1
|
Matsumoto T, Tomita Y, Irisawa K. Identifying the Optimal Arm Priming Exercise Intensity to Improve Maximal Leg Sprint Cycling Performance. J Sports Sci Med 2023; 22:58-67. [PMID: 36876178 PMCID: PMC9982525 DOI: 10.52082/jssm.2023.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023]
Abstract
Priming exercises improve subsequent motor performance; however, their effectiveness may depend on the workload and involved body areas. The present study aimed to estimate the effects of leg and arm priming exercises performed at different intensities on maximal sprint cycling performance. Fourteen competitive male speed-skaters visited a lab eight times, where they underwent a body composition measurement, two V̇O2max measurements (leg and arm ergometers), and five sprint cycling sessions after different priming exercise conditions. The five priming exercise conditions included 10-minute rest (Control); 10-minute arm ergometer exercise at 20% V̇O2max (Arm 20%); 10-minute arm ergometer exercise at 70% V̇O2max (Arm 70%); 1-min maximal arm ergometer exercise at 140% V̇O2max (Arm 140%); and 10-min leg ergometer exercise at 70% V̇O2max (Leg 70%). Power outputs of 60-s maximal sprint cycling, blood lactate concentration, heart rate, muscle and skin surface temperature, and rating of perceived exertion were compared between the priming conditions at different measurement points. Our results showed that the Leg 70% was the optimal priming exercise among our experimental conditions. Priming exercise with the Arm 70% also tended to improve subsequent motor performance, while Arm 20% and Arm 140% did not. Mild elevation in blood lactate concentration by arm priming exercise may improve the performance of high-intensity exercise.
Collapse
Affiliation(s)
- Tatsuya Matsumoto
- Department of Physical Therapy, Faculty of Health Care, Takasaki University of Health and Welfare, Gunma, Japan
| | - Yosuke Tomita
- Department of Physical Therapy, Faculty of Health Care, Takasaki University of Health and Welfare, Gunma, Japan
| | - Koichi Irisawa
- Department of Physical Therapy, Faculty of Health Care, Takasaki University of Health and Welfare, Gunma, Japan
| |
Collapse
|
2
|
Valcarce-Merayo E, Latella C. Precompetition Strategies to Improve Performance in Endurance or Repeated Intermittent Activity: Evidence and Practical Suggestions. Strength Cond J 2022. [DOI: 10.1519/ssc.0000000000000753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
3
|
Valiulin D, Purge P, Mäestu J, Jürimäe J, Hofmann P. Effect of Short-Duration High-Intensity Upper-Body Pre-Load Component on Performance among High-Level Cyclists. Sports (Basel) 2022; 10:sports10030032. [PMID: 35324641 PMCID: PMC8950235 DOI: 10.3390/sports10030032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/07/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
The aim of the present study was to evaluate the effects of upper-body high-intensity exercise priming on subsequent leg exercise performance. Specifically, to compare maximal 4000 m cycling performance with upper-body pre-load (MPThigh) and common warm-up (MPTlow). In this case, 15 high-level cyclists (23.3 ± 3.6 years; 181 ± 7 cm; 76.2 ± 10.0 kg; V˙O2max: 65.4 ± 6.7 mL·kg−1·min−1) participated in the study attending three laboratory sessions, completing an incremental test and both experimental protocols. In MPThigh, warm-up was added by a 25 s high-intensity all-out arm crank effort to the traditional 20-min aerobic warm-up. Both 4000 m maximal bouts started with a 12 s all-out start. Heart rate, blood lactate concentration [La) and spirometric data were measured and analyzed. Overall MPThigh time was slower by 5.3 ± 1.2 s (p < 0.05). [La] at the start was 5.5 ± 1.5 mmol·L−1 higher for MPThigh (p < 0.001) reducing anaerobic energy contribution which was higher in MPTlow during the first and third 1000 m split (p < 0.05). Similarly, MPTlow maintained higher total average power during the entire performance (p < 0.05, d = 0.7). Although the MPThigh condition performed less effectively due to decreased anaerobic capacity, pre-load effect may have the potential to enhance performance at longer distances.
Collapse
Affiliation(s)
- Dmitri Valiulin
- Institute of Sport Sciences and Physiotherapy, Faculty of Medicine, University of Tartu, 51008 Tartu, Estonia; (P.P.); (J.M.); (J.J.)
- Correspondence:
| | - Priit Purge
- Institute of Sport Sciences and Physiotherapy, Faculty of Medicine, University of Tartu, 51008 Tartu, Estonia; (P.P.); (J.M.); (J.J.)
| | - Jarek Mäestu
- Institute of Sport Sciences and Physiotherapy, Faculty of Medicine, University of Tartu, 51008 Tartu, Estonia; (P.P.); (J.M.); (J.J.)
| | - Jaak Jürimäe
- Institute of Sport Sciences and Physiotherapy, Faculty of Medicine, University of Tartu, 51008 Tartu, Estonia; (P.P.); (J.M.); (J.J.)
| | - Peter Hofmann
- Training & Training Therapy Research Group, Institute of Human Movement Science, Sport & Health, Exercise Physiology, University of Graz, 8010 Graz, Austria;
| |
Collapse
|
4
|
Boullosa D, Abad CCC, Reis VP, Fernandes V, Castilho C, Candido L, Zagatto AM, Pereira LA, Loturco I. Effects of Drop Jumps on 1000-m Performance Time and Pacing in Elite Male and Female Endurance Runners. Int J Sports Physiol Perform 2020; 15:1043-1046. [PMID: 32176865 DOI: 10.1123/ijspp.2019-0585] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/11/2019] [Accepted: 10/14/2019] [Indexed: 11/18/2022]
Abstract
PURPOSE To evaluate the effect of drop jumps (DJs) on performance time and pacing in a field test (ie, 1000 m) commonly used to evaluate endurance runners and to evaluate running and jumping performance in male and female athletes separately. METHODS Twenty elite endurance runners (male, n = 10, 27.8 [7.0] y, 62.3 [5.2] kg; female, n = 10, 25.9 [5.3] y, 51.7 [4.1] kg) competing in middle- and long-distance events participated in this study. After determination of the box height associated with the best reactive strength index, athletes randomly performed a warm-up with or without the inclusion of 5 DJs with the highest reactive strength index prior to a 1000-m track test. Performance time and pacing (250-m splits) were determined. Countermovement-jump heights at different time points and blood lactate concentration after running tests were also recorded. RESULTS A "possible" faster 1000-m time (162.4 vs 165.3 s) with a "very likely" faster first split (38.8 vs 40.3 s) was observed in male athletes in the DJ condition. In contrast, female athletes showed a "possible" slower running time (186.8 vs 184.8 s) and a "likely" greater blood lactate concentration after the 1000-m test in the DJ condition. Male and female athletes presented greater countermovement-jump performances after warm-up and running tests in both conditions. CONCLUSIONS The inclusion of 5 DJs with the height associated with the best reactive strength index induced a "possible" improvement in 1000-m performance time in elite male endurance runners. The current protocol should be avoided in female athletes.
Collapse
|
5
|
Barranco-Gil D, Alejo LB, Valenzuela PL, Gil-Cabrera J, Montalvo-Pérez A, Talavera E, Moral-González S, Clemente-Suárez VJ, Lucia A. Warming Up Before a 20-Minute Endurance Effort: Is It Really Worth It? Int J Sports Physiol Perform 2020; 15:964-970. [PMID: 32182586 DOI: 10.1123/ijspp.2019-0554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/03/2019] [Accepted: 10/09/2019] [Indexed: 11/18/2022]
Abstract
PURPOSE To analyze the effects of different warm-up protocols on endurance-cycling performance from an integrative perspective (by assessing perceptual, neuromuscular, physiological, and metabolic variables). METHODS Following a randomized crossover design, 15 male cyclists (35 [9] y; peak oxygen uptake [VO2peak] 66.4 [6.8] mL·kg-1·min-1) performed a 20-minute cycling time trial (TT) preceded by no warm-up, a standard warm-up (10 min at 60% of VO2peak), or a warm-up that was intended to induce potentiation postactivation (PAP warm-up; 5 min at 60% of VO2peak followed by three 10-s all-out sprints). Study outcomes were jumping ability and heart-rate variability (both assessed at baseline and before the TT), TT performance (mean power output), and perceptual (rating of perceived exertion) and physiological (oxygen uptake, muscle oxygenation, heart-rate variability, blood lactate, and thigh skin temperature) responses during and after the TT. RESULTS Both standard and PAP warm-up (9.7% [4.7%] and 12.9% [6.5%], respectively, P < .001), but not no warm-up (-0.9% [4.8%], P = .074), increased jumping ability and decreased heart-rate variability (-7.9% [14.2%], P = .027; -20.3% [24.7%], P = .006; and -1.7% [10.5%], P = .366). Participants started the TT (minutes 0-3) at a higher power output and oxygen uptake after PAP warm-up compared with the other 2 protocols (P < .05), but no between-conditions differences were found overall for the remainder of outcomes (P > .05). CONCLUSIONS Compared with no warm-up, warming up enhanced jumping performance and sympathetic modulation before the TT, and the inclusion of brief sprints resulted in a higher initial power output during the TT. However, no warm-up benefits were found for overall TT performance or for perceptual or physiological responses during the TT.
Collapse
|
6
|
de Poli RAB, Boullosa DA, Malta ES, Behm D, Lopes VHF, Barbieri FA, Zagatto AM. Cycling Performance Enhancement After Drop Jumps May Be Attributed to Postactivation Potentiation and Increased Anaerobic Capacity. J Strength Cond Res 2020; 34:2465-2475. [PMID: 32205815 DOI: 10.1519/jsc.0000000000003399] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
de Poli, RAB, Boullosa, DA, Malta, ES, Behm, D, Lopes, VHF, Barbieri, FA, and Zagatto, AM. Cycling performance enhancement after drop jumps may be attributed to postactivation potentiation and increased anaerobic capacity. J Strength Cond Res 34(9): 2465-2475, 2020-The study aimed to investigate the effects of drop jumps (DJs) on supramaximal cycling performance, anaerobic capacity (AC), electromyography, and fatigue. Thirty-eight recreational cyclists participated into 3 independent studies. In study 1 (n = 14), neuromuscular fatigue was assessed with the twitch interpolation technique. In study 2 (n = 16), the AC and metabolic contributions were measured with the maximal accumulated oxygen deficit method and the sum of the glycolytic and phosphagen pathways. In study 3 (n = 8), postactivation potentiation (PAP) induced by repeated DJs was evaluated. The DJ protocol was effective for significantly improving cycling performance by +9.8 and +7.4% in studies 1 and 2, respectively (p ≤ 0.05). No differences were observed in electromyography between conditions (p = 0.70); however, the force evoked by a doublet at low (10 Hz) and high frequencies (100 Hz) declined for control (-16.4 and -23.9%) and DJ protocols (-18.6 and -26.9%) (p < 0.01). Force decline was greater in the DJ condition (p < 0.03). Anaerobic capacity and glycolytic pathway contributions were +7.7 and +9.1% higher after DJ protocol (p = 0.01). Peak force during maximal voluntary contraction (+5.6%) and doublet evoked force at 100 Hz (+5.0%) were higher after DJs. The DJ protocol induced PAP, improved supramaximal cycling performance, and increased AC despite higher peripheral fatigue.
Collapse
Affiliation(s)
- Rodrigo A B de Poli
- Laboratory of Physiology and Sport Performance (LAFIDE), São Paulo State University (UNESP), Bauru, SP, Brazil.,Post-Graduate Program in Movement Sciences, São Paulo State University (UNESP), School of Science, Bauru, SP, Brazil
| | - Daniel A Boullosa
- College of Healthcare Sciences, James Cook University, Townsville, Australia; and
| | - Elvis S Malta
- Laboratory of Physiology and Sport Performance (LAFIDE), São Paulo State University (UNESP), Bauru, SP, Brazil.,Post-Graduate Program in Movement Sciences, São Paulo State University (UNESP), School of Science, Bauru, SP, Brazil
| | - David Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, Newfoundland, Canada
| | - Vithor H F Lopes
- Laboratory of Physiology and Sport Performance (LAFIDE), São Paulo State University (UNESP), Bauru, SP, Brazil.,Post-Graduate Program in Movement Sciences, São Paulo State University (UNESP), School of Science, Bauru, SP, Brazil
| | - Fabio A Barbieri
- Post-Graduate Program in Movement Sciences, São Paulo State University (UNESP), School of Science, Bauru, SP, Brazil
| | - Alessandro M Zagatto
- Laboratory of Physiology and Sport Performance (LAFIDE), São Paulo State University (UNESP), Bauru, SP, Brazil.,Post-Graduate Program in Movement Sciences, São Paulo State University (UNESP), School of Science, Bauru, SP, Brazil
| |
Collapse
|
7
|
Blagrove RC, Howatson G, Hayes PR. Use of Loaded Conditioning Activities to Potentiate Middle- and Long-Distance Performance: A Narrative Review and Practical Applications. J Strength Cond Res 2019; 33:2288-2297. [PMID: 29384999 DOI: 10.1519/jsc.0000000000002456] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Blagrove, RC, Howatson, G, and Hayes, PR. Use of loaded conditioning activities to potentiate middle- and long-distance performance: a narrative review and practical applications. J Strength Cond Res 33(8): 2288-2297, 2019-The warm-up is an integral component of a middle- and long-distance athlete's preperformance routine. The use of a loaded conditioning activity (LCA), which elicits a postactivation potentiation (PAP) response to acutely enhance explosive power performance, is well researched. A similar approach incorporated into the warm-up of a middle- or long-distance athlete potentially provides a novel strategy to augment performance. Mechanisms that underpin a PAP response, relating to acute adjustments within the neuromuscular system, should theoretically improve middle- and long-distance performance through improvements in submaximal force-generating ability. Attempts to enhance middle- and long-distance-related outcomes using an LCA have been used in several recent studies. Results suggest that benefits to performance may exist in well-trained middle- and long-distance athletes by including high-intensity resistance training (1-5 repetition maximum) or adding load to the sport skill itself during the latter part of warm-ups. Early stages of performance seem to benefit most, and it is likely that recovery (5-10 minutes) also plays an important role after an LCA. Future research should consider how priming activity, designed to enhance the VO2 kinetic response, and an LCA may interact to affect performance, and how different LCAs might benefit various modes and durations of middle- and long-distance exercises.
Collapse
Affiliation(s)
- Richard C Blagrove
- Department of Sport and Exercise, Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, United Kingdom.,Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom.,Water Research Group, Northwest University, Potchefstroom, South Africa
| | - Philip R Hayes
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|