1
|
Tabrizi F, Khatami M, Heidari MM, Bragança J, Tatari H, Namnabat M, Hadadzadeh M, Navabi Shirazi MA. Novel and deleterious nucleotide variations in the HAND1 gene probably affect miRNA target sites and protein function in pediatric patients with congenital heart disease. Mol Biol Rep 2024; 51:468. [PMID: 38551686 DOI: 10.1007/s11033-024-09410-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/01/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Congenital heart disease (CHD) is the most prevalent developmental defect and principal cause of infant mortality and affects cardiac and large blood vessel structures in approximately 1% of live births worldwide. To date, numerous studies have related critical genetic dysfunctions to the pathogenesis of CHDs. However, the genetic basis underlying CHD remains largely unknown. In the present study, we investigated the association of nucleotide variations in coding and noncoding regions of the HAND1 gene with the risk of CHD. The HAND1 gene, encoding a helix-loop-helix transcription factor, is particularly relevant for mechanisms underlying CHD since it plays a significant role in heart development. METHODS AND RESULTS The genomic DNA of 150 unrelated pediatric patients with CHD was screened by PCR-SSCP and direct sequencing. Four novel and heterozygous missense mutations were identified in the first exon, with three causing amino acid substitutions (p.Val149Met, p.Tyr142His, and p.Leu146Met). In-silico analysis also indicated their deleterious impact on protein structure and function. In addition, we identified five novel nucleotide variants in the 3'UTR region (c.*461, c.*342, c.*529, c.*448, c.*593), potentially altering the target sites of miRNAs. These changes include the loss of certain target sites and the acquisition of new ones. CONCLUSIONS These findings confirm the phenotypic association between CHDs and HAND1 mutations and can pave the way for developing new preventive and therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - José Bragança
- Faculty of Medicine and Biomedical Sciences, Algarve Biomedical Centre Research Institute (ABC-RI), University of Algarve, Faro, Portugal
| | - Hasan Tatari
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Namnabat
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Mehdi Hadadzadeh
- Department of Cardiac Surgery, Afshar Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Ali Navabi Shirazi
- Department of Pediatric Cardiac Surgery, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Shafi O, Siddiqui G, Jaffry HA. The benign nature and rare occurrence of cardiac myxoma as a possible consequence of the limited cardiac proliferative/ regenerative potential: a systematic review. BMC Cancer 2023; 23:1245. [PMID: 38110859 PMCID: PMC10726542 DOI: 10.1186/s12885-023-11723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Cardiac Myxoma is a primary tumor of heart. Its origins, rarity of the occurrence of primary cardiac tumors and how it may be related to limited cardiac regenerative potential, are not yet entirely known. This study investigates the key cardiac genes/ transcription factors (TFs) and signaling pathways to understand these important questions. METHODS Databases including PubMed, MEDLINE, and Google Scholar were searched for published articles without any date restrictions, involving cardiac myxoma, cardiac genes/TFs/signaling pathways and their roles in cardiogenesis, proliferation, differentiation, key interactions and tumorigenesis, with focus on cardiomyocytes. RESULTS The cardiac genetic landscape is governed by a very tight control between proliferation and differentiation-related genes/TFs/pathways. Cardiac myxoma originates possibly as a consequence of dysregulations in the gene expression of differentiation regulators including Tbx5, GATA4, HAND1/2, MYOCD, HOPX, BMPs. Such dysregulations switch the expression of cardiomyocytes into progenitor-like state in cardiac myxoma development by dysregulating Isl1, Baf60 complex, Wnt, FGF, Notch, Mef2c and others. The Nkx2-5 and MSX2 contribute predominantly to both proliferation and differentiation of Cardiac Progenitor Cells (CPCs), may possibly serve roles based on the microenvironment and the direction of cell circuitry in cardiac tumorigenesis. The Nkx2-5 in cardiac myxoma may serve to limit progression of tumorigenesis as it has massive control over the proliferation of CPCs. The cardiac cell type-specific genetic programming plays governing role in controlling the tumorigenesis and regenerative potential. CONCLUSION The cardiomyocytes have very limited proliferative and regenerative potential. They survive for long periods of time and tightly maintain the gene expression of differentiation genes such as Tbx5, GATA4 that interact with tumor suppressors (TS) and exert TS like effect. The total effect such gene expression exerts is responsible for the rare occurrence and benign nature of primary cardiac tumors. This prevents the progression of tumorigenesis. But this also limits the regenerative and proliferative potential of cardiomyocytes. Cardiac Myxoma develops as a consequence of dysregulations in these key genes which revert the cells towards progenitor-like state, hallmark of CM. The CM development in carney complex also signifies the role of TS in cardiac cells.
Collapse
Affiliation(s)
- Ovais Shafi
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan.
| | - Ghazia Siddiqui
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan
| | - Hassam A Jaffry
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
3
|
Sarwar S, Shabana, Tahir A, Liaqat Z, Naseer S, Seme RS, Mehmood S, Shahid SU, Hasnain S. Study of variants associated with ventricular septal defects (VSDs) highlights the unique genetic structure of the Pakistani population. Ital J Pediatr 2022; 48:124. [PMID: 35870951 PMCID: PMC9308904 DOI: 10.1186/s13052-022-01323-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 07/08/2022] [Indexed: 11/28/2022] Open
Abstract
Background Ventricular septal defects (VSDs) are one of the leading causes of death due to cardiac anomalies during the first months of life. The prevalence of VSD in neonates is reported up to 4%. Despite the remarkable progress in medication, treatment and surgical procedure for VSDs, the genetic etiology of VSDs is still in infancy because of the complex genetic and environmental interactions. Methods Three hundred fifty subjects (200 VSD children and 150 healthy controls) were recruited from different pediatric cardiac units. Pediatric clinical and demographic data were collected. A total of six variants, rs1017 (ISL1), rs7240256 (NFATc1), rs36208048 (VEGF), variant of HEY2, rs11067075 (TBX5) and rs1801133 (MTHFR) genes were genotyped by tetra-ARMS PCR and PCR–RFLP methods. Results The results showed that in cases, the rs1017 (g.16138A > T) variant in the ISL1 gene has an allele frequency of 0.42 and 0.58 respectively for the T and A alleles, and 0.75 and 0.25 respectively in the controls. The frequencies of the AA, TA and TT genotypes were, 52%, 11% and 37% in cases versus 21%, 8% and 71% respectively in the controls. For the NFATc1 variant rs7240256, minor allele frequency (MAF) was 0.43 in cases while 0.23 in controls. For the variant in the VEGF gene, genotype frequencies were 0% (A), 32% (CA) and 68% (CC) in cases and 0.0%, 33% and 67% respectively in controls. The allele frequency of C and A were 0.84 and 0.16 in cases and 0.83 and 0.17 respectively in controls. The TBX5 polymorphism rs11067075 (g.51682G > T) had an allelic frequency of 0.44 and 0.56 respectively for T and G alleles in cases, versus 0.26 and 0.74 in the controls. We did not detect the presence of the HEY2 gene variant (g.126117350A > C) in our pediatric cohort. For the rs1801133 (g.14783C > T) variant in the MTHFR gene, the genotype frequencies were 25% (CC), 62% (CT) and 13% (TT) in cases, versus 88%, 10% and 2% in controls. The ISL1, NFATc1, TBX5 and MTHFR variants were found to be in association with VSD in the Pakistani pediatric cohort whilst the VEGF and HEY2 variants were completely absent in our cohort. Conclusion We propose that a wider programme of genetic screening of the Pakistani population for genetic markers in heart development genes would be helpful in reducing the risk of VSDs.
Collapse
|
4
|
Zhang X, Liu L, Chen W, Wang F, Cheng Y, Liu Y, Lai Y, Zhang R, Qiao Y, Yuan Y, Lin Y, Xu W, Cao J, Gui Y, Zhao J. Gestational Leucylation Suppresses Embryonic T-Box Transcription Factor 5 Signal and Causes Congenital Heart Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201034. [PMID: 35320615 PMCID: PMC9130917 DOI: 10.1002/advs.202201034] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Indexed: 06/01/2023]
Abstract
Dysregulated maternal nutrition, such as vitamin deficiencies and excessive levels of glucose and fatty acids, increases the risk for congenital heart disease (CHD) in the offspring. However, the association between maternal amino-acid levels and CHD is unclear. Here, it is shown that increased leucine levels in maternal plasma during the first trimester are associated with elevated CHD risk in the offspring. High levels of maternal leucine increase embryonic lysine-leucylation (K-Leu), which is catalyzed by leucyl-tRNA synthetase (LARS). LARS preferentially binds to and catalyzes K-Leu modification of lysine 339 within T-box transcription factor TBX5, whereas SIRT3 removes K-Leu from TBX5. Reversible leucylation retains TBX5 in the cytoplasm and inhibits its transcriptional activity. Increasing embryonic K-Leu levels in high-leucine-diet fed or Sirt3 knockout mice causes CHD in the offspring. Targeting K-Leu using the leucine analogue leucinol can inhibit LARS activity, reverse TBX5 K-Leu modification, and decrease the occurrence of CHD in high-leucine-diet fed mice. This study reveals that increased maternal leucine levels increases CHD risk in the offspring through inhibition of embryonic TBX5 signaling, indicating that leucylation exerts teratogenic effects during heart development and may be an intervening target of CHD.
Collapse
Affiliation(s)
- Xuan Zhang
- Children's Hospital of Fudan UniversityObstetrics & Gynecology Hospital of Fudan UniversityFudan University Shanghai Cancer CenterState Key Laboratory of Genetic Engineeringand School of Life SciencesShanghai200438P. R. China
| | - Lian Liu
- Children's Hospital of Fudan UniversityObstetrics & Gynecology Hospital of Fudan UniversityFudan University Shanghai Cancer CenterState Key Laboratory of Genetic Engineeringand School of Life SciencesShanghai200438P. R. China
| | - Wei‐Cheng Chen
- Children's Hospital of Fudan UniversityObstetrics & Gynecology Hospital of Fudan UniversityFudan University Shanghai Cancer CenterState Key Laboratory of Genetic Engineeringand School of Life SciencesShanghai200438P. R. China
| | - Feng Wang
- Children's Hospital of Fudan UniversityObstetrics & Gynecology Hospital of Fudan UniversityFudan University Shanghai Cancer CenterState Key Laboratory of Genetic Engineeringand School of Life SciencesShanghai200438P. R. China
| | - Yi‐Rong Cheng
- Children's Hospital of Fudan UniversityObstetrics & Gynecology Hospital of Fudan UniversityFudan University Shanghai Cancer CenterState Key Laboratory of Genetic Engineeringand School of Life SciencesShanghai200438P. R. China
| | - Yi‐Meng Liu
- Children's Hospital of Fudan UniversityObstetrics & Gynecology Hospital of Fudan UniversityFudan University Shanghai Cancer CenterState Key Laboratory of Genetic Engineeringand School of Life SciencesShanghai200438P. R. China
| | - Yang‐Fan Lai
- Children's Hospital of Fudan UniversityObstetrics & Gynecology Hospital of Fudan UniversityFudan University Shanghai Cancer CenterState Key Laboratory of Genetic Engineeringand School of Life SciencesShanghai200438P. R. China
| | - Rui‐Jia Zhang
- Children's Hospital of Fudan UniversityObstetrics & Gynecology Hospital of Fudan UniversityFudan University Shanghai Cancer CenterState Key Laboratory of Genetic Engineeringand School of Life SciencesShanghai200438P. R. China
| | - Ya‐Nan Qiao
- Children's Hospital of Fudan UniversityObstetrics & Gynecology Hospital of Fudan UniversityFudan University Shanghai Cancer CenterState Key Laboratory of Genetic Engineeringand School of Life SciencesShanghai200438P. R. China
| | - Yi‐Yuan Yuan
- Children's Hospital of Fudan UniversityObstetrics & Gynecology Hospital of Fudan UniversityFudan University Shanghai Cancer CenterState Key Laboratory of Genetic Engineeringand School of Life SciencesShanghai200438P. R. China
| | - Yan Lin
- Children's Hospital of Fudan UniversityObstetrics & Gynecology Hospital of Fudan UniversityFudan University Shanghai Cancer CenterState Key Laboratory of Genetic Engineeringand School of Life SciencesShanghai200438P. R. China
- Key Laboratory of Reproduction Regulation of NPFPC and Institutes of Biomedical SciencesFudan UniversityShanghai200438P. R. China
| | - Wei Xu
- Children's Hospital of Fudan UniversityObstetrics & Gynecology Hospital of Fudan UniversityFudan University Shanghai Cancer CenterState Key Laboratory of Genetic Engineeringand School of Life SciencesShanghai200438P. R. China
- Key Laboratory of Reproduction Regulation of NPFPC and Institutes of Biomedical SciencesFudan UniversityShanghai200438P. R. China
| | - Jing Cao
- School of Basic Medical SciencesZhengzhou UniversityZhengzhou450001China
| | - Yong‐Hao Gui
- Children's Hospital of Fudan UniversityObstetrics & Gynecology Hospital of Fudan UniversityFudan University Shanghai Cancer CenterState Key Laboratory of Genetic Engineeringand School of Life SciencesShanghai200438P. R. China
| | - Jian‐Yuan Zhao
- Children's Hospital of Fudan UniversityObstetrics & Gynecology Hospital of Fudan UniversityFudan University Shanghai Cancer CenterState Key Laboratory of Genetic Engineeringand School of Life SciencesShanghai200438P. R. China
- School of Basic Medical SciencesZhengzhou UniversityZhengzhou450001China
| |
Collapse
|
5
|
Khatami M, Ghorbani S, Adriani MR, Bahaloo S, Naeini MA, Heidari MM, Hadadzadeh M. Novel Point Mutations in 3'-Untranslated Region of GATA4 Gene Are Associated with Sporadic Non-syndromic Atrial and Ventricular Septal Defects. Curr Med Sci 2021; 42:129-143. [PMID: 34652630 DOI: 10.1007/s11596-021-2428-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/14/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Transcription factor GATA4 has significant roles in embryonic heart development. Mutations of GATA4 appear to be responsible for a wide variety of congenital heart defects (CHD). Despite the high prevalence of GATA4 mutations in CHD phenotypes, extensive studies have not been performed. The 3'-untranslated region (3'-UTR) of the GATA4 gene comprises regulatory motifs and microRNA binding sites that are critical for the appropriate gene expression, nuclear transportation, and regulation of translation, and stability of mRNA. This study aimed to evaluate the association between mutations in the 3'-UTR of the GATA4 gene and CHD risk among Iranian patients. METHODS We analyzed the coding region of exon 6 and the whole 3'-UTR of GATA4 in DNA isolated from 175 blood samples of CHD patients and 115 unrelated healthy individuals. The functional importance of the observed GATA4 mutations was evaluated using a variety of bioinformatics algorithms for assessment of nonsynonymous mutations and those observed in miRNA binding sites of 3'-UTR. RESULTS Twenty-one point mutations including one missense mutation (c.511A>G: p.Ser377Gly) in exon 6 and 20 nucleotide variations in 3'-UTR of GATA4 gene were identified in 65 of the 175 CHD patients. In our patients, we identified 12 novel sequence alterations and 8 single nucleotide polymorphisms in the 3'-UTR of GATA4. Most of them had statistically significant differences between CHD patients and controls. CONCLUSION Our results suggest that 3'-UTR variations of the GATA4 gene probably change microRNA binding sites and present an additional molecular risk factor for the susceptibility of CHD.
Collapse
Affiliation(s)
- Mehri Khatami
- Department of Biology, Faculty of Science, Yazd University, Yazd, 8915818411, Iran.
| | - Sajedeh Ghorbani
- Department of Biology, Faculty of Science, Yazd University, Yazd, 8915818411, Iran
| | | | - Sahar Bahaloo
- Department of Biology, Faculty of Science, Yazd University, Yazd, 8915818411, Iran
| | - Mehri Azami Naeini
- Department of Biology, Faculty of Science, Yazd University, Yazd, 8915818411, Iran
| | | | - Mehdi Hadadzadeh
- Department of Cardiac Surgery, Afshar Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, 8915887856, Iran
| |
Collapse
|
6
|
Martin KE, Waxman JS. Atrial and Sinoatrial Node Development in the Zebrafish Heart. J Cardiovasc Dev Dis 2021; 8:jcdd8020015. [PMID: 33572147 PMCID: PMC7914448 DOI: 10.3390/jcdd8020015] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
Proper development and function of the vertebrate heart is vital for embryonic and postnatal life. Many congenital heart defects in humans are associated with disruption of genes that direct the formation or maintenance of atrial and pacemaker cardiomyocytes at the venous pole of the heart. Zebrafish are an outstanding model for studying vertebrate cardiogenesis, due to the conservation of molecular mechanisms underlying early heart development, external development, and ease of genetic manipulation. Here, we discuss early developmental mechanisms that instruct appropriate formation of the venous pole in zebrafish embryos. We primarily focus on signals that determine atrial chamber size and the specialized pacemaker cells of the sinoatrial node through directing proper specification and differentiation, as well as contemporary insights into the plasticity and maintenance of cardiomyocyte identity in embryonic zebrafish hearts. Finally, we integrate how these insights into zebrafish cardiogenesis can serve as models for human atrial defects and arrhythmias.
Collapse
Affiliation(s)
- Kendall E. Martin
- Molecular Genetics, Biochemistry, and Microbiology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Joshua S. Waxman
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Correspondence:
| |
Collapse
|
7
|
Dianatpour S, Khatami M, Heidari MM, Hadadzadeh M. Novel Point Mutations of CITED2 Gene Are Associated with Non-familial Congenital Heart Disease (CHD) in Sporadic Pediatric Patients. Appl Biochem Biotechnol 2019; 190:896-906. [PMID: 31515672 DOI: 10.1007/s12010-019-03125-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/25/2019] [Indexed: 12/20/2022]
Abstract
CITED2 is a cardiac transcription factor that plays a critical role in cardiac development. Gene mutations in CITED2 lead to a series of cardiac malformations and congenital heart defects (CHD). Congenital heart disease generally refers to defects in the heart's structure or function and often seen in many forms such as ventricular septal defects (VSDs), atrial septal defects (ASDs), and tetralogy of Fallot (TOF). However, the mechanisms involved in these mutations are poorly understood. The aim of the present study was to evaluate the mutations of the CITED2 gene in pediatric patients with congenital heart defects. We studied the potential impact of sequence variations of the CITED2 gene in a cohort of 150 patients with non-familial CHD and 98 control individuals by polymerase chain reaction-single-stranded conformation polymorphism (PCR-SSCP) and subsequently direct sequencing. We identified seven novel CITED2 nucleotide changes. Four of these alterations were found in the coding region (c.716insG, c.389A>G, c.450G>C and c.512-538del27) and were only seen in our patients, and not detected in the control group. These mutations are leading to changes in the amino acid sequence in the position of p.Gly236fs, p.Asn125Ser, p.Gln145His, and p.Ser170-Gly178del, respectively. Other variations are located in the 5'UTR region of the gene (c.-43C>T, c.-64C>T and c.-90A>G). CITED2 gene mutations in control subjects were not observed. Our Bioinformatics assay results showed that these novel mutations alter the RNA folding, protein structure, and, therefore, probable effect on the protein function and may play a significant role in the development of congenital heart diseases.
Collapse
Affiliation(s)
- Sima Dianatpour
- Department of Biology, Faculty of Science, Yazd University, Yazd, Iran
| | - Mehri Khatami
- Department of Biology, Faculty of Science, Yazd University, Yazd, Iran.
| | | | - Mehdi Hadadzadeh
- Department of Cardiac Surgery, Afshar Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|