1
|
Yeshchenko O, Kutsevol N, Virych P, Khort P, Virych P, Chumachenko V, Cekhun V. Anti-cancer activity of zinc-tetraphenylporphyrin photosensitizer/dextran- graft-polyacrylamide copolymer/Au(Ag) nanoparticle nanohybrids. RSC Adv 2024; 14:5045-5054. [PMID: 38332792 PMCID: PMC10848675 DOI: 10.1039/d3ra07825f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
A comparative study of in vitro anti-cancer photodynamic activities of three-component zinc-tetraphenylporphyrin photosensitizer/dextran-graft-polyacrylamide copolymer/Au(Ag) nanoparticle (ZnTPP/D-g-PAA/Au(Ag)NP) nanohybrids on LNCaP prostate cancer cells was carried out under 420 nm light irradiation with low power. A significant cytotoxic effect was revealed for both ZnTPP/D-g-PAA/AgNP and ZnTPP/D-g-PAA/AuNP nanohybrids, where ZnTPP/D-g-PAA/AgNP nanohybrids exhibited considerably higher anticancer activity (82%) compared to ZnTPP/D-g-PAA/AuNP nanohybrids (45%). The higher activity of silver-containing nanohybrids is rationalized based on two factors. The first factor is the resonance of 420 nm light with a absorption Soret peak of the ZnTPP photosensitizer and a localized surface plasmon mode in Ag nanoparticles. Correspondingly, the plasmon enhancement of reactive oxygen species photogeneration by ZnTPP molecules was considerably higher for the nanohybrid containing silver compared to the one containing gold. The second factor is the higher cytotoxicity of Ag nanoparticles compared to Au ones. The study results prove the high potential of D-g-PAA/Ag(Au)NP nanohybrids combined with 420 nm light irradiation with low power in the photodynamic treatment of prostate cancer.
Collapse
Affiliation(s)
- Oleg Yeshchenko
- Faculty of Physics, Taras Shevchenko National University of Kyiv 60 Volodymyrska Str. 01601 Kyiv Ukraine
| | - Nataliya Kutsevol
- Faculty of Chemistry, Taras Shevchenko National University of Kyiv 60 Volodymyrska Str. 01601 Kyiv Ukraine
| | - Pavlo Virych
- Faculty of Chemistry, Taras Shevchenko National University of Kyiv 60 Volodymyrska Str. 01601 Kyiv Ukraine
| | - Pavlo Khort
- Faculty of Physics, Taras Shevchenko National University of Kyiv 60 Volodymyrska Str. 01601 Kyiv Ukraine
| | - Petro Virych
- R.E. Kavetsky Institute for Experimental Pathology, Oncology and Radiobiology 45 Vasylkivska Str. 03022 Kyiv Ukraine
| | - Vasyl Chumachenko
- Faculty of Chemistry, Taras Shevchenko National University of Kyiv 60 Volodymyrska Str. 01601 Kyiv Ukraine
| | - Vasyl Cekhun
- R.E. Kavetsky Institute for Experimental Pathology, Oncology and Radiobiology 45 Vasylkivska Str. 03022 Kyiv Ukraine
| |
Collapse
|
2
|
Al-Attar HM, Mohammad MH, Alwan AH. Laser ablation of asphalt and coal in different solvents an In Vitro study. Lasers Med Sci 2023; 38:135. [PMID: 37300640 DOI: 10.1007/s10103-023-03796-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 05/24/2023] [Indexed: 06/12/2023]
Abstract
Pulsed laser ablation in liquids (PLAL) is considered as green, cost effective, and facile method to produce nanocolloids which exhibit anticancer effect. When comparing breast cancer with other types of cancers, breast cancer is considered as the second cause of death in women. The objective of this article is to test the cytotoxicity of carbon-based materials prepared by PLAL on both the normal (REF) cell line and the human breast cancer (MCF7) cell line. In this study, PLAL is used to prepare nanocolloids of asphalt and coal in different solvents (ethanol, dimethyl sulfoxide (DMSO), phosphate buffer saline (PBS), and distilled water (DW)). A fiber laser of wavelength of 1.06 μm and an average power of 10 watts was used to prepare different nanocolloids in different solvents from asphalt and coal. The cytotoxic effect of the prepared materials was tested against breast cancer MCF7 cell line in vitro. The asphalt in both ethanol and DMSO was found to have a significant cytotoxic effect and the growth inhibition (GI) was found to be 62.1% and 50.5% at concentrations of 620 and 80 ppm respectively, unlike the coal in DMSO which showed G.I. of 59.5%. Both the prepared materials in the mentioned solvents showed low cytotoxicity against the normal cell line (REF). We can conclude that the organic materials prepared in organic solvents using the PLAL had shown a low cytotoxicity against the (REF) cell line while they exhibited a significant cytotoxic effect against the MCF7 cell line. Further studies are recommended to test these prepared materials in vivo.
Collapse
Affiliation(s)
- Huda Mahmood Al-Attar
- Environmental Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq.
| | - Maeda H Mohammad
- Iraqi Center for Cancer and Medical Genetics Research, Al Mustansiriyah University, Baghdad, Iraq
| | - Ali Hussein Alwan
- Iraqi Center for Cancer and Medical Genetics Research, Al Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
3
|
Cytotoxicity of Hybrid Noble Metal-Polymer Composites. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1487024. [PMID: 36267838 PMCID: PMC9578826 DOI: 10.1155/2022/1487024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/18/2022]
Abstract
The aim of the present research was to assess the cytotoxicity of gold and silver nanoparticles synthesized into dextran-graft-polyacrylamide (D-PAA) polymer nanocarrier, which were used as a basis for further preparation of multicomponent nanocomposites revealed high efficacy for antitumor therapy. The evaluation of the influence of Me-polymer systems on the viability and metabolic activity of fibroblasts and eryptosis elucidating the mechanisms of the proeryptotic effects has been done in the current research. The nanocomposites investigated in this study did not reduce the survival of fibroblasts even at the highest used concentration. Our findings suggest that hybrid Ag/D-PAA composite activated eryptosis via ROS- and Ca2+-mediated pathways at the low concentration, in contrast to other studied materials. Thus, the cytotoxicity of Ag/D-PAA composite against erythrocytes was more pronounced compared with D-PAA and hybrid Au/polymer composite. Eryptosis is a more sensitive tool for assessing the biocompatibility of nanomaterials compared with fibroblast viability assays.
Collapse
|
4
|
Sarvari R, Naghili B, Agbolaghi S, Abbaspoor S, Bannazadeh Baghi H, Poortahmasebi V, Sadrmohammadi M, Hosseini M. Organic/polymeric antibiofilm coatings for surface modification of medical devices. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2066668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Raana Sarvari
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrooz Naghili
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Agbolaghi
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
| | | | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasebi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Sadrmohammadi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hosseini
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
5
|
Cu (II)-porphyrin metal-organic framework/graphene oxide: synthesis, characterization, and application as a pH-responsive drug carrier for breast cancer treatment. J Biol Inorg Chem 2021; 26:689-704. [PMID: 34420089 DOI: 10.1007/s00775-021-01887-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 07/23/2021] [Indexed: 12/22/2022]
Abstract
A new multifunctional graphene oxide/Cu (II)-porphyrin MOF nanocomposite (CuG) comprised of Cu-TCPP MOF supported on graphene oxide (GO) nanosheets, has been fabricated by a solvothermal method at low temperature and one-pot process. Cu-TCPP MOF with universal advantages, such as high porosity, nontoxicity, large surface area, and safe biodegradation, combined with GO allows the achievement of an efficient doxorubicin loading (45.7%) and smart pH-responsive release for chemotherapy. More significantly, more than 97% of DOX was released by CuG at pH 5 which was more than that at pH 7.4 (~ 33.5%), while Cu-TCPP MOF displayed DOX release of 68.5% and 49% at pH 5 and 7.4, respectively, illustrating the effect of GO on the smart MOF construction for controllable releasing behavior in vitro. The results of in vitro anticancer experiments demonstrate that the developed nanocarrier exhibited slight or no cytotoxicity on normal cells, while the drug-loaded nanocarrier increased significant cancer cell-killing ability with higher therapeutic efficacy than free DOX, indicating the sustained release behavior of the CuG nanocarrier without any "burst effect". Moreover, the in vivo experiments demonstrated that the CuG-DOX exhibited significantly higher anticancer efficiency compared with free DOX. High anti-cancer therapeutic efficacy of this nanoscale carrier as an efficient pH sensitive agent, has the potential to enter further biomedical investigations. A new smart multifunctional graphene oxide-Cu (II)-porphyrin MOF nanocomposite (CuG) formed of Cu-TCPP MOF and graphene oxide (GO) has successfully fabricated and demonstrated an efficient pH-responsive drug release behavior in cancer therapy without using any targeting ligand.
Collapse
|
6
|
Chernykh M, Zavalny D, Sokolova V, Ponomarenko S, Prylutska S, Kuziv Y, Chumachenko V, Marynin A, Kutsevol N, Epple M, Ritter U, Piosik J, Prylutskyy Y. A New Water-Soluble Thermosensitive Star-Like Copolymer as a Promising Carrier of the Chemotherapeutic Drug Doxorubicin. MATERIALS 2021; 14:ma14133517. [PMID: 34202610 PMCID: PMC8269508 DOI: 10.3390/ma14133517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/11/2021] [Accepted: 06/21/2021] [Indexed: 11/19/2022]
Abstract
A new water-soluble thermosensitive star-like copolymer, dextran-graft-poly-N-iso-propilacrylamide (D-g-PNIPAM), was created and characterized by various techniques (size-exclusion chromatography, differential scanning calorimetry, Fourier-transform infrared (FTIR) spectroscopy, and dynamic light scattering (DLS) spectroscopy). The viability of cancer cell lines (human transformed cervix epithelial cells, HeLa) as a model for cancer cells was studied using MTT and Live/Dead assays after incubation with a D-g-PNIPAM copolymer as a carrier for the drug doxorubicin (Dox) as well as a D-g-PNIPAM + Dox mixture as a function of the concentration. FTIR spectroscopy clearly indicated the complex formation of Dox with the D-g-PNIPAM copolymer. The size distribution of particles in Hank’s solution was determined by the DLS technique at different temperatures. The in vitro uptake of the studied D-g-PNIPAM + Dox nanoparticles into cancer cells was demonstrated by confocal laser scanning microscopy. It was found that D-g-PNIPAM + Dox nanoparticles in contrast to Dox alone showed higher toxicity toward cancer cells. All of the aforementioned facts indicate a possibility of further preclinical studies of the water-soluble D-g-PNIPAM particles’ behavior in animal tumor models in vivo as promising carriers of anticancer agents.
Collapse
Affiliation(s)
- Mariia Chernykh
- Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64, 01601 Kyiv, Ukraine; (M.C.); (D.Z.); (S.P.); (Y.K.); (V.C.); (N.K.)
| | - Dmytro Zavalny
- Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64, 01601 Kyiv, Ukraine; (M.C.); (D.Z.); (S.P.); (Y.K.); (V.C.); (N.K.)
| | - Viktoriya Sokolova
- Center for Nanointegration Duisburg-Essen (CeNIDE), Institute of Inorganic Chemistry, University of Duisburg-Essen, University Street, 5-7, 45117 Essen, Germany; (V.S.); (M.E.)
| | - Stanislav Ponomarenko
- Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64, 01601 Kyiv, Ukraine; (M.C.); (D.Z.); (S.P.); (Y.K.); (V.C.); (N.K.)
| | - Svitlana Prylutska
- Department of Physiology, Plant Biochemistry and Bioenergetics, National University of Life and Environmental Science of Ukraine, Heroiv Oborony Street, 15, 03041 Kyiv, Ukraine;
| | - Yuliia Kuziv
- Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64, 01601 Kyiv, Ukraine; (M.C.); (D.Z.); (S.P.); (Y.K.); (V.C.); (N.K.)
| | - Vasyl Chumachenko
- Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64, 01601 Kyiv, Ukraine; (M.C.); (D.Z.); (S.P.); (Y.K.); (V.C.); (N.K.)
| | - Andrii Marynin
- National University of Food Technologies of Ukraine, Volodymyrska Street, 01033 Kyiv, Ukraine;
| | - Nataliya Kutsevol
- Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64, 01601 Kyiv, Ukraine; (M.C.); (D.Z.); (S.P.); (Y.K.); (V.C.); (N.K.)
| | - Matthias Epple
- Center for Nanointegration Duisburg-Essen (CeNIDE), Institute of Inorganic Chemistry, University of Duisburg-Essen, University Street, 5-7, 45117 Essen, Germany; (V.S.); (M.E.)
| | - Uwe Ritter
- Institute of Chemistry and Biotechnology, Technical University of Ilmenau, Weimarer Street, 25, 98693 Ilmenau, Germany;
| | - Jacek Piosik
- Laboratory of Biophysics, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Abrahama 58, 80-307 Gdańsk, Poland
- Correspondence: (J.P.); (Y.P.)
| | - Yuriy Prylutskyy
- Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64, 01601 Kyiv, Ukraine; (M.C.); (D.Z.); (S.P.); (Y.K.); (V.C.); (N.K.)
- Correspondence: (J.P.); (Y.P.)
| |
Collapse
|
7
|
Carrion CC, Nasrollahzadeh M, Sajjadi M, Jaleh B, Soufi GJ, Iravani S. Lignin, lipid, protein, hyaluronic acid, starch, cellulose, gum, pectin, alginate and chitosan-based nanomaterials for cancer nanotherapy: Challenges and opportunities. Int J Biol Macromol 2021; 178:193-228. [PMID: 33631269 DOI: 10.1016/j.ijbiomac.2021.02.123] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/07/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022]
Abstract
Although nanotechnology-driven drug delivery systems are relatively new, they are rapidly evolving since the nanomaterials are deployed as effective means of diagnosis and delivery of assorted therapeutic agents to targeted intracellular sites in a controlled release manner. Nanomedicine and nanoparticulate drug delivery systems are rapidly developing as they play crucial roles in the development of therapeutic strategies for various types of cancer and malignancy. Nevertheless, high costs, associated toxicity and production of complexities are some of the critical barriers for their applications. Green nanomedicines have continually been improved as one of the viable approaches towards tumor drug delivery, thus making a notable impact on which considerably affect cancer treatment. In this regard, the utilization of natural and renewable feedstocks as a starting point for the fabrication of nanosystems can considerably contribute to the development of green nanomedicines. Nanostructures and biopolymers derived from natural and biorenewable resources such as proteins, lipids, lignin, hyaluronic acid, starch, cellulose, gum, pectin, alginate, and chitosan play vital roles in the development of cancer nanotherapy, imaging and management. This review uncovers recent investigations on diverse nanoarchitectures fabricated from natural and renewable feedstocks for the controlled/sustained and targeted drug/gene delivery systems against cancers including an outlook on some of the scientific challenges and opportunities in this field. Various important natural biopolymers and nanomaterials for cancer nanotherapy are covered and the scientific challenges and opportunities in this field are reviewed.
Collapse
Affiliation(s)
- Carolina Carrillo Carrion
- Department of Organic Chemistry, University of Córdoba, Campus de Rabanales, Edificio Marie Curie, Ctra Nnal IV-A Km. 396, E-14014 Cordoba, Spain
| | | | - Mohaddeseh Sajjadi
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185-359, Iran
| | - Babak Jaleh
- Department of Physics, Bu-Ali Sina University, 65174 Hamedan, Iran
| | | | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
8
|
Application of new multicomponent nanosystems for overcoming doxorubicin resistance in breast cancer therapy. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-020-01653-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Alemi F, Zarezadeh R, Sadigh AR, Hamishehkar H, Rahimi M, Majidinia M, Asemi Z, Ebrahimi-Kalan A, Yousefi B, Rashtchizadeh N. Graphene oxide and reduced graphene oxide: Efficient cargo platforms for cancer theranostics. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101974] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
A Novel Branched Copolymer-Containing Anticancer Drug for Targeted Therapy: In Vitro Research. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00700-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Harahuts Y, Kutsevol N, Melnik N, Nadtoka O, Virych P. Studying the nanosystem thermosensitive branched polymer/nanogold/chlorine e6 in Hanks’ balanced salt solution. Polym J 2019. [DOI: 10.15407/polymerj.41.03.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Temperature Driven Transformation in Dextran-Graft-PNIPAM/Embedded Silver Nanoparticle Hybrid System. INT J POLYM SCI 2019. [DOI: 10.1155/2019/3765614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
During the last decade, stimuli-responsible polymers based on poly(N-isopropylacrylamide) having conformational transition in the range of physiological temperature have been discussed as novel drug delivery nanosystems. A star-like copolymer with a dextran core and grafted poly(N-isopropylacrylamide) arms (D-g-PNIPAM) was synthesized, characterized, and used as a matrix for silver sol preparation. The comparative study of the behavior of individual D-g-PNIPAM and the nanohybrid system D-g-PNIPAM/silver nanoparticles has been done in the temperature range near the lower critical solution temperature (LCST). The methods of Dynamic Light Scattering, small angle X-ray scattering, and UV-VIS absorption spectroscopy have been used. The existence of single nanoparticles and aggregated nanoparticles located in a limited polymer macromolecular volume was established. The increase of the temperature leads to slight aggregation of the silver nanoparticles at the LCST transition. Single nanoparticles do not aggregate with the temperature increase. The thermally induced collapse of end-grafted poly(N-isopropylacrylamide) chains above the LCST do not affect significantly the size characteristics of silver nanoparticles incorporated into the polymer matrix.
Collapse
|