1
|
Köse S, Varan C, Önen S, Nemutlu E, Bilensoy E, Korkusuz P. 2-AG-loaded and bone marrow-targeted PCL nanoparticles as nanoplatforms for hematopoietic cell line mobilization. Stem Cell Res Ther 2024; 15:341. [PMID: 39354544 PMCID: PMC11446023 DOI: 10.1186/s13287-024-03902-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/26/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND The use of mobilizing agents for hematopoietic stem cell (HSC) transplantation is insufficient for an increasing number of patients. We previously reported lipid made endocannabinoid (eCB) ligands act on the human bone marrow (hBM) HSC migration in vitro, lacking long term stability to be therapeutic candidate. In this study, we hypothesized if a novel 2-AG-loaded polycaprolactone (PCL)-based nanoparticle delivery system that actively targets BM via phosphatidylserine (Ps) can be generated and validated. METHODS PCL nanoparticles were prepared by using the emulsion evaporation method and characterized by Zetasizer and scanning electron microscopy (SEM). The encapsulation efficiency and release profile of 2-AG were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The presence of cannabinoid receptors (CBRs) in HSCs and monocytes was detected by flow cytometry. Cell morphology and viability were assessed using transmission electron microscopy (TEM), SEM, and the WST-1 viability assay. The migration efficacy of the 2-AG and 2-AG-loaded nanoparticle delivery system on HSCs and HPSCs (TF-1a and TF-1) and monocytes (THP-1) was evaluated using a transwell migration assay. RESULTS The 140-225 nm PCL nanoparticles exhibited an increasing polydispersity index (PDI) after the addition of Ps and 2-AG, with a surface charge ranging from - 25 to -50 mV. The nanoparticles released up to 36% of 2-AG within the first 8 h. The 2-AG-Ps-PCL did not affect cellular viability compared to control on days 5 and 10. The HSCs and monocytes expressed CB1R and CB2R and revealed increased migration to media containing 1 µM 2-AG-Ps-PCL compared to control. The migration rate of the HSCs toward monocytes incubated with 1 µM 2-AG-Ps-PCL was higher than that of the monocytes of control. The 2-AG-Ps-PCL formulation provided a real time mobilization efficacy at 1 µM dose and 8 h time window via a specific CBR agonism. CONCLUSION The newly generated and validated 2-AG-loaded PCL nanoparticle delivery system can serve as a stable, long lasting, targeted mobilization agent for HSCs and as a candidate therapeutic to be included in HSC transplantation (HSCT) protocols following scale-up in vivo preclinical and subsequent clinical trials.
Collapse
Affiliation(s)
- Sevil Köse
- Faculty of Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Akdeniz University, Antalya, 07070, Turkey.
- Faculty of Medicine, Department of Medical Biology, Atilim University, Ankara, 06830, Turkey.
| | - Cem Varan
- Graduate School of Science and Engineering, Department of Nanotechnology and Nanomedicine, Hacettepe University, Ankara, 06532, Turkey
| | | | - Emirhan Nemutlu
- Faculty of Pharmacy, Department of Analytical Chemistry, Hacettepe University, Ankara, 06100, Turkey
| | - Erem Bilensoy
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Hacettepe University, Ankara, 06100, Turkey
| | - Petek Korkusuz
- METU MEMS Center, Ankara, 06530, Turkey
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, Ankara, 06100, Turkey
| |
Collapse
|
2
|
Kutumova EO, Akberdin IR, Kiselev IN, Sharipov RN, Egorova VS, Syrocheva AO, Parodi A, Zamyatnin AA, Kolpakov FA. Physiologically Based Pharmacokinetic Modeling of Nanoparticle Biodistribution: A Review of Existing Models, Simulation Software, and Data Analysis Tools. Int J Mol Sci 2022; 23:12560. [PMID: 36293410 PMCID: PMC9604366 DOI: 10.3390/ijms232012560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022] Open
Abstract
Cancer treatment and pharmaceutical development require targeted treatment and less toxic therapeutic intervention to achieve real progress against this disease. In this scenario, nanomedicine emerged as a reliable tool to improve drug pharmacokinetics and to translate to the clinical biologics based on large molecules. However, the ability of our body to recognize foreign objects together with carrier transport heterogeneity derived from the combination of particle physical and chemical properties, payload and surface modification, make the designing of effective carriers very difficult. In this scenario, physiologically based pharmacokinetic modeling can help to design the particles and eventually predict their ability to reach the target and treat the tumor. This effort is performed by scientists with specific expertise and skills and familiarity with artificial intelligence tools such as advanced software that are not usually in the "cords" of traditional medical or material researchers. The goal of this review was to highlight the advantages that computational modeling could provide to nanomedicine and bring together scientists with different background by portraying in the most simple way the work of computational developers through the description of the tools that they use to predict nanoparticle transport and tumor targeting in our body.
Collapse
Affiliation(s)
- Elena O. Kutumova
- Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia
- Federal Research Center for Information and Computational Technologies, 630090 Novosibirsk, Russia
- BIOSOFT.RU, Ltd., 630058 Novosibirsk, Russia
| | - Ilya R. Akberdin
- Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia
- BIOSOFT.RU, Ltd., 630058 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Ilya N. Kiselev
- Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia
- Federal Research Center for Information and Computational Technologies, 630090 Novosibirsk, Russia
- BIOSOFT.RU, Ltd., 630058 Novosibirsk, Russia
| | - Ruslan N. Sharipov
- Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia
- Federal Research Center for Information and Computational Technologies, 630090 Novosibirsk, Russia
- BIOSOFT.RU, Ltd., 630058 Novosibirsk, Russia
- Specialized Educational Scientific Center, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Vera S. Egorova
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Anastasiia O. Syrocheva
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Alessandro Parodi
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Andrey A. Zamyatnin
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Fedor A. Kolpakov
- Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia
- Federal Research Center for Information and Computational Technologies, 630090 Novosibirsk, Russia
- BIOSOFT.RU, Ltd., 630058 Novosibirsk, Russia
| |
Collapse
|
3
|
Lewicki S, Leśniak M, Sobolewska-Ruta A, Lewicka A, Grodzik M, Machaj EK, Saracyn M, Kubiak JZ, Pojda Z. Encapsulation of granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor in liposomes prepared by thin film hydration and their transfer to mesenchymal stem cells and cord blood hematopoietic stem cells. Arch Med Sci 2022; 18:1051-1061. [PMID: 35832713 PMCID: PMC9266718 DOI: 10.5114/aoms.2020.94527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 06/29/2019] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Cytokines are important immune modulator factors controlling homeostasis of the body and are involved in tissue regeneration after wound healing. The encapsulation of cytokines in liposomes has many advantages potentially useful for their transfer to the cells. Liposomes protect cytokines from neutralization, improving their pharmacokinetics or biologic activity in vivo. They are targeted to specific cell types and may delay the release of cytokines, allowing their sustained paracrine delivery. Their physicochemical characteristics such as size, shape, charge, and stability are important parameters improving bio-distribution and prolonged pharmacokinetics of encapsulated cytokines. MATERIAL AND METHODS We developed an efficient protocol for the encapsulation of two types of cytokines, granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF), in liposomes that can be stored long term in the active state. RESULTS This method allows for the encapsulation of 12-13% of the total amount of cytokines and 50% of encapsulated cytokines are entrapped in liposomes of more than ≤ 600 nm in diameter. We show that in the studied cell lines the liposome-encapsulated cytokines do not affect cell morphology, proliferation or mortality. CONCLUSIONS The G-CSF or GM-CSF can be delivered to the cells in working concentrations through the encapsulation in the liposomes. Before the clinical application, the efficiency of these liposomes should be confirmed by an in vivo study.
Collapse
Affiliation(s)
- Sławomir Lewicki
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Monika Leśniak
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | | | - Aneta Lewicka
- Laboratory of Food and Nutrition Hygiene, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Marta Grodzik
- Division of Nanobiotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | | | - Marek Saracyn
- Department of Endocrinology and Isotope Therapy, Military Institute of Medicine, Warsaw, Poland
| | - Jacek Z. Kubiak
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
- Univ Rennes, CNRS, IGDR – Institute of Genetics and Development of Rennes, UMR 6290, Cell Cycle Group, Faculty of Medicine, Rennes, France
| | - Zygmunt Pojda
- Department of Regenerative Medicine, Maria Skłodowska-Curie Institute-Oncology Center, Warsaw, Poland
| |
Collapse
|
4
|
Saadat M, Jafari S, Zakeri-Milani P, Shahbazi-Mojarrad J, Valizadeh H. Stearoylcholine and oleoylcholine: Synthesis, physico-chemical characterization, nanoparticle formation, and toxicity studies. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
5
|
Campos JC, Cunha JD, Ferreira DC, Reis S, Costa PJ. Challenges in the local delivery of peptides and proteins for oral mucositis management. Eur J Pharm Biopharm 2018; 128:131-146. [PMID: 29702221 DOI: 10.1016/j.ejpb.2018.04.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 04/21/2018] [Accepted: 04/23/2018] [Indexed: 12/20/2022]
Abstract
Oral mucositis, a common inflammatory side effect of oncological treatments, is a disorder of the oral mucosa that can cause painful ulcerations, local motor disabilities, and an increased risk of infections. Due to the discomfort it produces and the associated health risks, it can lead to cancer treatment restrains, such as the need for dose reduction, cycle delays or abandonment. Current mucositis management has low efficiency in prevention and treatment. A topical drug application for a local action can be a more effective approach than systemic routes when addressing oral cavity pathologies. Local delivery of growth factors, antibodies, and anti-inflammatory cytokines have shown promising results. However, due to the peptide and protein nature of these novel agents, and the several anatomic, physiological and environmental challenges of the oral cavity, their local action might be limited when using traditional delivering systems. This review is an awareness of the issues and strategies in the local delivery of macromolecules for the management of oral mucositis.
Collapse
Affiliation(s)
- João C Campos
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Portugal(1).
| | - João D Cunha
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Portugal(1)
| | - Domingos C Ferreira
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Portugal(1)
| | - Salette Reis
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Portugal(1)
| | - Paulo J Costa
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Portugal(1)
| |
Collapse
|