1
|
Ramsridhar S, Rajkumar C, Veeraraghavan VP, Francis AP, Balasubramaniam M, Bharkavi I. From cell lines to animal models: "plant- derived chemotherapeutics unlocking new frontiers against oral squamous cell carcinoma"-a comprehensive systematic review. Discov Oncol 2025; 16:340. [PMID: 40097871 PMCID: PMC11914638 DOI: 10.1007/s12672-025-02057-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND AND AIM Despite progress in traditional treatment methods, the overall survival rate for oral squamous cell carcinoma (OSCC) remains limited. Consequently, it is essential to investigate alternative therapeutic strategies to enhance patient outcomes. This review highlights the potential role of plant extracts as chemo preventive agents in oral cancer treatment. METHODS A systematic review was conducted following PRISMA guidelines, involving an extensive literature search from databases such as PubMed, Scopus, Embase, Web of science, Cochrane and CINAHL which included studies from 2010 to 2024 that explored the anticancer potential of medicinal plants for OSCC treatment. Data extraction focused on plant species, parts used, extract type, active components, dosage, and cancer cell lines or animal models used. Risk of bias was assessed using the OHAT tool for animal studies and the ROBINS-I tool for in vitro studies. RESULTS A total of 12 in vitro and animal studies were included, examining plants such as Allium sativum (garlic), Crocus sativus (saffron), Curcuma longa (turmeric), Scutellariabaicalensis (Baikal skullcap), etc., These studies demonstrated that bioactive components like allicin, curcumin, and baicalin significantly inhibited OSCC cell proliferation and induced apoptosis. However, there was substantial variability in the dose concentrations required, ranging from 1 µg/mL for garlic extract to 50 mg/mL for saffron nanoparticles. The risk of bias assessment indicated that four studies had a moderate risk, while one had a low risk of bias, indicating methodological rigor. CONCLUSION Plant extracts such as Curcuma longa and Vitis vinifera present a promising, less toxic alternative for OSCC treatment, with the potential to be integrated into conventional chemotherapeutic regimens. While in-vitro and animal studies are encouraging, further clinical trials among humans are necessary to confirm their efficacy and safety in clinical settings.
Collapse
Affiliation(s)
- Saranya Ramsridhar
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Department of Oral Pathology, Sathyabama Dental College and Hospital, Sathyabama Institute of Science and Technology, Chennai, India.
| | - Chandini Rajkumar
- Department of Oral Pathology, Sathyabama Dental College and Hospital, Sathyabama Institute of Science and Technology, Chennai, India
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Arul Prakash Francis
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Murali Balasubramaniam
- Department of Oral Pathology, Sathyabama Dental College and Hospital, Sathyabama Institute of Science and Technology, Chennai, India
| | - Indu Bharkavi
- Department of Oral Pathology, Sathyabama Dental College and Hospital, Sathyabama Institute of Science and Technology, Chennai, India
| |
Collapse
|
2
|
Pérez-Durán J, Luna A, Portilla A, Martínez P, Ceballos G, Ortíz-Flores MÁ, Solis-Paredes JM, Nájera N. (-)-Epicatechin Inhibits Metastatic-Associated Proliferation, Migration, and Invasion of Murine Breast Cancer Cells In Vitro. Molecules 2023; 28:6229. [PMID: 37687058 PMCID: PMC10488497 DOI: 10.3390/molecules28176229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 09/10/2023] Open
Abstract
Breast cancer, due to its high incidence and mortality, is a public health problem worldwide. Current chemotherapy uses non-specific cytotoxic drugs, which inhibit tumor growth but cause significant adverse effects. (-)-Epicatechin (EC) is part of a large family of biomolecules called flavonoids. It is widely distributed in the plant kingdom; it can be found in green tea, grapes, and cocoa. Several studies in animals and humans have shown that EC induces beneficial effects in the skeletal muscle and the cardiovascular system, reducing risk factors such as arterial hypertension, endothelial dysfunction, damage to skeletal muscle structure, and mitochondrial malfunction by promoting mitochondrial biogenesis, with no adverse effects reported. Recently, we reported that EC had an antitumor effect in a murine triple-negative mammary gland tumor model, decreasing tumoral size and volume and increasing survival by 44%. This work aimed to characterize the effects of flavanol EC on proliferation, migration, and metastasis markers of triple-negative murine breast (4T1) cancer cells in culture. We found proliferation diminished and Bax/Bcl2 ratio increased. When the migration of culture cells was evaluated, we observed a significant reduction in migration. Also, the relative expression of the genes associated with metastasis, Cdh1, Mtss1, Pten, Bmrs, Fat1, and Smad4, was increased. In conclusion, these results contribute to understanding molecular mechanisms activated by EC that can inhibit metastatic-associated proliferation, migration, and invasion of murine breast cancer cells.
Collapse
Affiliation(s)
- Javier Pérez-Durán
- Departamento de Investigación en Salud Reproductiva y Perinatal, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico; (J.P.-D.); (A.L.); (J.M.S.-P.)
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (A.P.); (P.M.); (G.C.); (M.Á.O.-F.)
| | - Aglaé Luna
- Departamento de Investigación en Salud Reproductiva y Perinatal, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico; (J.P.-D.); (A.L.); (J.M.S.-P.)
| | - Andrés Portilla
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (A.P.); (P.M.); (G.C.); (M.Á.O.-F.)
| | - Pamela Martínez
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (A.P.); (P.M.); (G.C.); (M.Á.O.-F.)
| | - Guillermo Ceballos
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (A.P.); (P.M.); (G.C.); (M.Á.O.-F.)
| | - Miguel Ángel Ortíz-Flores
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (A.P.); (P.M.); (G.C.); (M.Á.O.-F.)
| | - Juan Mario Solis-Paredes
- Departamento de Investigación en Salud Reproductiva y Perinatal, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico; (J.P.-D.); (A.L.); (J.M.S.-P.)
| | - Nayelli Nájera
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (A.P.); (P.M.); (G.C.); (M.Á.O.-F.)
| |
Collapse
|
3
|
Chitosan-stabilized platinum nanoparticles induce apoptotic cell death in breast cancer cells. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02598-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
4
|
Țigu AB, Moldovan CS, Toma VA, Farcaș AD, Moț AC, Jurj A, Fischer-Fodor E, Mircea C, Pârvu M. Phytochemical Analysis and In Vitro Effects of Allium fistulosum L. and Allium sativum L. Extracts on Human Normal and Tumor Cell Lines: A Comparative Study. Molecules 2021; 26:574. [PMID: 33499159 PMCID: PMC7866094 DOI: 10.3390/molecules26030574] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Allium sativum L. (garlic bulbs) and Allium fistulosum L. (Welsh onion leaves) showed quantitative differences of identified compounds: allicin and alliin (380 µg/mL and 1410 µg/mL in garlic; 20 µg/mL and 145 µg/mL in Welsh onion), and the phenolic compounds (chlorogenic acid, p-coumaric acid, ferulic acid, gentisic acid, 4-hydroxybenzoic acid, kaempferol, isoquercitrin, quercitrin, quercetin, and rutin). The chemical composition determined the inhibitory activity of Allium extracts in a dose-dependent manner, on human normal cells (BJ-IC50 0.8841% garlic/0.2433% Welsh onion and HaCaT-IC50 1.086% garlic/0.6197% Welsh onion) and tumor cells (DLD-1-IC50 5.482%/2.124%; MDA-MB-231-IC50 6.375%/2.464%; MCF-7-IC50 6.131%/3.353%; and SK-MES-1-IC50 4.651%/5.819%). At high concentrations, the cytotoxic activity of each extract, on normal cells, was confirmed by: the 50% of the growth inhibition concentration (IC50) value, the cell death induced by necrosis, and biochemical determination of LDH, catalase, and Caspase-3. The four tumor cell lines treated with high concentrations (10%, 5%, 2.5%, and 1.25%) of garlic extract showed different sensibility, appreciated on the base of IC50 value for the most sensitive cell line (SK-MES-1), and the less sensitive (MDA-MB-231) cell line. The high concentrations of Welsh onion extract (5%, 2.5%, and 1.25%) induced pH changes in the culture medium and SK-MES-1 being the less sensitive cell line.
Collapse
Affiliation(s)
- Adrian Bogdan Țigu
- Faculty of Biology and Geology, Babeș-Bolyai University, 42 Republicii Street, 400015 Cluj-Napoca, Romania; (V.-A.T.); (A.D.F.); (C.M.)
- Research Center for Advanced Medicine—MedFuture, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania; (C.S.M.); (E.F.-F.)
| | - Cristian Silviu Moldovan
- Research Center for Advanced Medicine—MedFuture, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania; (C.S.M.); (E.F.-F.)
| | - Vlad-Alexandru Toma
- Faculty of Biology and Geology, Babeș-Bolyai University, 42 Republicii Street, 400015 Cluj-Napoca, Romania; (V.-A.T.); (A.D.F.); (C.M.)
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
- Institute of Biological Research, Branch of NIRDBS Bucharest, 400113 Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresurces “3B”, Babeș-Bolyai University, 400000 Cluj-Napoca, Romania
| | - Anca Daniela Farcaș
- Faculty of Biology and Geology, Babeș-Bolyai University, 42 Republicii Street, 400015 Cluj-Napoca, Romania; (V.-A.T.); (A.D.F.); (C.M.)
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
- Institute of Biological Research, Branch of NIRDBS Bucharest, 400113 Cluj-Napoca, Romania
| | - Augustin Cătălin Moț
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania;
| | - Ancuța Jurj
- The Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Eva Fischer-Fodor
- Research Center for Advanced Medicine—MedFuture, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania; (C.S.M.); (E.F.-F.)
- Department of Radiobiology and Tumor Biology, The Oncology Institute “Prof Dr Ion Chiricuta”, 400015 Cluj-Napoca, Romania
| | - Cristina Mircea
- Faculty of Biology and Geology, Babeș-Bolyai University, 42 Republicii Street, 400015 Cluj-Napoca, Romania; (V.-A.T.); (A.D.F.); (C.M.)
| | - Marcel Pârvu
- Faculty of Biology and Geology, Babeș-Bolyai University, 42 Republicii Street, 400015 Cluj-Napoca, Romania; (V.-A.T.); (A.D.F.); (C.M.)
| |
Collapse
|
5
|
Carbon Monoxide-Releasing Molecule-3 Ameliorates Acute Lung Injury in a Model of Hemorrhagic Shock and Resuscitation: Roles of p38MAPK Signaling Pathway. Shock 2020; 55:816-826. [PMID: 33105439 DOI: 10.1097/shk.0000000000001684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE It was reported that carbon monoxide-releasing molecule-3 (CORM-3) administration immediately after hemorrhagic shock and resuscitation (HSR) ameliorates the HSR-induced acute lung injury (ALI); however, the specific mechanism of the protective effects against HSR-induced ALI remains unclear. METHODS To induce hemorrhagic shock, rats were bled to a mean arterial blood pressure of 30 mm Hg for 45 min and then resuscitated with shed blood via the left vein. CORM-3 (4 mg/kg or 8 mg/kg) was respectively administrated after HSR. Twelve hours post-HSR, lung injury was assessed by wet/dry (W/D) ratio, hematoxylin-eosin staining staining, and lung ultrasound; the apoptotic and pyroptotic macrophages were measured by immunofluorescence staining; and the expression of phosphorylated p38 mitogen activated protein kinase (p-p38MAPK) and total p38MAPK was measured by western blotting. SB203580 (5 mg/kg), a special inhibitor of p-p38MAPK, was administrated by abdominal cavity to assess the roles of p38MAPK in HSR-induced ALI. RESULTS Increased B-line score, lung injury score, and W/D ratio indicated the fact of ALI after HSR. Twelve hours post-HSR, CORM-3 administration significantly decreased the B-line score, lung injury score, W/D ratio, apoptotic and pyroptotic macrophages, and the expressions of p-p38MAPK. Further, SB203580 not only reduced HSR-induced ALI, but also enhanced the protective effects of CORM-3 against ALI. CONCLUSION We identified the protective effects of CORM-3 against HSR-induced ALI. The mechanism might be related to the inhibition of p38MAPK signaling pathway in lung macrophages.
Collapse
|
6
|
Della Corte L, Noventa M, Ciebiera M, Magliarditi M, Sleiman Z, Karaman E, Catena U, Salvaggio C, Falzone G, Garzon S. Phytotherapy in endometriosis: an up-to-date review. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2020; 17:jcim-2019-0084. [PMID: 31532753 DOI: 10.1515/jcim-2019-0084] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/28/2019] [Indexed: 12/11/2022]
Abstract
Endometriosis is a benign gynecological disease which symptoms can provide a severe impact on patient's quality of life with subsequent impact on psychological well-being. Different therapeutic strategies are available to treat this disease, such as surgery, hormonal therapies, and nonsteroidal anti-inflammatory drugs. Nevertheless, the efficacy of conventional medical treatments is limited or intermittent in most of the patients due to the associated side effects. Therefore, a woman with endometriosis often search for additional and alternative options, and phytotherapy might be a promising alternative and complementary strategy. Different medicinal plants, multicomponent herbal preparations, and phytochemicals were investigated for pharmacological proprieties in endometriosis therapy. In most of the cases, the effect on endometriosis was related to phenolic compounds, such as flavonoids and phenolic acids reporting anti-inflammatory, proapoptotic, antioxidant, and immunomodulatory functions. Moreover, some phytochemicals have been related to a strong phytoestrogenic effect modulating the estrogen activity. Although promising, available evidence is based on in vitro and animal models of endometriosis with a limited number of well-performed clinical studies. There are almost none randomized control trials in this area. Therefore, properly constructed clinical trials are mandatory to achieve more conclusive results about the promising role of phytotherapy in the management of endometriosis.
Collapse
Affiliation(s)
- Luigi Della Corte
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Marco Noventa
- Department of Women and Children's Health, Clinic of Gynecology and Obstetrics, University of Padua, Padua, Italy
| | - Michal Ciebiera
- Second Department of Obstetrics and Gynecology, The Center of Postgraduate Medical Education, Warsaw, Poland
| | - Maria Magliarditi
- Department of Obstetrics & Gynaecology, Policlinico Universitario Gazzi, University of Messina, Messina, Italy
| | - Zaki Sleiman
- Department of Obstetrics and Gynecology, Lebanese American University, Beirut, Lebanon
| | - Erbil Karaman
- Department of Obstetrics and Gynecology, Yuzuncu Yil University Medical Faculty, Van, Turkey
| | - Ursula Catena
- Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Calogero Salvaggio
- Azienda Sanitaria Provinciale 2 Caltanissetta, "Sant'Elia" Hospital, Caltanissetta, Italy
| | - Giovanni Falzone
- Obstetrics and Gynaecology Unit, "Umberto I" Hospital, Enna, Italy
| | - Simone Garzon
- Department of Obstetrics and Gynecology, "Filippo Del Ponte" Hospital, University of Insubria, Varese, Italy
| |
Collapse
|
7
|
Almatroodi SA, Alsahli MA, Almatroudi A, Rahmani AH. Garlic and its Active Compounds: A Potential Candidate in The Prevention of Cancer by Modulating Various Cell Signalling Pathways. Anticancer Agents Med Chem 2020; 19:1314-1324. [PMID: 30963982 DOI: 10.2174/1871520619666190409100955] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/07/2019] [Accepted: 03/15/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Cancer is a multi-factorial disease including alterations in the cell signalling pathways. Currently, several drugs are in use to treat cancer but such drugs show negative side effects on normal cells and cause severe toxicity. METHODS The current research is mainly focused on medicinal plants with potential therapeutic efficacy in the treatment of cancer without any adverse effects on normal cells. In this regard, garlic and its active compounds including diallyl sulfide, diallyl trisulfide, ajoene, and allicin have been established to suppress the growth of cancer and killing of cancer cells. RESULT The review focuses on garlic and its active compounds chemopreventive effect through modulating various cell signalling pathways. Additionally, garlic and its active compound were established to induce cell cycle arrest at the G0/G1 phase and G2/M phases in cancer cells, increase the expression of tumor suppressor genes, inhibit the angiogenesis process, induction of apoptosis and modulation of various other genetic pathways. CONCLUSION This review sketches the diverse chemopreventive activities of garlic and their active ingredients in the management of cancer mainly focusing on cell signalling pathways.
Collapse
Affiliation(s)
- Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Arshad H Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
8
|
Bina F, Soleymani S, Toliat T, Hajimahmoodi M, Tabarrai M, Abdollahi M, Rahimi R. Plant-derived medicines for treatment of endometriosis: A comprehensive review of molecular mechanisms. Pharmacol Res 2018; 139:76-90. [PMID: 30412733 DOI: 10.1016/j.phrs.2018.11.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 11/01/2018] [Accepted: 11/04/2018] [Indexed: 12/18/2022]
Abstract
Endometriosis is an estrogen-dependent disease with inflammatory lesions at extra-uterine sites, causing pelvic pain and fertility reduction. Conventional therapies primarily focus on reducing systemic levels of estrogens; however, they do not have desirable effectiveness and possess considerable side effects. Therefore, there is a growing interest in the use of herbal medicine for the treatment of endometriosis. In this paper, electronic databases including PubMed, Scopus, Cochrane library and Google Scholar were searched to obtain any studies evaluating any herbal products in the management of endometriosis. Data were collected from 1980 to 2018. Most of studies investigating the effect of herbal medicines in endometriosis were in vitro and animal and only three clinical trials were found; one on Pinus pinaster bark extract (Pycnogenol) and two on Chinese herbal formulas. The studies on phytochemicals had mostly focused on polyphenolic compounds (epigallocatechin-3-gallate, genistein) and sesquiterpenes (β-caryophyllene, parthenolide). Various molecular mechanisms of action have been involved in beneficial effects of herbal medicines and phytochemicals including anti-inflammatory (via reduction of proinflammatory cytokines such as interleukin -1, interleukin -6, interleukin -8, transforming growth factor-beta, tumor necrosis factor-α, nuclear factor-kappa B, growth factors, monocyte chemoattractant protein-1), antioxidant (through downregulation of hydrogen peroxide, malondialdehyde, reactive oxygen species and upregulation of superoxide dismutase), anti-proliferative and apoptotic (via enhancing Bcl-2-associated X protein/ B-cell lymphoma-2 and caspase3, 8 and 9 activity), anti-angiogenic (by downregulation of vascular endothelial growth factor receptors/ vascular endothelial growth factor), anti-invasive (via decreasing expression of intercellular adhesion molecule-1, vascular cell adhesion molecule-1 and matrix metalloproteinases), immunomodulatory, and estrogen modulating activities. So, medicinal plants seem to be a valuable source for identifying new drugs for treatment of endometriosis; however, since most of studies are preclinical, further clinical trials are required to achieve more conclusive results.
Collapse
Affiliation(s)
- Fatemeh Bina
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Soleymani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Toliat
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mannan Hajimahmoodi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Malihe Tabarrai
- Department of Persian Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran; Evidence-based Evaluation of Cost-Effectiveness and Clinical Outcomes Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Photoactivated [Mn(CO) 3Br(μ-bpcpd)] 2 induces apoptosis in cancer cells via intrinsic pathway. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 188:28-41. [PMID: 30195977 DOI: 10.1016/j.jphotobiol.2018.08.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/02/2018] [Accepted: 08/22/2018] [Indexed: 12/18/2022]
Abstract
Carbon monoxide releasing molecules (CORMs) are organometallic/organic compounds that release carbon monoxide (CO) spontaneously or upon activation. PhotoCORMs are capable of releasing CO on light based activation. This group of molecules is used in photodynamic therapy due to their ability to release CO in a controlled manner. In the present investigation, the release of CO from [Mn(CO)3Br(μ-bpcpd)]2 (MnCORM) upon irradiation at λmax 365 nm was assessed spectrophotometrically using myoglobin assay and confirmed by liquid FT-IR spectroscopic analysis. Further, the cytotoxic potential of MnCORM on normal cells (HEK 293) and cancer cell lines such as lung (A549), cervical (HeLa), breast (MDA MB-231) and colon (HCT-15) was evaluated. The IC50 values of MnCORM were found to be 21.37 ± 1.72, 24.12 ± 1.03, 21.89 ± 0.59 and 13.69 ± 0.91 μM on cervical (HeLa), lung (A549), colon (HCT-15) and breast (MDA MB-231) cancer cells respectively. An inquest into the nature of cell death was confirmed based on the nuclear and cytological examinations, flow cytometric analyses and protein expression studies. The AO/EB dual staining and cytological evaluation of the treated cells revealed that the cell death might be due to apoptosis. The flow cytometric analysis of propidium iodide (PI) stained cells showed a significant amount of sub-G1 hypodiploid cells due to MnCORM treatment. The MnCORM-induced apoptosis was mediated through the generation of reactive oxygen species (ROS), specifically superoxide radicals leading to loss of mitochondrial membrane potential. The intrinsic pathway of apoptosis was elucidated based on the expression studies of pro-apoptotic and apoptotic proteins such as bcl-2, bax, cyt c, cleaved caspase-3, cleaved caspase-9 and cleaved PARP. Due to its innate potential to release CO upon photoactivation and its ability to induce apoptosis via intrinsic pathway, the MnCORM molecule could be exploited for controlled release and photodynamic cancer therapy.
Collapse
|