1
|
Sallam AA, Ahmed MM, El-Magd MA, Magdy A, Ghamry HI, Alshahrani MY, Abou El-Fotoh MF. Quercetin-Ameliorated, Multi-Walled Carbon Nanotubes-Induced Immunotoxic, Inflammatory, and Oxidative Effects in Mice. Molecules 2022; 27:2117. [PMID: 35408516 PMCID: PMC9000348 DOI: 10.3390/molecules27072117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 12/28/2022] Open
Abstract
The expanding uses of carbon nanotubes (CNTs) in industry and medicine have raised concerns about their toxicity on human and animal health. CNTs, including multi-walled nanotubes (MWCNTs), have been reported to induce immunotoxic, inflammatory, and oxidative effects. Quercetin is a natural flavonoid present in many vegetables and fruits and has immunomodulatory, anti-inflammatory, and antioxidant properties. Herein, we investigated the protective effects of quercetin on pristine MWCNTs-induced immunotoxicity in mice. In comparison with two doses of MWCNTs, high doses [0.5 mg/kg body weight (BW), once intraperitoneally (IP)] caused higher immunotoxic, inflammatory, and oxidative effects than low doses (0.25 mg/kg BW, once IP). Administration of quercetin (30 mg/kg BW, IP for 2 weeks) relieved these deleterious effects as evidenced by (1) reduced spleen weight, (2) increased number of total leukocytes, lymphocytes, and neutrophils, (3) elevated serum levels of IgM, IgG, and IgA, (4) decreased lipid peroxide malondialdehyde levels and increased levels of antioxidant markers reduced glutathione, superoxide dismutase, and catalase in the spleen, (5) decreased concentrations and mRNA levels of inflammatory markers tumor necrosis factor-alpha (TNFα), interleukin 1 beta (IL1ß), and IL6 in the spleen, (6) downregulated expression of immunomodulatory genes transforming growth factor-beta (TGFß), cyclooxygenase2 (COX2), and IL10, and (7) regenerative histological changes as indicated by decreased mononuclear cell infiltration, minimized degenerative changes and restored lymphocytes depletion in the spleen. These results infer that quercetin can ameliorate MWCNTs-induced immunotoxic, inflammatory, and oxidative effects.
Collapse
Affiliation(s)
- Amira A. Sallam
- Department of Forensic Medicine & Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (A.A.S.); (M.M.A.); (M.F.A.E.-F.)
| | - Mona M. Ahmed
- Department of Forensic Medicine & Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (A.A.S.); (M.M.A.); (M.F.A.E.-F.)
| | - Mohammed A. El-Magd
- Anatomy Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Ahmed Magdy
- Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Heba I. Ghamry
- Department of Home Economics, College of Home Economics, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Mohammad Y. Alshahrani
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 9088, Abha 61413, Saudi Arabia
| | - Magdy F. Abou El-Fotoh
- Department of Forensic Medicine & Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (A.A.S.); (M.M.A.); (M.F.A.E.-F.)
| |
Collapse
|
2
|
Mortensen NP, Snyder RW, Pathmasiri W, Moreno Caffaro M, Sumner SJ, Fennell TR. Intravenous administration of three multiwalled carbon nanotubes to female rats and their effect on urinary biochemical profile. J Appl Toxicol 2021; 42:409-422. [PMID: 34569639 DOI: 10.1002/jat.4226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/13/2021] [Accepted: 07/27/2021] [Indexed: 11/06/2022]
Abstract
This study was conducted to investigate the influence of outer diameter (OD) and length (L) of multiwalled carbon nanotubes (MWCNTs) on biodistribution and the perturbation of endogenous metabolite profiles. Three different-sized carboxylated MWCNTs (NIEHS-12-2: L 0.5-2 μm, OD 10-20 nm, NIEHS-13-2: L 0.5-2 μm, OD 30-50 nm, and NIEHS-14-2: L 10-30 μm, OD 10-20 nm) in water were administered to female Sprague-Dawley rats as a single intravenous dose of 1 mg/kg MWCNTs. Biodistribution in liver, lung, spleen, and lymph nodes was evaluated in tissue sections at 1 and 7 days' post-dosing using enhanced darkfield microscopy and hyperspectral imaging. Nuclear magnetic resonance (NMR) analysis was used for biochemical profiling and pathway mapping of endogenous metabolites in urine collected at 24-h intervals prior to dosing, at Day 1 and Day 7. At Day 1 and Day 7, all three MWCNTs were observed in liver. NIEHS-12-2 was observed in spleen, whereas NIEHS-13-2 and NIEHS-14-2 were not. All three MWCNTs were observed in lymph nodes and lung at Day 7. The urinary biochemical profile showed the highest positive fold change (FC) at Day 7 for the metabolites acetate, alanine, and lactate, whereas 1-methylnicotinamide, 2-oxoglutarate, and hippurate had some of the lowest FCs for all three MWCNTs. This study demonstrates that the observed tissue location of MWCNTs is size dependent. Overlaps in the perturbation of endogenous metabolite profiles were found regardless of their size, and the biochemical responses were more profound at Day 7 compared with Day 1, indicating a delayed biological response to MWCNTs.
Collapse
Affiliation(s)
- Ninell P Mortensen
- Discovery Sciences, RTI International, Research Triangle Park, North Carolina, USA
| | - Rodney W Snyder
- Discovery Sciences, RTI International, Research Triangle Park, North Carolina, USA
| | - Wimal Pathmasiri
- UNC Nutrition Research Institute, The University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA
| | - Maria Moreno Caffaro
- Discovery Sciences, RTI International, Research Triangle Park, North Carolina, USA
| | - Susan J Sumner
- UNC Nutrition Research Institute, The University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA
| | - Timothy R Fennell
- Discovery Sciences, RTI International, Research Triangle Park, North Carolina, USA
| |
Collapse
|
3
|
Ghiasvand Mohammadkhani L, Khoshkam M, Kompany-Zareh M, Amiri M, Ramazani A. Metabolomics approach to study in vivo toxicity of graphene oxide nanosheets. J Appl Toxicol 2021; 42:506-515. [PMID: 34551125 DOI: 10.1002/jat.4235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 01/21/2023]
Abstract
Although graphene oxide (GO) nanosheets are widely used in different fields, the mechanism of their toxicity remains relatively unknown. NMR-based metabolomics was used to study in vivo time and dose-dependent toxicity of GO nanosheets in mice. Sixty serum samples from mice in four different time intervals including 24 and 72 h and 7 and 21 days after injection of 0-, 1-, and 10-mg/kg b.w. were analyzed based on 1 HNMR spectra of each sample and multivariate methods. In comparison with the control group, 12 changed metabolites were identified in GO nanosheet-treated mice groups. These metabolites are involved in steroid hormone biosynthesis and steroid biosynthesis pathways. It was seen that the time factor is more important than the dose factor and the groups were separated in a time direction, completely. We found that GO nanosheets has toxicity and can affect steroidal hormones. However, this study shows that after 21 days, the treated groups regardless of their GO nanosheet dose are very close to the control group. This means that in one step exposure to GO nanosheets, their toxicity diminished after 21 days.
Collapse
Affiliation(s)
| | - Maryam Khoshkam
- Chemistry Group, Faculty of Basic Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mohsen Kompany-Zareh
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mahdi Amiri
- Department of Clinical Laboratory, Imam Hossein Hospital, Iranian Social Security Organization (ISSO), Zanjan, Iran
| | - Ali Ramazani
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
4
|
Guimarães ATB, Malafaia G. Multiple toxicity endpoints induced by carbon nanofibers in Amazon turtle juveniles: Outspreading warns about toxicological risks to reptiles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146514. [PMID: 34030253 DOI: 10.1016/j.scitotenv.2021.146514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
The toxicity of carbon-based nanomaterials (CNs) has been observed in different organisms; however, little is known about the impact of water polluted with carbon nanofibers (CNFs) on reptiles. Thus, the aim of the current study was to assess the chronic effects (7.5 months) of 1 and 10 mg/L of CNF on Podocnemis expansa (Amazon turtle) juveniles (4 months old) based on different biomarkers. Increased total organic carbon (TOC) concentrations observed in the liver and brain (which suggests CNF uptake) were closely correlated to changes in REDOX systems of turtles exposed to CNFs, mainly to higher nitrite, hydrogen peroxide and lipid peroxidation levels. Increased levels of antioxidants such as total glutathione, catalase and superoxide dismutase in the exposed animals were also observed. The uptake of CNFs and the observed biochemical changes were associated with higher frequency of erythrocyte nuclear abnormalities (assessed through micronucleus assays), as well as with both damage in erythrocyte DNA (assessed through comet assays) and higher apoptosis and necrosis rates in erythrocytes of exposed turtles. Cerebral and hepatic acetylcholinesterase (AChE) increased in turtles exposed to CNFs, and this finding suggested the neurotoxic effect of these nanomaterials. Data in the current study reinforced the toxic potential of CNFs and evidenced the biochemical, mutagenic, genotoxic, cytotoxic, and neurotoxic effects of CNFs on P. expansa.
Collapse
Affiliation(s)
- Abraão Tiago Batista Guimarães
- Post-Graduation Program in Biotechnology and Biodiversity, Goiano Federal Institute and Federal University of Goiás, GO, Brazil; Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urataí Campus, GO, Brazil
| | - Guilherme Malafaia
- Post-Graduation Program in Biotechnology and Biodiversity, Goiano Federal Institute and Federal University of Goiás, GO, Brazil; Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urataí Campus, GO, Brazil; Post-Graduate Program in Ecology and Conservation of Natural Resources, Federal University of Uberlândia, MG, Brazil.
| |
Collapse
|
5
|
Chen H, Shi Y, Sun L, Ni S. Electrospun composite nanofibers with all-trans retinoic acid and MWCNTs-OH against cancer stem cells. Life Sci 2020; 258:118152. [PMID: 32735881 DOI: 10.1016/j.lfs.2020.118152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/10/2020] [Accepted: 07/23/2020] [Indexed: 01/22/2023]
Abstract
AIMS Cancer stem cells (CSCs) are the source of tumors and play a key role in the resistance of cancer to therapies. To improve the current therapies against CSCs, in this work we developed a novel system of electrospun polycaprolactone (PCL) nanofibers containing hydroxylated multi-walled carbon nanotubes (MWCNTs-OH) and all-trans retinoic acid (ATRA). MATERIALS AND METHODS The nanofiber membranes were forged by electrospinning, and the physical and chemical properties of the nanofiber membranes were evaluated by scanning electron microscopy, XRD and Raman etc. The photothermal properties of nanofiber membranes and their effects on CSCs differentiation and cytotoxicity were investigated. Finally, the anti-tumor effect of nanofiber membranes in vivo was evaluated. KEY FINDINGS The nanofibers formed under optimal conditions were smooth without beads. The nanofibrous membranes with MWCNTs-OH could increase temperature of the medium under near-infrared (NIR) illumination to suppress the viability of glioma stem cells (GSCs). Meanwhile, the added ATRA could further induce the differentiation of GSCs to destroy their stemness and reduce their resistance to heat treatment. Compared with no NIR irradiation, after 2min NIR irradiation, the membranes reduced the in-vitro viability of GSCs by 13.41%, 14.83%, and 26.71% after 1, 2, and 3 days, respectively. After 3 min daily illumination for 3 days, the viability of GSCs was only 22.75%, and similar results were observed in vivo. SIGNIFICANCE These results showed efficiently cytotoxicity to CSCs by combining heat therapy and differentiation therapy. The nanofiber membranes if inserted at the site after surgical tumor removal, may hinder tumor recurrence.
Collapse
Affiliation(s)
- Haijun Chen
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yue Shi
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Lei Sun
- Department of Endocrinology, Qilu Hospital, Shandong University, Jinan, Shandong, China.
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
6
|
Pouralijan Amiri M, Khoshkam M, Salek RM, Madadi R, Faghanzadeh Ganji G, Ramazani A. Metabolomics in early detection and prognosis of acute coronary syndrome. Clin Chim Acta 2019; 495:43-53. [PMID: 30928571 DOI: 10.1016/j.cca.2019.03.1632] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 01/23/2023]
Abstract
Acute coronary syndrome (ACS) is one of the most dangerous types of coronary heart disease (CHD) and contributes to significant mortality and morbidity worldwide. Outcomes in these patients remain a challenge despite improvements in diagnosis and treatment. Risk stratification continues to be problematic and the identification of novel predictors is crucial for improved outcomes. As such, there is a strong need for the development of novel analytical methods as well as the characterization of better predictive and prognostic biomarkers to enable more personalized treatment. Metabolite profile analysis may greatly assist in interpreting altered pathway dynamics, especially when combined with other 'omics' technologies such as transcriptomics and proteomics. In this review, we describe ACS pathophysiology and recent advances in the role of metabolomics in the diagnosis and the molecular pathogenesis of ACS. We briefly describe key technologies used in metabolomics research and statistical approaches for data reduction and pathway analysis and discuss their application to CHD.
Collapse
Affiliation(s)
- Mohammad Pouralijan Amiri
- Department of Genetics & Molecular Medicine, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Maryam Khoshkam
- Chemistry Group, Faculty of Basic Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Reza M Salek
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK.
| | - Reza Madadi
- Department of Cardiology, Mousavi Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Ali Ramazani
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|