1
|
Jagim AR, Schuler J, Szymanski E, Khurelbaatar C, Carpenter M, Fields JB, Jones MT. Acute Responses of Low-Load Resistance Exercise with Blood Flow Restriction. J Funct Morphol Kinesiol 2024; 9:254. [PMID: 39728238 DOI: 10.3390/jfmk9040254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Blood flow restriction (BFR) is a popular resistance exercise technique purported to increase metabolic stress and augment training adaptations over time. However, short-term use may lead to acute neuromuscular fatigue and higher exertion ratings. Objective: The purpose of the current study was to examine acute physiological responses to low-load resistance exercise utilizing BFR compared to higher-load, non-BFR resistance exercise. Methods: Recreationally trained males (n = 6) and females (n = 7) (mean ± standard deviation, age: 20 ± 1 yrs.; height: 172 ± 8 cm; weight: 73 ± 11 kg; BMI: 24.4 ± 2.2 kg·m-2; training experience: 4 ± 2 yrs.) had limb occlusion pressure determined (50%; right leg: 118 ± 11 mmHg; left leg: 121 ± 13 mmHg) using an automated, self-inflating cuff system during baseline testing. In subsequent sessions, using a randomized, cross-over design, participants completed one of two experimental conditions: (1) Low-load + BFR and (2) High load + non-BFR. In both conditions, participants completed one set of back squats at either 30% (BFR) or 60% (non-BFR) of an estimated 1RM for a max of 30 repetitions, followed by three additional sets with the same loads and a target of 15 repetitions per set. Blood lactate and countermovement jump (CMJ) height were measured pre- and post-back squat. Ratings of perceived exertion (RPE) were assessed following each set. Results: When collapsed across all sets, participants completed significantly more total repetitions in the BFR condition compared to non-BFR (75.0 ± 0.0 vs. 68.23 ± 9.27 reps; p = 0.015; ES: 1.03), but a lower training load volume (2380 ± 728 vs. 4756 ± 1538 kg; p < 0.001; ES: 1.97). There was a significant time-by-condition interaction (p < 0.001), with a greater increase in blood lactate occurring from baseline to post-back squat in the non-BFR condition (11.61 mmol/L, 95%CI: 9.93, 13.28 mmol/L) compared to BFR (5.98 mmol/L, 95%CI: 4.30, 7.65 mmol/L). There was another significant time-by-condition interaction (p = 0.043), with a greater reduction in CMJ occurring in the non-BFR condition (-6.01, 95%CI: -9.14, -2.88 cm; p < 0.001) compared to BFR (-1.50, 95%CI: -1.50, 4.51 cm; p = 0.312). Conclusions: Utilizing a low-load BFR protocol may allow for a higher training volume, yet lower metabolic stress and reduce neuromuscular fatigue compared to lifting at a higher load without the use of BFR.
Collapse
Affiliation(s)
- Andrew R Jagim
- Sports Medicine, Mayo Clinic Health System, Onalaska, WI 54650, USA
- Department of Exercise and Sport Science, University of Wisconsin-La Crosse, La Crosse, WI 54601, USA
- Patriot Performance Laboratory, Frank Pettrone Center for Sports Performance, George Mason University, Fairfax, VA 22030, USA
| | - Jordan Schuler
- Department of Exercise and Sport Science, University of Wisconsin-La Crosse, La Crosse, WI 54601, USA
| | - Elijah Szymanski
- Medical College of Wisconsin-Central Wisconsin, Wausau, WI 54401, USA
| | - Chinguun Khurelbaatar
- Department of Exercise and Sport Science, University of Wisconsin-La Crosse, La Crosse, WI 54601, USA
| | - Makenna Carpenter
- Department of Exercise and Sport Science, University of Wisconsin-La Crosse, La Crosse, WI 54601, USA
| | - Jennifer B Fields
- Patriot Performance Laboratory, Frank Pettrone Center for Sports Performance, George Mason University, Fairfax, VA 22030, USA
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Margaret T Jones
- Patriot Performance Laboratory, Frank Pettrone Center for Sports Performance, George Mason University, Fairfax, VA 22030, USA
- Sport, Recreation, and Tourism Management, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
2
|
Kong W, Wang H, Cheng L, Ni G. Comparing the effect of intermittent blood flow restriction training and high-load resistance training in patients with patellofemoral pain: study protocol for a randomised trial. BMJ Open 2023; 13:e073188. [PMID: 37865415 PMCID: PMC10603463 DOI: 10.1136/bmjopen-2023-073188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/02/2023] [Indexed: 10/23/2023] Open
Abstract
BACKGROUND Patellofemoral pain (PFP) syndrome is a common knee joint functional disorder. Blood flow restriction (BFR) training has shown promise in improving PFP; however, the effectiveness of intermittent BFR (iBFR) training remains uncertain. This study aims to compare the rehabilitative effects of iBFR combined with low-load resistance training and high-load resistance training in PFP patients and to assess the effectiveness of iBFR combined with low-load resistance training for improving PFP. METHODS AND ANALYSIS This randomised, patient-assessor blinded, controlled trial will include 42 eligible PFP patients randomly allocated to an intervention group (iBFR combined with low-load resistance training) or a control group (high-load resistance training) in a 1:1 ratio. Participants will receive interventions three times per week for 8 weeks and will be followed up for 24 weeks. The primary outcome measure is pain, and the secondary outcomes include self-reported function, quality of life, muscle strength and muscle thickness. Assessments will be conducted at baseline, 8 weeks and 24 weeks during follow-up. Intention-to-treat analysis will be performed.Collectively, we expect that the findings of this randomised clinical trial will contribute to understanding the potential benefits of iBFR training and provide insightful guidance for developing more effective treatment strategies for patients with PFP. ETHICS AND DISSEMINATION This study was approved by the Sports Science Experiment Ethics Committee of Beijing Sport University (2022274H). Written informed consent will be obtained from all participants. Trial results will be disseminated through peer-reviewed publications. TRIAL REGISTRATION NUMBER Chinese Clinical Trial Registry (ChiCTR2300068281).
Collapse
Affiliation(s)
- Weiya Kong
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Haonan Wang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Lin Cheng
- Department of Rehabilitation, Tongzhou District Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Guoxin Ni
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
3
|
Proppe CE, Aldeghi TM, Rivera PM, Gonzalez-Rojas D, Wizenberg AM, Hill EC. 75-repetition versus sets to failure of blood flow restriction exercise on indices of muscle damage in women. Eur J Sport Sci 2023; 23:1993-2001. [PMID: 37032512 DOI: 10.1080/17461391.2023.2201813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
ABSTRACTThere is conflicting evidence regarding the prevalence and magnitude of exercise-induced muscle damage (EIMD) following low-load resistance exercise with blood flow restriction (LL + BFR) that may be related to exercise protocols. The purpose of this investigation was to examine the effects of 75-repetition (BFR-75) (1 × 30, 3 × 15) and 4 sets to failure (BFR-4x) protocols on indices of EIMD among untrained women. Thirteen women completed this investigation. One leg was randomly assigned to BFR-75 and the other to BFR-4x. Each leg performed isokinetic, unilateral, concentric-eccentric, leg extension muscle actions at 30% of maximal strength. Indices of EIMD (muscle soreness, range of motion [ROM], limb circumference, pain pressure threshold [PPT], and maximal voluntary isometric contraction [MVIC]) were recorded before exercise, 0-, 24-, 48-, 72-, and 96-hours post-exercise. There were no changes for ROM, circumference, or PPT. Muscle soreness increased similarly in both conditions 0-, 24-, and 48-hours post-exercise and MVIC increased 24-, 48-, 72-, and 96-hours post-exercise. These findings suggested BFR-75 and BFR-4x were not associated with EIMD and elicited similar physiological responses. The increases in muscle soreness may be due to metabolic stress associated with LL + BFR protocols apart from EIMD.
Collapse
Affiliation(s)
- Christopher E Proppe
- School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL, USA
| | - Taylor M Aldeghi
- School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL, USA
| | - Paola M Rivera
- School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL, USA
| | - David Gonzalez-Rojas
- School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL, USA
| | - Aaron M Wizenberg
- School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL, USA
| | - Ethan C Hill
- School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL, USA
- Florida Space Institute, Orlando, FL, USA
| |
Collapse
|
4
|
Reece TM, Godwin JS, Strube MJ, Ciccone AB, Stout KW, Pearson JR, Vopat BG, Gallagher PM, Roberts MD, Herda TJ. Myofiber hypertrophy adaptations following 6 weeks of low-load resistance training with blood flow restriction in untrained males and females. J Appl Physiol (1985) 2023; 134:1240-1255. [PMID: 37022967 PMCID: PMC10190928 DOI: 10.1152/japplphysiol.00704.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
The effects of low-load resistance training with blood flow restriction (BFR) on hypertrophy of type I/II myofibers remains unclear, especially in females. The purpose of the present study is to examine changes in type I/II myofiber cross-sectional area (fCSA) and muscle CSA (mCSA) of the vastus lateralis (VL) from before (Pre) to after (Post) 6 wk of high-load resistance training (HL; n = 15, 8 females) and low-load resistance training with BFR (n = 16, 8 females). Mixed-effects models were used to analyze fCSA with group (HL, BFR), sex (M, F), fiber type (I, II), and time (Pre, Post) included as factors. mCSA increased from pre- to posttraining (P < 0.001, d = 0.91) and was greater in males compared with females (P < 0.001, d = 2.26). Type II fCSA increased pre- to post-HL (P < 0.05, d = 0.46) and was greater in males compared with females (P < 0.05, d = 0.78). There were no significant increases in fCSA pre- to post-BFR for either fiber type or sex. Cohen's d, however, revealed moderate effect sizes in type I and II fCSA for males (d = 0.59 and 0.67), although this did not hold true for females (d = 0.29 and 0.34). Conversely, the increase in type II fCSA was greater for females than for males after HL. In conclusion, low-load resistance training with BFR may not promote myofiber hypertrophy to the level of HL resistance training, and similar responses were generally observed for males and females. In contrast, comparable effect sizes for mCSA and 1-repetition maximum (1RM) between groups suggest that BFR could play a role in a resistance training program.NEW & NOTEWORTHY This is the first study, to our knowledge, to examine myofiber hypertrophy from low-load resistance training with blood flow restriction (BFR) in females. Although this type of training did not result in myofiber hypertrophy, there were comparable increases in muscle cross-sectional area compared with high-load resistance training. These findings possibly highlight that males and females respond in a similar manner to high-load resistance training and low-load resistance training with BFR.
Collapse
Affiliation(s)
- Tanner M Reece
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Joshua S Godwin
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Michael J Strube
- Department of Psychological and Brain Sciences, Washington University, St. Louis, Missouri, United States
| | - Anthony B Ciccone
- Department of Exercise Science and Outdoor Recreation, Utah Valley University, Orem, Utah, United States
| | - Kevan W Stout
- Department of Health, Sport, and Exercise Sciences, University of Kansas, Lawrence, Kansas, United States
| | - Jeremy R Pearson
- Department of Health, Sport, and Exercise Sciences, University of Kansas, Lawrence, Kansas, United States
| | - Bryan G Vopat
- University of Kansas School of Medicine-Wichita, Wichita, Kansas, United States
| | - Philip M Gallagher
- Department of Health, Sport, and Exercise Sciences, University of Kansas, Lawrence, Kansas, United States
| | - Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Trent J Herda
- Department of Health, Sport, and Exercise Sciences, University of Kansas, Lawrence, Kansas, United States
| |
Collapse
|
5
|
Reina-Ruiz ÁJ, Martínez-Cal J, Molina-Torres G, Romero-Galisteo RP, Galán-Mercant A, Carrasco-Vega E, González-Sánchez M. Effectiveness of Blood Flow Restriction on Functionality, Quality of Life and Pain in Patients with Neuromusculoskeletal Pathologies: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1401. [PMID: 36674158 PMCID: PMC9858892 DOI: 10.3390/ijerph20021401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Blood flow restriction is characterized as a method used during exercise at low loads of around 20-40% of a repetition maximum, or at a low-moderate intensity of aerobic exercise, in which cuffs that occlude the proximal part of the extremities can partially reduce arterial flow and fully restrict the venous flow of the musculature in order to achieve the same benefits as high-load exercise. OBJECTIVE The main objective of this systematic literature review was to analyze the effects of BFR intervention on pain, functionality, and quality of life in subjects with neuromusculoskeletal pathologies. METHODS The search to carry out was performed in PubMed, Cochrane, EMBASE, PEDro, CINHAL, SPORTDiscus, Trip Medical Database, and Scopus: "kaatsu" OR "ischemic training" OR "blood flow restriction" OR "occlusion resistance training" OR "vascular occlusion" OR "vascular restriction". RESULTS After identifying 486 papers and eliminating 175 of them due to duplication and 261 after reading the title and abstract, 50 papers were selected. Of all the selected articles, 28 were excluded for not presenting a score equal to or higher than 6 points on the PEDro scale and 8 for not analyzing the target outcome variables. Finally, 14 papers were selected for this systematic review. CONCLUSIONS The data collected indicate that the blood flow restriction tool is a therapeutic alternative due to its effectiveness under different exercise modalities. The benefits found include decreases in pain thresholds and improvement in the functionality and quality of life of the neuro-musculoskeletal patient during the first six weeks. However, the results provided by this tool are still not clear for medium- and long-term interventions.
Collapse
Affiliation(s)
- Álvaro Jesús Reina-Ruiz
- Department of Physiotherapy, Faculty of Health Sciences, University of Málaga, 29071 Málaga, Spain
| | - Jesús Martínez-Cal
- Department of Nursing, Physiotherapy and Medicine, Faculty of Health Sciences, University of Almería, 04120 Almería, Spain
| | - Guadalupe Molina-Torres
- Department of Nursing, Physiotherapy and Medicine, Faculty of Health Sciences, University of Almería, 04120 Almería, Spain
| | - Rita-Pilar Romero-Galisteo
- Department of Physiotherapy, Faculty of Health Sciences, University of Málaga, 29071 Málaga, Spain
- Institute of Biomedicine of Málaga (IBIMA), 29010 Málaga, Spain
| | - Alejandro Galán-Mercant
- Institute of Biomedicine of Cádiz (INIBICA), 11009 Cádiz, Spain
- MOVE-IT Research Group, Department of Nursing and Physiotherapy, Faculty of Health Sciences, University of Cádiz, 11009 Cádiz, Spain
| | - Elio Carrasco-Vega
- Department of Physiotherapy, Faculty of Health Sciences, University of Málaga, 29071 Málaga, Spain
- Institute of Biomedicine of Málaga (IBIMA), 29010 Málaga, Spain
| | - Manuel González-Sánchez
- Department of Physiotherapy, Faculty of Health Sciences, University of Málaga, 29071 Málaga, Spain
- Institute of Biomedicine of Málaga (IBIMA), 29010 Málaga, Spain
| |
Collapse
|
6
|
Lauver JD, Moran A, Guilkey JP, Johnson KE, Zanchi NE, Rotarius TR. Acute Responses to Cycling Exercise With Blood Flow Restriction During Various Intensities. J Strength Cond Res 2022; 36:3366-3373. [PMID: 34341317 DOI: 10.1519/jsc.0000000000004099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT Lauver, JD, Moran, A, Guilkey, JP, Johnson, KE, Zanchi, NE, and Rotarius, TR. Acute responses to cycling exercise with blood flow restriction during various intensities. J Strength Cond Res 36(12): 3366-3373, 2022-The purpose of this study was to investigate the acute physiological responses during cycling at various intensities with blood flow restriction (BFR). Subjects ( N = 9; V̇ o2 peak = 36.09 ± 5.80 ml·kg -1 ·min -1 ) performed 5 protocols: high-intensity (HIGH), control (CON-90), 90% of ventilatory threshold (VT) work rate with BFR (90-BFR), 70% of VT with BFR (70-BFR), and 30% V̇ o2 peak with BFR (30-BFR). Protocols consisted of five 2-minute work intervals interspersed with 1-minute recovery intervals. Blood flow restriction pressure was 80% of limb occlusion pressure. V̇ o2 , muscle excitation, tissue oxygen saturation (StO 2 ), discomfort, and level of perceived exertion (RPE) were assessed. Muscle excitation was higher during HIGH (302.9 ± 159.9 %BSL [baseline]) compared with 70-BFR (99.7 ± 76.4 %BSL) and 30-BFR (98.2 ± 70.5 %BSL). StO 2 was greater during 90-BFR (40.7 ± 12.5 ∆BSL), 70-BFR (34.4 ± 15.2 ∆BSL), and 30-BFR (31.9 ± 18.7 ∆BSL) compared with CON-90 (4.4 ± 11.5 ∆BSL). 90-BFR (39.6 ± 12.0 ∆BSL) resulted in a greater StO 2 -Avg compared with HIGH (20.5 ± 13.8 ∆BSL). Also, HIGH (23.68 ± 5.31 ml·kg -1 ·min -1 ) resulted in a greater V̇ o2 compared with 30-BFR (15.43 ± 3.19 ml·kg -1 ·min -1 ), 70-BFR (16.65 ± 3.26 ml·kg -1 ·min -1 ), and 90-BFR (18.28 ± 3.89 ml·kg -1 ·min -1 ); 90-BFR (intervals: 4 = 15.9 ± 2.3; intervals: 5 = 16.4 ± 2.5) resulted in a greater RPE compared with 30-BFR (intervals: 4 = 13.3 ± 1.4; intervals: 5 = 13.7 ± 1.7) during intervals 4 and 5. These results suggest that when adding BFR to various intensities of aerobic exercise, consideration should be given to peak work and VT to provide a balance between high local physiological stress and perceptual responses.
Collapse
Affiliation(s)
- Jakob D Lauver
- Department of Kinesiology, Coastal Carolina University, Conway, South Carolina
| | - Austin Moran
- Department of Kinesiology, Coastal Carolina University, Conway, South Carolina
| | - Justin P Guilkey
- Department of Kinesiology, Coastal Carolina University, Conway, South Carolina
| | - Kelly E Johnson
- Department of Kinesiology, Coastal Carolina University, Conway, South Carolina
| | - Nelo E Zanchi
- Department of Physical Education, Federal University of Maranhao (UFMA), Sao Luis, Brazil; and
| | - Timothy R Rotarius
- Department of Exercise Science and Athletic Training, Adrian College, Adrian, Michigan
| |
Collapse
|
7
|
The Impacts of Combined Blood Flow Restriction Training and Betaine Supplementation on One-Leg Press Muscular Endurance, Exercise-Associated Lactate Concentrations, Serum Metabolic Biomarkers, and Hypoxia-Inducible Factor-1α Gene Expression. Nutrients 2022; 14:nu14235040. [PMID: 36501070 PMCID: PMC9739923 DOI: 10.3390/nu14235040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The purpose of this investigation was to compare the impacts of a potential blood flow restriction (BFR)-betaine synergy on one-leg press performance, lactate concentrations, and exercise-associated biomarkers. Eighteen recreationally trained males (25 ± 5 y) were randomized to supplement 6 g/day of either betaine anhydrous (BET) or cellulose placebo (PLA) for 14 days. Subsequently, subjects performed four standardized sets of one-leg press and two additional sets to muscular failure on both legs (BFR [LL-BFR; 20% 1RM at 80% arterial occlusion pressure] and high-load [HL; 70% 1RM]). Toe-tip lactate concentrations were sampled before (PRE), as well as immediately (POST0), 30 min (POST30M), and 3 h (POST3H) post-exercise. Serum homocysteine (HCY), growth hormone (GH) and insulin-like growth factor-1 concentrations were additionally assessed at PRE and POST30M. Analysis failed to detect any significant between-supplement differences for total repetitions completed. Baseline lactate changes (∆) were significantly elevated from POST0 to POST30 and from POST30 to POST3H (p < 0.05), whereby HL additionally demonstrated significantly higher ∆Lactate versus LL-BFR (p < 0.001) at POST3H. Although serum ∆GH was not significantly impacted by supplement or condition, serum ∆IGF-1 was significantly (p = 0.042) higher in BET versus PLA and serum ∆HCY was greater in HL relative to LL-BFR (p = 0.044). Although these data fail to support a BFR-betaine synergy, they otherwise support betaine’s anabolic potential.
Collapse
|
8
|
Kolind MI, Gam S, Phillip JG, Pareja-Blanco F, Olsen HB, Gao Y, Søgaard K, Nielsen JL. Effects of low load exercise with and without blood-flow restriction on microvascular oxygenation, muscle excitability and perceived pain. Eur J Sport Sci 2022; 23:542-551. [PMID: 35125067 DOI: 10.1080/17461391.2022.2039781] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This paper aimed to examine the acute effect of low-load (LL) exercise with blood-flow restriction (LL-BFR) on microvascular oxygenation and muscle excitability of the vastus medialis (VM) and vastus lateralis (VL) muscles during a single bout of unilateral knee extension exercise performed to task failure. Seventeen healthy recreationally resistance-trained males were enrolled in a within-group randomized cross-over study design. Participants performed one set of unilateral knee extensions at 20% of one-repetition maximum (1RM) to task failure, using a LL-BFR or LL free-flow (LL-FF) protocol in a randomized order on separate days. Changes in microvascular oxygenation and muscle excitability in VL and VM were assessed using near-infrared spectroscopy (NIRS) and surface electromyography (sEMG), respectively. Pain measures were collected using the visual analog scale (VAS) before and following set completion. Within- and between- protocol comparisons were performed at multiple time points of set completion for each muscle. During LL-BFR, participants performed 43% fewer repetitions and reported feeling more pain compared to LL-FF (p<0.05). Normalized to time to task failure, LL-BFR and LL-FF generally demonstrated similar progression in microvascular oxygenation and muscle excitability during exercise to task failure. The present results demonstrate that LL-BFR accelerates time to task failure, compared with LL-FF, resulting in a lower dose of mechanical work to elicit similar levels of oxygenation, blood-pooling, and muscle excitability. LL-BFR may be preferable to LL-FF in clinical settings where high workloads are contraindicated, although increased pain experienced during BFR may limit its application.HighlightsCompared to free flow (FF), neuromuscular fatigue mechanisms are accelerated during blood flow restricted (BFR) training. This can be observed as changes in microvascular oxygenation and muscle excitability occurring at a ∼43% faster mean rate during BFR compared to FF.BFR exercise seems to elicit the same level of neuromuscular fatigue as FF training within a shorter timeframe. This reduces total joint load and may be especially helpful in cases where high training volumes may be contraindicated (e.g. recovering from a sports injury or orthopedic surgery).
Collapse
Affiliation(s)
- Mikkel I. Kolind
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campus vej 55, 5230 Odense, Denmark
| | - Søren Gam
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campus vej 55, 5230 Odense, Denmark
| | - Jeppe G. Phillip
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campus vej 55, 5230 Odense, Denmark
| | - Fernando Pareja-Blanco
- Physical Performance & Sports Research Center, Universidad Pablo de Olavide, Ctra. de Utrera, 1, 41013 Sevilla, Spain
| | - Henrik B. Olsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campus vej 55, 5230 Odense, Denmark
| | - Ying Gao
- Department of Sports Science, College of Education, Zhejiang University, 310028 Hangzhou, China
- Faculty of Sport and Health Sciences, University of Jyväskylä, Seminaarinkatu 15, 40014 Jyväskylä, Finland
| | - Karen Søgaard
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campus vej 55, 5230 Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Campus vej 55, 5230 Odense, Denmark
| | - Jakob L. Nielsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campus vej 55, 5230 Odense, Denmark
| |
Collapse
|
9
|
Centner C, Lauber B. A Systematic Review and Meta-Analysis on Neural Adaptations Following Blood Flow Restriction Training: What We Know and What We Don't Know. Front Physiol 2020; 11:887. [PMID: 32848843 PMCID: PMC7417362 DOI: 10.3389/fphys.2020.00887] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/30/2020] [Indexed: 12/21/2022] Open
Abstract
Objective: To summarize the existing evidence on the long-term effects of low-load (LL) blood flow restricted (BFR) exercise on neural markers including both central and peripheral adaptations. Methods: A systematic review and meta-analysis was conducted according to the PRISMA guidelines. The literature search was performed independently by two reviewers in the following electronic databases: PubMed, Web of Science, Scopus and CENTRAL. The systematic review included long-term trials investigating the effects of LL-BFR training in healthy subjects and compared theses effects to either LL or high-load (HL) training without blood flow restriction. Results: From a total of N = 4499 studies, N = 10 studies were included in the qualitative synthesis and N = 4 studies in a meta-analysis. The findings indicated that LL-BFR resulted in enhanced levels of muscle excitation compared to LL training with pooled effect sizes of 0.87 (95% CI: 0.38-1.36). Compared to HL training, muscle excitation following LL-BFR was reported as either similar or slightly lower. Differences between central activation between LL-BFR and LL or HL are less clear. Conclusion: The summarized effects in this systematic review and meta-analysis highlight that BFR training facilitates neural adaptations following LL training, although differences to conventional HL training are less evident. Future research is urgently needed to identify neural alterations following long-term blood flow restricted exercise.
Collapse
Affiliation(s)
- Christoph Centner
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Benedikt Lauber
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany.,Department of Neurosciences and Movement Sciences, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|