1
|
Chen Z, Hong N, Yan C, Zheng Z, Xi J, Cao P. The potential of Paeonia lactiflora pall seeds oil as a pure natural cosmetics raw material: In Vitro findings. J Cosmet Dermatol 2024; 23:1875-1883. [PMID: 38450923 DOI: 10.1111/jocd.16204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/21/2023] [Accepted: 01/19/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND As a traditional Chinese herbal medicine, Paeonia lactiflora Pall is rich in various active ingredients such as polysaccharides and total flavonoids while having ornamental value. It has potential application value in the development of food and cosmetics. OBJECTIVE To study the in vitro efficacy of Paeonia lactiflora Pall seeds oil. METHODS Firstly, the levels of linolenic acid and linoleic acid in Paeonia lactiflora Pall seeds oil were quantified using gas chromatography. The impact of Paeonia lactiflora Pall seeds oil on the proliferation rate of B16F10 cells was assessed through the CCK-8 method, while the melanin content of B16F10 cells was determined using the sodium hydroxide lysis method. The inhibitory effects of Paeonia lactiflora Pall seeds oil on elastase, collagenase and hyaluronidase were evaluated by biochemical techniques in vitro. Lastly, the hen's egg chorioallantoic membrane test (HET-CAM) was conducted to confirm the absence of eye irritation caused by Paeonia lactiflora Pall seeds oil. RESULTS Paeonia lactiflora Pall seeds oil within a certain volume concentration range (0.5%-4%) had no effect on the proliferation of B16F10 cells. Paeonia lactiflora Pall seeds oil showed significant inhibition of elastase, collagenase and hyaluronidase. Notably, the highest concentration tested, 4% Paeonia lactiflora Pall seed oil, yielded the most pronounced outcomes without causing any irritation. CONCLUSION A certain concentration of Paeonia lactiflora Pall seeds oil has a significant effect on decreasing the melanin content in B16F10 cells and inhibiting the activities of elastase, collagenase, and hyaluronidase, which can provide a reference for the development of pure natural cosmetics raw materials.
Collapse
Affiliation(s)
| | - Ni Hong
- Huzhou Jiaheng Industrial Co., Ltd., Huzhou, China
| | - Cui Yan
- Huzhou Jiaheng Industrial Co., Ltd., Huzhou, China
| | | | - Jie Xi
- Huzhou Jiaheng Industrial Co., Ltd., Huzhou, China
| | - Ping Cao
- Huzhou Jiaheng Industrial Co., Ltd., Huzhou, China
| |
Collapse
|
2
|
Park GK, Jang W, Kim BY, Oh K, Kim YA, Kwon HJ, Kim S, Park BJ. Chemical constituents from
Hibiscus hamabo
and their antiphotoaging effects on
UVA
‐induced
CCD
‐986sk. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Gwee Kyo Park
- Skin & Natural Products Laboratory Kolmar Korea Co., Ltd Seoul Republic of Korea
| | - Wookju Jang
- Skin & Natural Products Laboratory Kolmar Korea Co., Ltd Seoul Republic of Korea
| | - Bo Yun Kim
- Skin & Natural Products Laboratory Kolmar Korea Co., Ltd Seoul Republic of Korea
| | - Kyung‐Eon Oh
- Skin & Natural Products Laboratory Kolmar Korea Co., Ltd Seoul Republic of Korea
| | - You Ah. Kim
- Skin & Natural Products Laboratory Kolmar Korea Co., Ltd Seoul Republic of Korea
| | - Hyuk Joon Kwon
- Skin & Natural Products Laboratory Kolmar Korea Co., Ltd Seoul Republic of Korea
| | - Soo‐Young Kim
- National Institute of Biological Resources Ministry of Biological Resources Incheon Republic of Korea
| | - Byoung Jun Park
- Skin & Natural Products Laboratory Kolmar Korea Co., Ltd Seoul Republic of Korea
| |
Collapse
|
4
|
Amer RI, Ezzat SM, Aborehab NM, Ragab MF, Mohamed D, Hashad A, Attia D, Salama MM, El Bishbishy MH. Downregulation of MMP1 expression mediates the anti-aging activity of Citrus sinensis peel extract nanoformulation in UV induced photoaging in mice. Biomed Pharmacother 2021; 138:111537. [PMID: 34311535 DOI: 10.1016/j.biopha.2021.111537] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/13/2021] [Accepted: 03/21/2021] [Indexed: 01/19/2023] Open
Abstract
Aging of the skin is a complicated bioprocess that is affected by constant exposure to ultraviolet irradiation. The application of herbal-based anti-aging creams is still the best choice for treatment. In the present study, Citrus sinensis L. fruit peels ethanolic extract (CSPE) was formulated into lipid nanoparticles (LNPs) anti-aging cream. Eight different formulations of CSEP-LNPs were prepared and optimized using 23 full factorial designs. In vivo antiaging effect of the best formula was tested in Swiss albino mice where photo-aging was induced by exposure to UV radiation. HPLC-QToF-MS/MS metabolic profiling of CSPE led to the identification of twenty-nine metabolites. CSPE was standardized to a hesperidin content of 15.53 ± 0.152 mg% using RP-HPLC. It was suggested that the optimized formulation (F7) had (245 nm) particle size, (91.065%) EE, and (91.385%) occlusive effect with a spherical and smooth surface. The visible appearance of UV-induced photoaging in mice was significantly improved after topical application on CSPE-NLC cream for 5 weeks, levels of collagen and SOD were significantly increased in CSPE- NLC group, while levels of PGE2, COX2, JNK, MDA, and elastin was reduced. Finally, The prepared anti-aging CSPE-NLC cream represents a safe, convenient, and promising skincare cosmetic product.
Collapse
Affiliation(s)
- Reham I Amer
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| | - Shahira M Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt; Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt.
| | - Nora M Aborehab
- Department of Biochemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| | - Mai F Ragab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| | - Dalia Mohamed
- Department of Analytical Chemistry, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo 11795, Egypt; Department of Analytical Chemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| | - Amira Hashad
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| | - Dalia Attia
- Department of Pharmaceutics, Faculty of Pharmacy, The British University in Egypt, El Sherouk City, Suez Desert Road, Cairo 11837, Egypt
| | - Maha M Salama
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt; Department of Pharmacognosy, Faculty of Pharmacy, The British University in Egypt, El Sherouk City, Suez Desert Road, Cairo 11837, Egypt
| | - Mahitab H El Bishbishy
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| |
Collapse
|
5
|
Phenol Content and Antioxidant and Antiaging Activity of Safflower Seed Oil (Carthamus Tinctorius L.). COSMETICS 2019. [DOI: 10.3390/cosmetics6030055] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The phenol content of vegetable oil and its antioxidant activity are of primary interest for human health. Oilseed species are considered important sources of these compounds with medicinal effects on a large scale. Total phenol content (TPC) and antioxidant activity (AA) of safflower oil were previously studied. Nevertheless, there is no report on genotypic differences and antiaging activity of safflower oil. The aim of this study was to determine the TPC, diphenyl-picrylhydrazyl (DPPH), and antiaging activity on three respective accessions from Syria, France, and Algeria of seed oil of safflower grown under semi-arid conditions during 3 consecutive years (2015, 2016, and 2017). The results showed that phenol content as well as antioxidant and antiaging activity varied according to both genotype and years. In 2017, the mean value of TPC in oil seed was two times higher than in 2015 and 2016. Moreover, accessions presented different TPC values depending on the year. The highest antioxidant activity was observed among accessions in 2017 compared to 2015 and 2016. As expected, a positive correlation was found between TPC and antioxidant activity. The inhibition in the collagenase assay was between 47% and 72.1% compared to the positive control (83.1%), while inhibition in the elastase assay of TPC ranged from 32.2% to 70.3%, with the positive control being 75.8%. These results highlight the interest of safflower oil as a source of phenols with valuable antioxidant and antiaging activity, and uses for cosmetics.
Collapse
|