of bone defects and skeletal disorders, which present challenges for cell-based therapy and regenerative medicine. Thus, it is necessary to understand the regulatory agents involved in osteogenesis. Epigenetic mechanisms are considered to be the primary mediators that regulate gene expression during MSC differentiation. In recent years, epigenetic enzyme inhibitors have been used as epidrugs in cancer therapy. A number of studies mentioned the role of epigenetic inhibitors in the regulation of gene expression patterns related to osteogenic differentiation. This review attempts to provide an overview of the key regulatory agents of osteogenesis: transcription factors, signaling pathways, and, especially, epigenetic mechanisms. In addition, we propose to introduce epigenetic enzyme inhibitors (epidrugs) and their applications as future therapeutic approaches for bone defect regeneration.
Collapse
Affiliation(s)
- Mahsa Ghorbaninejad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Maliheh Khademi-Shirvan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Samaneh Hosseini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|