1
|
Warneke K, Lohmann LH. Revisiting the stretch-induced force deficit: A systematic review with multilevel meta-analysis of acute effects. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:805-819. [PMID: 38735533 PMCID: PMC11336295 DOI: 10.1016/j.jshs.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/24/2024] [Accepted: 04/04/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND When recommending avoidance of static stretching prior to athletic performance, authors and practitioners commonly refer to available systematic reviews. However, effect sizes (ES) in previous reviews were extracted in major part from studies lacking control conditions and/or pre-post testing designs. Also, currently available reviews conducted calculations without accounting for multiple study outcomes, with ES: -0.03 to 0.10, which would commonly be classified as trivial. METHODS Since new meta-analytical software and controlled research articles have appeared since 2013, we revisited the available literatures and performed a multilevel meta-analysis using robust variance estimation of controlled pre-post trials to provide updated evidence. Furthermore, previous research described reduced electromyography activity-also attributable to fatiguing training routines-as being responsible for decreased subsequent performance. The second part of this study opposed stretching and alternative interventions sufficient to induce general fatigue to examine whether static stretching induces higher performance losses compared to other exercise routines. RESULTS Including 83 studies with more than 400 ES from 2012 participants, our results indicate a significant, small ES for a static stretch-induced maximal strength loss (ES = -0.21, p = 0.003), with high magnitude ES (ES = -0.84, p = 0.004) for stretching durations ≥60 s per bout when compared to passive controls. When opposed to active controls, the maximal strength loss ranges between ES: -0.17 to -0.28, p < 0.001 and 0.040 with mostly no to small heterogeneity. However, stretching did not negatively influence athletic performance in general (when compared to both passive and active controls); in fact, a positive effect on subsequent jumping performance (ES = 0.15, p = 0.006) was found in adults. CONCLUSION Regarding strength testing of isolated muscles (e.g., leg extensions or calf raises), our results confirm previous findings. Nevertheless, since no (or even positive) effects could be found for athletic performance, our results do not support previous recommendations to exclude static stretching from warm-up routines prior to, for example, jumping or sprinting.
Collapse
Affiliation(s)
- Konstantin Warneke
- Institute of Human Movement Science, Sport and Health, University of Graz, Graz 8010, Austria; Institute of Sport Science, Alpen-Adria University of Klagenfurt, Klagenfurt am Wörthersee 9020, Austria.
| | - Lars Hubertus Lohmann
- Institute of Human Movement and Exercise Physiology, University of Jena, Jena 07749, Germany
| |
Collapse
|
2
|
Afonso J, Andrade R, Rocha-Rodrigues S, Nakamura FY, Sarmento H, Freitas SR, Silva AF, Laporta L, Abarghoueinejad M, Akyildiz Z, Chen R, Pizarro A, Ramirez-Campillo R, Clemente FM. What We Do Not Know About Stretching in Healthy Athletes: A Scoping Review with Evidence Gap Map from 300 Trials. Sports Med 2024; 54:1517-1551. [PMID: 38457105 PMCID: PMC11239752 DOI: 10.1007/s40279-024-02002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Stretching has garnered significant attention in sports sciences, resulting in numerous studies. However, there is no comprehensive overview on investigation of stretching in healthy athletes. OBJECTIVES To perform a systematic scoping review with an evidence gap map of stretching studies in healthy athletes, identify current gaps in the literature, and provide stakeholders with priorities for future research. METHODS Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 and PRISMA-ScR guidelines were followed. We included studies comprising healthy athletes exposed to acute and/or chronic stretching interventions. Six databases were searched (CINAHL, EMBASE, PubMed, Scopus, SPORTDiscus, and Web of Science) until 1 January 2023. The relevant data were narratively synthesized; quantitative data summaries were provided for key data items. An evidence gap map was developed to offer an overview of the existing research and relevant gaps. RESULTS Of ~ 220,000 screened records, we included 300 trials involving 7080 athletes [mostly males (~ 65% versus ~ 20% female, and ~ 15% unreported) under 36 years of age; tiers 2 and 3 of the Participant Classification Framework] across 43 sports. Sports requiring extreme range of motion (e.g., gymnastics) were underrepresented. Most trials assessed the acute effects of stretching, with chronic effects being scrutinized in less than 20% of trials. Chronic interventions averaged 7.4 ± 5.1 weeks and never exceeded 6 months. Most trials (~ 85%) implemented stretching within the warm-up, with other application timings (e.g., post-exercise) being under-researched. Most trials examined static active stretching (62.3%), followed by dynamic stretching (38.3%) and proprioceptive neuromuscular facilitation (PNF) stretching (12.0%), with scarce research on alternative methods (e.g., ballistic stretching). Comparators were mostly limited to passive controls, with ~ 25% of trials including active controls (e.g., strength training). The lower limbs were primarily targeted by interventions (~ 75%). Reporting of dose was heterogeneous in style (e.g., 10 repetitions versus 10 s for dynamic stretching) and completeness of information (i.e., with disparities in the comprehensiveness of the provided information). Most trials (~ 90%) reported performance-related outcomes (mainly strength/power and range of motion); sport-specific outcomes were collected in less than 15% of trials. Biomechanical, physiological, and neural/psychological outcomes were assessed sparsely and heterogeneously; only five trials investigated injury-related outcomes. CONCLUSIONS There is room for improvement, with many areas of research on stretching being underexplored and others currently too heterogeneous for reliable comparisons between studies. There is limited representation of elite-level athletes (~ 5% tier 4 and no tier 5) and underpowered sample sizes (≤ 20 participants). Research was biased toward adult male athletes of sports not requiring extreme ranges of motion, and mostly assessed the acute effects of static active stretching and dynamic stretching during the warm-up. Dose-response relationships remain largely underexplored. Outcomes were mostly limited to general performance testing. Injury prevention and other effects of stretching remain poorly investigated. These relevant research gaps should be prioritized by funding policies. REGISTRATION OSF project ( https://osf.io/6auyj/ ) and registration ( https://osf.io/gu8ya ).
Collapse
Affiliation(s)
- José Afonso
- Faculty of Sport, Centre of Research, Education, Innovation, and Intervention in Sport (CIFI2D), University of Porto, Porto, Portugal.
| | - Renato Andrade
- Clínica Espregueira-FIFA Medical Centre of Excellence, Porto, Portugal
- Dom Henrique Research Centre, Porto, Portugal
- Porto Biomechanics Laboratory (LABIOMEP), University of Porto, Porto, Portugal
| | - Sílvia Rocha-Rodrigues
- Escola Superior de Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun'Alvares, 4900-347, Viana do Castelo, Portugal
- Tumour and Microenvironment Interactions Group, INEB-Institute of Biomedical Engineering, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-153, Porto, Portugal
- Sport Physical Activity and Health Research & Innovation Center, 4900-347, Viana do Castelo, Portugal
| | - Fábio Yuzo Nakamura
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), University of Maia, Maia, Portugal
| | - Hugo Sarmento
- University of Coimbra, Research Unit for Sport and Physical Activity (CIDAF), Faculty of Sport Sciences and Physical Education, Coimbra, Portugal
| | - Sandro R Freitas
- Laboratório de Função Neuromuscular, Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz Quebrada, Portugal
| | - Ana Filipa Silva
- Escola Superior de Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun'Alvares, 4900-347, Viana do Castelo, Portugal
- Sport Physical Activity and Health Research & Innovation Center, 4900-347, Viana do Castelo, Portugal
| | - Lorenzo Laporta
- Núcleo de Estudos em Performance Analysis Esportiva (NEPAE/UFSM), Universidade Federal de Santa Maria, Avenida Roraima, nº 1000, Cidade Universitária, Bairro Camobi, Santa Maria, RS, CEP: 97105-900, Brazil
| | | | - Zeki Akyildiz
- Sports Science Faculty, Department of Coaching Education, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Rongzhi Chen
- Faculty of Sport, Centre of Research, Education, Innovation, and Intervention in Sport (CIFI2D), University of Porto, Porto, Portugal
| | - Andreia Pizarro
- Faculty of Sport, Research Center in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Rua das Taipas, 135, 4050-600, Porto, Portugal
| | - Rodrigo Ramirez-Campillo
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy. Faculty of Rehabilitation Sciences, Universidad Andres Bello, 7591538, Santiago, Chile
| | - Filipe Manuel Clemente
- Escola Superior de Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun'Alvares, 4900-347, Viana do Castelo, Portugal
- Sport Physical Activity and Health Research & Innovation Center, 4900-347, Viana do Castelo, Portugal
- Gdańsk University of Physical Education and Sport, 80-336, Gdańsk, Poland
| |
Collapse
|
3
|
Oba K, Kyotani N, Tanaka M, Komatsuzaki M, Kasahara S, Ogasawara K, Samukawa M. Acute effects of static and dynamic stretching for ankle plantar flexors on postural control during the single-leg standing task. Sports Biomech 2023:1-11. [PMID: 38151982 DOI: 10.1080/14763141.2023.2298967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023]
Abstract
Static stretching (SS) and dynamic stretching (DS) are widely used as warm-ups before sports. However, whether stretching affects postural control remains unclear. We compared the effects of SS and DS on the plantar flexors and postural control during single-leg standing. Fifteen healthy young participants performed SS, DS, or no stretching (control). The stretch condition consisted of four sets lasting 30 s each. The control condition was a rest with standing for 210 s. Center of pressure (COP) displacement was measured using a force plate before and after each intervention to assess postural control during the single-leg standing task. The COP area, COP velocity, and anteroposterior (COPAP) and mediolateral (COPML) range were calculated. DS significantly decreased in the COPML range (21.5 ± 4.1 to 19.0 ± 2.5 mm; P = 0.02), COP velocity (33.8 ± 7.6 to 29.8 ± 6.5 mm/s; P < 0.01), and COP area (498.6 ± 148.3 to 393.3 ± 101.1 mm2; P < 0.01), whereas SS did not change in the COP parameters (COP area 457.2 ± 108.3 to 477.8 ± 106.1 mm2, P = .49; COP velocity 31.2 ± 4.2 to 30.7 ± 5.8 mm/s, P = 0.60; COPAP 25.4 ± 3.1 to 25.3 ± 3.2 mm, P = 0.02; COPML 20.7 ± 3.3 to 21.1 ± 2.5 mm, P = 0.94). Therefore, DS of the plantar flexors enhances postural control during single-leg standing and may be effective for both injury prevention and performance enhancement.
Collapse
Affiliation(s)
- Kensuke Oba
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
- Department of Rehabilitation, Hitsujigaoka Hospital, Sapporo, Japan
| | - Naoto Kyotani
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Minori Tanaka
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Miho Komatsuzaki
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | | | | | - Mina Samukawa
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
4
|
Acute and long-term effects of two different static stretching training protocols on range of motion and vertical jump in preadolescent athletes. Biol Sport 2021; 38:579-586. [PMID: 34937967 PMCID: PMC8670820 DOI: 10.5114/biolsport.2021.101127] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/30/2020] [Accepted: 11/17/2020] [Indexed: 12/29/2022] Open
Abstract
This study examined the acute and long-term effects of two static stretching protocols of equal duration, performed either as a single stretch or multiple shorter duration repetitions on hip hyperextension range of motion (ROM) and single leg countermovement jump height (CMJ). Thirty female gymnasts were randomly assigned to stretching (SG) or control groups (CG). The SG performed two different protocols of static stretching, three times per week for 9 weeks. One leg performed repeated stretching (3 × 30 s with 30 s rest) while the other leg performed a single stretch (90 s). The CG continued regular training. ROM and CMJ were measured pre- and 2 min post-stretching on weeks 0, 3, 6, 9, and 3 weeks into detraining. CMJ height increased over time irrespective of group (main effect time, p = 0.001), with no statistical difference between groups (main effect group, p = 0.272). Three-way ANOVA showed that, CMJ height after stretching was not affected by either stretching protocol at any time point (p = 0.503 to 0.996). Both stretching protocols equally increased ROM on weeks 6 (10.9 ± 13.4%, p < 0.001, d = 0.42), and 9 (21.5 ± 13.4%, p < 0.001, d = 0.78), and this increase was maintained during detraining (17.0 ± 15.0%, p < 0.001, d = 0.68). No increase in ROM was observed in the CG (p > 0.874). Static stretching of long duration applied either as single or multiple bouts of equal duration, results in similar acute and long-term improvements in ROM. Furthermore, both stretching protocols do not acutely affect subsequent CMJ performance, and this effect is not influenced by the large increase in ROM and CMJ overtime.
Collapse
|
5
|
Okinaka M, Wada T. The effect of static stretching on key hits and subjective fatigue in eSports. J Phys Ther Sci 2021; 33:891-897. [PMID: 34873369 PMCID: PMC8636918 DOI: 10.1589/jpts.33.891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/08/2021] [Indexed: 11/24/2022] Open
Abstract
[Purpose] To explore the effects of static stretching for 20 s on key hits and
subjective fatigue in an eSports-like setting. [Participants and Methods] The participants
comprised of 15 healthy males who were instructed to hit a particular key on a computer
keyboard using the left ring finger to achieve the maximum number of hits possible over a
period of 30 s. Subjective fatigue of the forearm was assessed using a visual analog scale
(VAS) before the experiment and after each trial. Trials 1, 2, and 3 were conducted in
succession, with an inter-trial interval of 60 s to ensure a loaded state. Static
stretching for 20 s preceded Trial 4. [Results] Over the first three trials, the number of
key hits in the first 10 s gradually decreased, while the feeling of subjective fatigue
gradually increased. After stretching, the number of key hits in the first 10 s of Trial 4
was similar to that observed in Trial 1, and there was no increase in subjective fatigue.
[Conclusion] Static stretching for 20 s restored the number of key hits for 10 s after
stretching to that before the load application and suppressed the increase in subjective
fatigue.
Collapse
Affiliation(s)
- Miyono Okinaka
- Degree Programs in Comprehensive Human Sciences, Doctoral Program in Sports Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba: 1-29-3 Otsuka, Bunkyou-ku, Tokyo 112-0012, Japan
| | - Tsunehiko Wada
- Degree Programs in Comprehensive Human Sciences, Doctoral Program in Sports Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba: 1-29-3 Otsuka, Bunkyou-ku, Tokyo 112-0012, Japan
| |
Collapse
|
6
|
Oba K, Samukawa M, Abe Y, Suzuki Y, Komatsuzaki M, Kasahara S, Ishida T, Tohyama H. Effects of Intermittent and Continuous Static Stretching on Range of Motion and Musculotendinous Viscoelastic Properties Based on a Duration-Matched Protocol. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010632. [PMID: 34682378 PMCID: PMC8535970 DOI: 10.3390/ijerph182010632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022]
Abstract
The different effects of intermittent and continuous stretching on the mechanical properties of the musculotendinous complex have been unclear. This study aimed to compare the effects of intermittent and continuous stretching for the same duration on the range of motion (ROM), passive resistive torque (PRT), and musculotendinous stiffness (MTS) of ankle plantar flexors. Eighteen healthy young men participated in the study. Intermittent (four sets × 30 s) and continuous stretching (one set × 120 s) were performed in random orders on two separate days. Both stretching protocols were conducted using a dynamometer with a constant torque applied. ROM and PRT were determined using a dynamometer, and MTS was calculated using the torque-angle relationship measured before and after stretching. Two-way repeated measures analysis of variance was performed for all parameters. Both intermittent and continuous stretching significantly increased ROM and decreased PRT and MTS (p < 0.05). Intermittent stretching led to greater changes in ROM and PRT than continuous stretching. However, the reduction in MTS did not differ between the two conditions. These results suggest that intermittent stretching is more effective in increasing ROM and changing the mechanical properties of the musculotendinous complex.
Collapse
Affiliation(s)
- Kensuke Oba
- Graduate School of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan; (K.O.); (Y.A.); (M.K.)
- Department of Rehabilitation, Hitsujigaoka Hospital, Sapporo 004-0021, Japan
| | - Mina Samukawa
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan; (S.K.); (T.I.); (H.T.)
- Correspondence:
| | - Yosuke Abe
- Graduate School of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan; (K.O.); (Y.A.); (M.K.)
| | - Yukino Suzuki
- Department of Rehabilitation, Hokushin Orthopaedic Hospital, Sapporo 060-0908, Japan;
| | - Miho Komatsuzaki
- Graduate School of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan; (K.O.); (Y.A.); (M.K.)
| | - Satoshi Kasahara
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan; (S.K.); (T.I.); (H.T.)
| | - Tomoya Ishida
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan; (S.K.); (T.I.); (H.T.)
| | - Harukazu Tohyama
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan; (S.K.); (T.I.); (H.T.)
| |
Collapse
|
7
|
Acute effect of stretching prior to resistance training on morphological, functional and activation indicators of skeletal muscle in young men. SPORT SCIENCES FOR HEALTH 2021. [DOI: 10.1007/s11332-021-00793-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Liu J, Guo M. ANALGESIC EFFECT OF ROPIVACAINE AFTER ARTHROSCOPIC RECONSTRUCTION OF THE LIGAMENT IN ATHLETES. REV BRAS MED ESPORTE 2021. [DOI: 10.1590/1517-8692202127022020_0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT After arthroscopic ligament reconstruction, athletes still need to go through a postoperative rehabilitation training period and suffer the possible pain that can go from moderate to severe. Commonly used analgesic medications, ropivacaine and fentanyl have the effect of relieving athletes’ pain. To study the analgesic effect of ropivacaine on arthroscopic reconstruction of the knee ligament, the steps of reconstruction and pharmacology of ropivacaine were first introduced. Next, the analgesic effects of ropivacaine and fentanyl in 86 athletes were compared on muscle strength recovery, patient satisfaction, and pain score. The results showed that the satisfaction of patients with ropivacaine was 95.35%, and the incidence of postoperative adverse reactions was only 9.30%. These results indicate that ropivacaine has a better analgesic effect in arthroscopic reconstruction of the knee ligament in athletes, which is suitable for postoperative rehabilitation.
Collapse
Affiliation(s)
- Junjie Liu
- Wuhan University of Science and Technology, China; Wuhan University of Technology, China
| | | |
Collapse
|
9
|
Acute Effects of Intermittent and Continuous Static Stretching on Hip Flexion Angle in Athletes with Varying Flexibility Training Background. Sports (Basel) 2020; 8:sports8030028. [PMID: 32138183 PMCID: PMC7183084 DOI: 10.3390/sports8030028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 01/25/2023] Open
Abstract
Τhis study examined changes in hip joint flexion angle after an intermittent or a continuous static stretching protocol of equal total duration. Twenty-seven female subjects aged 19.9 ± 3.0 years (14 artistic and rhythmic gymnasts and 13 team sports athletes), performed 3 min of intermittent (6 × 30 s with 30 s rest) or continuous static stretching (3 min) of the hip extensors, with an intensity of 80–90 on a 100-point visual analogue scale. The order of stretching was randomized and counterbalanced, and each subject performed both conditions. Hip flexion angle was measured with the straight leg raise test for both legs after warm-up and immediately after stretching. Both stretching types equally increased hip flexion angle by ~6% (continuous: 140.9° ± 20.4° to 148.6° ± 18.8°, p = 0.047; intermittent: 141.8° ± 20.3° to 150.0° ± 18.8°, p = 0.029) in artistic and rhythmic gymnasts. In contrast, in team sports athletes, only intermittent stretching increased hip flexion angle by 13% (from 91.0° ± 7.2° to 102.4° ± 14.5°, p = 0.001), while continuous stretching did not affect hip angle (from 92.4° ± 6.9° vs. 93.1° ± 9.2°, p = 0.99). The different effect of intermittent vs. continuous stretching on hip flexion between gymnasts and team sports athletes suggests that responses to static stretching are dependent on stretching mode and participants training experience.
Collapse
|
10
|
Bretonneau Q, Faucher C, Theurot D, Goenarjo R, Debray A, Tanneau M, Phomsoupha M. Influence of continuous vs. intermittent static stretching on repeated jump performance. Comput Methods Biomech Biomed Engin 2019. [DOI: 10.1080/10255842.2020.1714909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Q. Bretonneau
- Faculty of Sport Sciences, Laboratory MOVE (EA 6314), University of Poitiers, Poitiers, France
| | - C. Faucher
- Faculty of Sport Sciences, Laboratory MOVE (EA 6314), University of Poitiers, Poitiers, France
| | - D. Theurot
- Faculty of Sport Sciences, Laboratory MOVE (EA 6314), University of Poitiers, Poitiers, France
| | - R. Goenarjo
- Faculty of Sport Sciences, Laboratory MOVE (EA 6314), University of Poitiers, Poitiers, France
| | - A. Debray
- Faculty of Sport Sciences, Laboratory MOVE (EA 6314), University of Poitiers, Poitiers, France
| | - M. Tanneau
- Faculty of Sport Sciences, Laboratory MOVE (EA 6314), University of Poitiers, Poitiers, France
| | - M. Phomsoupha
- Faculty of Sport Sciences, Laboratory MOVE (EA 6314), University of Poitiers, Poitiers, France
| |
Collapse
|
11
|
Donti Ο, Papia K, Toubekis A, Donti A, Sands WA, Bogdanis GC. Flexibility training in preadolescent female athletes: Acute and long-term effects of intermittent and continuous static stretching. J Sports Sci 2017; 36:1453-1460. [PMID: 29086625 DOI: 10.1080/02640414.2017.1397309] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This study compared the acute and long-term effects of intermittent and continuous static stretching training on straight leg raise range of motion (ROM). Seventy-seven preadolescent female gymnasts were divided into a stretching (n = 57), and a control group (n = 20). The stretching group performed static stretching of the hip extensors of both legs, three times per week for 15 weeks. One leg performed intermittent (3 × 30 s with 30 s rest) while the other leg performed continuous stretching (90 s). ROM pre- and post-stretching was measured at baseline, on weeks 3, 6, 9, 12, 15 and after 2 weeks of detraining. ROM was increased during both intermittent and continuous stretching training, but remained unchanged in the control group. Intermittent stretching conferred a larger improvement in ROM compared to both continuous stretching and control from week 3, until the end of training, and following detraining (p = 0.045 to 0.001 and d = 0.80 to 1.41). During detraining, ROM after the intermittent protocol decreased (p = 0.001), while it was maintained after the continuous protocol (p = 0.36). Acute increases in ROM following the intermittent stretching were also larger than in the continuous (p = 0.038). Intermittent stretching was more effective than continuous, for both long-term and acute ROM enhancement in preadolescent female athletes.
Collapse
Affiliation(s)
- Οlyvia Donti
- a School of Physical Education and Sport Science , National and Kapodistrian University of Athens , Athens , Greece
| | - Konstantina Papia
- a School of Physical Education and Sport Science , National and Kapodistrian University of Athens , Athens , Greece
| | - Argyris Toubekis
- a School of Physical Education and Sport Science , National and Kapodistrian University of Athens , Athens , Greece
| | - Anastasia Donti
- a School of Physical Education and Sport Science , National and Kapodistrian University of Athens , Athens , Greece
| | - William A Sands
- b High-Performance , United States Ski and Snowboard Association (USSA) , Park City , UT , USA
| | - Gregory C Bogdanis
- a School of Physical Education and Sport Science , National and Kapodistrian University of Athens , Athens , Greece
| |
Collapse
|
12
|
Racinais S, Cocking S, Périard JD. Sports and environmental temperature: From warming-up to heating-up. Temperature (Austin) 2017; 4:227-257. [PMID: 28944269 DOI: 10.1080/23328940.2017.1356427] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/09/2017] [Accepted: 07/09/2017] [Indexed: 01/22/2023] Open
Abstract
Most professional and recreational athletes perform pre-conditioning exercises, often collectively termed a 'warm-up' to prepare for a competitive task. The main objective of warming-up is to induce both temperature and non-temperature related responses to optimize performance. These responses include increasing muscle temperature, initiating metabolic and circulatory adjustments, and preparing psychologically for the upcoming task. However, warming-up in hot and/or humid ambient conditions increases thermal and circulatory strain. As a result, this may precipitate neuromuscular and cardiovascular impairments limiting endurance capacity. Preparations for competing in the heat should include an acclimatization regimen. Athletes should also consider cooling interventions to curtail heat gain during the warm-up and minimize dehydration. Indeed, although it forms an important part of the pre-competition preparation in all environmental conditions, the rise in whole-body temperature should be limited in hot environments. This review provides recommendations on how to build an effective warm-up following a 3 stage RAMP model (Raise, Activate and Mobilize, Potentiate), including general and context specific exercises, along with dynamic flexibility work. In addition, this review provides suggestion to manipulate the warm-up to suit the demands of competition in hot environments, along with other strategies to avoid heating-up.
Collapse
Affiliation(s)
- Sébastien Racinais
- Aspetar Orthopaedic and Sports Medicine Hospital, Athlete Health and Performance Research Centre, Doha, Qatar.,French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA 7370), Paris, France
| | - Scott Cocking
- Aspetar Orthopaedic and Sports Medicine Hospital, Athlete Health and Performance Research Centre, Doha, Qatar.,Research Institute for Sport and Exercise Science, Liverpool John Moores University, United Kingdom
| | - Julien D Périard
- Aspetar Orthopaedic and Sports Medicine Hospital, Athlete Health and Performance Research Centre, Doha, Qatar.,University of Canberra, Research Institute for Sport and Exercise, Canberra, Australia
| |
Collapse
|