1
|
Robinson ZP, Pelland JC, Remmert JF, Refalo MC, Jukic I, Steele J, Zourdos MC. Exploring the Dose-Response Relationship Between Estimated Resistance Training Proximity to Failure, Strength Gain, and Muscle Hypertrophy: A Series of Meta-Regressions. Sports Med 2024; 54:2209-2231. [PMID: 38970765 DOI: 10.1007/s40279-024-02069-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND The proximity to failure in which sets are terminated has gained attention in the scientific literature as a potentially key resistance training variable. Multiple meta-analyses have directly (i.e., failure versus not to failure) or indirectly (e.g., velocity loss, alternative set structures) evaluated the effect of proximity to failure on strength and muscle hypertrophy outcomes categorically; however, the dose-response effects of proximity to failure have not been analyzed collectively in a continuous manner. OBJECTIVE To meta-analyze the aforementioned areas of relevant research, proximity to failure was quantified as the number of repetitions in reserve (RIR). Importantly, the RIR associated with each effect in the analysis was estimated on the basis of the available descriptions of the training interventions in each study. Data were extracted and a series of exploratory multilevel meta-regressions were performed for outcomes related to both strength and muscle hypertrophy. A range of sensitivity analyses were also performed. All models were adjusted for the effects of load, method of volume equating, duration of intervention, and training status. RESULTS The best fit models for both strength and muscle hypertrophy outcomes demonstrated modest quality of overall fit. In all of the best-fit models for strength, the confidence intervals of the marginal slopes for estimated RIR contained a null point estimate, indicating a negligible relationship with strength gains. However, in all of the best-fit models for muscle hypertrophy, the marginal slopes for estimated RIR were negative and their confidence intervals did not contain a null point estimate, indicating that changes in muscle size increased as sets were terminated closer to failure. CONCLUSIONS The dose-response relationship between proximity to failure and strength gain appears to differ from the relationship with muscle hypertrophy, with only the latter being meaningfully influenced by RIR. Strength gains were similar across a wide range of RIR, while muscle hypertrophy improves as sets are terminated closer to failure. Considering the RIR estimation procedures used, however, the exact relationship between RIR and muscle hypertrophy and strength remains unclear. Researchers and practitioners should be aware that optimal proximity to failure may differ between strength and muscle hypertrophy outcomes, but caution is warranted when interpreting the present analysis due to its exploratory nature. Future studies deliberately designed to explore the continuous nature of the dose-response effects of proximity to failure in large samples should be considered.
Collapse
Affiliation(s)
- Zac P Robinson
- Department of Exercise Science and Health Promotion, Muscle Physiology Laboratory, Florida Atlantic University, Boca Raton, FL, USA
| | - Joshua C Pelland
- Department of Exercise Science and Health Promotion, Muscle Physiology Laboratory, Florida Atlantic University, Boca Raton, FL, USA
| | - Jacob F Remmert
- Department of Exercise Science and Health Promotion, Muscle Physiology Laboratory, Florida Atlantic University, Boca Raton, FL, USA
| | - Martin C Refalo
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Ivan Jukic
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - James Steele
- Faculty of Sport, Health, and Social Sciences, Solent University, South Hampton, England
| | - Michael C Zourdos
- Department of Exercise Science and Health Promotion, Muscle Physiology Laboratory, Florida Atlantic University, Boca Raton, FL, USA.
| |
Collapse
|
2
|
Stratton MT, Siedler MR, Rodriguez C, Harty PS, Boykin JR, Keith DS, Green JJ, White SJ, Tinoco E, DeHaven B, VanDusseldorp TA, Tinsley GM. No Effect of Breakfast Consumption Observed for Afternoon Resistance Training Performance in Habitual Breakfast Consumers and Nonconsumers: A Randomized Crossover Trial. J Acad Nutr Diet 2024; 124:995-1013. [PMID: 37742826 DOI: 10.1016/j.jand.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/23/2023] [Accepted: 09/15/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Pre-exercise meal frequency is commonly believed to impact exercise performance, but little is known about its impact on resistance training. OBJECTIVE This study investigated the impact of breakfast consumption on afternoon resistance training performance in habitual breakfast consumers and nonconsumers. DESIGN A randomized, crossover study was conducted in Lubbock, TX between November 2021 and May 2022. PARTICIPANTS Thirty-nine resistance-trained male (n = 20) and female (n = 19) adults (mean ± SD age 23.0 ± 4.7 years) who habitually consumed (≥5 d/wk; n = 19) or did not consume (≥5 d/wk; n = 20) breakfast completed the study. INTERVENTION After the establishment of 1-repetition maximums at the first visit, participants completed 2 additional visits, each of which included 4 sets of barbell back squat, bench press, and deadlift, using 80% of their 1-repetition maximum after either consuming breakfast and lunch or the same food at lunch only. MAIN OUTCOME MEASURES Repetitions, along with average and peak average concentric velocity and power, were measured for all repetitions throughout each exercise session. Visual analog scales were used to assess feelings of fatigue, energy, focus, hunger, desire to eat, and fullness throughout each exercise session. STATISTICAL ANALYSES PERFORMED Data were analyzed using linear mixed-effects models. RESULTS No interactions or main effects involving condition or habitual breakfast consumption were observed for resistance training outcomes, although sex differences were noted. Male participants performed significantly fewer repetitions on sets 2, 3, and 4 (P < .014) for total repetitions, on sets 2 and 4 for barbell back squat (P < .023), and set 4 for deadlift (P = .006), with no observed differences between sexes for bench press repetitions. Male participants displayed reductions in average power across all sets and exercises except deadlift. CONCLUSIONS These data suggest that alterations in pre-exercise meal frequency may not influence afternoon resistance training performance provided similar total nutritional intake is consumed.
Collapse
Affiliation(s)
- Matthew T Stratton
- Energy Balance and Body Composition Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas; Department of Health, Kinesiology and Sport, University of South Alabama, Mobile, Alabama
| | - Madelin R Siedler
- Energy Balance and Body Composition Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas
| | - Christian Rodriguez
- Energy Balance and Body Composition Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas
| | - Patrick S Harty
- Energy Balance and Body Composition Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas; Department of Kinesiology, College of Science, Technology, and Health; Lindenwood University, St Charles, Missouri
| | - Jake R Boykin
- Energy Balance and Body Composition Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas; Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida
| | - Dale S Keith
- Energy Balance and Body Composition Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas
| | - Jacob J Green
- Energy Balance and Body Composition Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas
| | - Sarah J White
- Energy Balance and Body Composition Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas
| | - Ethan Tinoco
- Energy Balance and Body Composition Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas
| | - Brielle DeHaven
- Energy Balance and Body Composition Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas
| | - Trisha A VanDusseldorp
- Bonafide Health, LLC, JDS Therapeutics, Harrison, New York; Department of Health and Exercise Sciences, Jacksonville University, Jacksonville, Florida
| | - Grant M Tinsley
- Energy Balance and Body Composition Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas.
| |
Collapse
|
3
|
Nuzzo JL. Muscle Strength Preservation During Repeated Sets of Fatiguing Resistance Exercise: A Secondary Analysis. J Strength Cond Res 2024; 38:1149-1156. [PMID: 38781472 DOI: 10.1519/jsc.0000000000004794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
ABSTRACT Nuzzo, JL. Muscle strength preservation during repeated sets of fatiguing resistance exercise: A secondary analysis. J Strength Cond Res 38(6): 1149-1156, 2024-During sustained or repeated maximal voluntary efforts, muscle fatigue (acute strength loss) is not linear. After a large initial decrease, muscle strength plateaus at approximately 40% of baseline. This plateau, which likely reflects muscle strength preservation, has been observed in sustained maximal isometric and repeated maximal isokinetic contractions. Whether this pattern of fatigue occurs with traditional resistance exercise repetitions with free weights and weight stack machines has not been overviewed. Here, the aim was to determine whether the number of repetitions completed across 4 or more consecutive repetitions-to-failure tests exhibits the same nonlinear pattern of muscle fatigue. A secondary analysis was applied to data extracted as part of a recent meta-analysis on repetitions-to-failure tests. Studies were eligible if they reported mean number of repetitions completed in 4-6 consecutive repetitions-to-failure tests at a given relative load. Twenty-nine studies were included. Overall, the results show that the number of repetitions completed in consecutive repetitions-to-failure tests at a given load generally decreases curvilinearly. The numbers of repetitions completed in sets 2, 3, 4, 5, and 6 were equal to approximately 70, 55, 50, 45, and 45% of the number of repetitions completed in set 1, respectively. Longer interset rest intervals typically attenuated repetition loss, but the curvilinear pattern remained. From the results, a chart was created to predict the number of repetitions across 6 sets of resistance exercise taken to failure based on the number of repetitions completed in set 1. The chart is a general guide and educational tool. It should be used cautiously. More data from a variety of exercises, relative loads, and interset rest intervals are needed for more precise estimates of number of repetitions completed during repeated sets of fatiguing resistance exercise.
Collapse
Affiliation(s)
- James L Nuzzo
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
4
|
Bastos V, Machado S, Teixeira DS. Feasibility and Usefulness of Repetitions-In-Reserve Scales for Selecting Exercise Intensity: A Scoping Review. Percept Mot Skills 2024; 131:940-970. [PMID: 38563729 PMCID: PMC11127506 DOI: 10.1177/00315125241241785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The intensity of resistance training (RT) exercise is an important consideration for determining relevant health and performance-related outcomes. Yet, current objective exercise intensity measures present concerns in terms of viability or cost. In response to these concerns, repetition-in-reserve (RIR) scales may represent an adequate method of measuring and regulating intensity. However, no recent review has focused on how RIR scales have been used for this purpose in prior research. We prepared the present scoping review to analyze the feasibility and usefulness of RIR scales in selecting RT intensity. We conducted a systematic search in PubMed, SPORTDiscus, PsycINFO, and ClinicalTrials.gov databases (last search date April 2023) for experimental and non-experimental studies that utilized an RIR scale to measure proximity to failure in RT activities with apparently healthy individuals of any age. We qualitatively analyzed 31 studies (N = 855 mostly male adult participants) published between 2012-2023. RIR scales appeared to be contextually feasible and useful in prescribing and adjusting RT intensity. The most common trend in this research was to prescribe a target RIR and adjust the exercise load for a desired proximity to muscle failure. Additionally, when measuring proximity to failure as an outcome of interest, the literature suggests that the RIR prediction should be made close to task failure to increase its accuracy. Future research should further explore the impact of sex, RT experience, exercise selection, and muscle conditioning on the overall RIR approach.
Collapse
Affiliation(s)
- Vasco Bastos
- Faculty of Physical Education and Sport (ULHT), Lusófona University, Lisbon, Portugal
- Research Center in Sport, Physical Education, and Exercise and Health (CIDEFES), Lisbon, Portugal
| | - Sérgio Machado
- Center of Physical Activity Neuroscience, Neurodiversity Institute, Queimados-RJ, Brazil
- Laboratory of Panic and Respiration, Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diogo S. Teixeira
- Faculty of Physical Education and Sport (ULHT), Lusófona University, Lisbon, Portugal
- Research Center in Sport, Physical Education, and Exercise and Health (CIDEFES), Lisbon, Portugal
| |
Collapse
|
5
|
Chen CF, Chuang CY, Wang CC, Liu SA, Chang HW, Chan KH. Lower Repetition Induces Similar Postactivation Performance Enhancement to Repetition Maximum After a Single Set of Heavy-Resistance Exercise. J Strength Cond Res 2024; 38:848-855. [PMID: 38039426 PMCID: PMC11042524 DOI: 10.1519/jsc.0000000000004711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
ABSTRACT Chen, C-F, Chuang, C-Y, Wang, C-C, Liu, S-A, Chang, H-W, and Chan, K-H. Lower repetition induces similar postactivation performance enhancement to repetition maximum after a single set of heavy-resistance exercise. J Strength Cond Res 38(5): 848-855, 2024-The study was divided into 2 parts to investigate the acute postactivation performance enhancement (PAPE) responses to lower repetitions at the same load of 87% 1 repetition maximum (1RM) in the upper and lower body. In part 1, 14 athletes performed plyometric push-up (PPU) after the conditioning activity (CA) of bench press (BP). In part 2, 13 athletes performed a countermovement jump (CMJ) after the CA of parallel squat (PS). Subjects completed 3, 4, or 5 repetitions (trials CA-3, CA-4, or CA-5) of BP or PS in randomized and counterbalanced order. The velocity of each movement of the trial was recorded. The PPU or CMJ was tested every 2 minutes after the trial up to 12 minutes to assess the Post-Max and optimal individual PAPE time. The mean velocity of the last movement of BP in CA-5 was significantly lower than that in CA-3 (0.23 ± 0.06 vs. 0.28 ± 0.06 m·second -1 , p < 0.05), and the velocity of PS in CA-4 or CA-5 was significantly lower than that in CA-3 (0.53 ± 0.07 and 0.50 ± 0.05 vs. 0.57 ± 0.07 m·second -1 , p < 0.05). The peak force of PPU and jump height of CMJ at Post-Max in the 3 trials were significantly greater than those at Pre ( p < 0.05). There were no significant differences among trials in the optimal individual PAPE times in either part of the study. A single set of 87% 1RM resistance exercises with 3 or 4 repetitions in both the upper body and the lower body induces similar PAPE to repetition maximum.
Collapse
Affiliation(s)
- Ching-Feei Chen
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan, Taiwan
- Office of General Affairs, University of Taipei, Taipei City, Taiwan; and
| | - Chih-Yuan Chuang
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Chia-Chi Wang
- Physical Education Office, National Taipei University of Business, Taipei, Taiwan
| | - Shin-An Liu
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Hui-Wen Chang
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Kuei-Hui Chan
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan, Taiwan
| |
Collapse
|
6
|
Behm DG, Granacher U, Warneke K, Aragão-Santos JC, Da Silva-Grigoletto ME, Konrad A. Minimalist Training: Is Lower Dosage or Intensity Resistance Training Effective to Improve Physical Fitness? A Narrative Review. Sports Med 2024; 54:289-302. [PMID: 37924459 PMCID: PMC10933173 DOI: 10.1007/s40279-023-01949-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Findings from original research, systematic reviews, and meta-analyses have demonstrated the effectiveness of resistance training (RT) on markers of performance and health. However, the literature is inconsistent with regards to the dosage effects (frequency, intensity, time, type) of RT to maximize training-induced improvements. This is most likely due to moderating factors such as age, sex, and training status. Moreover, individuals with limited time to exercise or who lack motivation to perform RT are interested in the least amount of RT to improve physical fitness. OBJECTIVES The objective of this review was to investigate and identify lower than typically recommended RT dosages (i.e., shorter durations, lower volumes, and intensity activities) that can improve fitness components such as muscle strength and endurance for sedentary individuals or beginners not meeting the minimal recommendation of exercise. METHODS Due to the broad research question involving different RT types, cohorts, and outcome measures (i.e., high heterogeneity), a narrative review was selected instead of a systematic meta-analysis approach. RESULTS It seems that one weekly RT session is sufficient to induce strength gains in RT beginners with < 3 sets and loads below 50% of one-repetition maximum (1RM). With regards to the number of repetitions, the literature is controversial and some authors report that repetition to failure is key to achieve optimal adaptations, while other authors report similar adaptations with fewer repetitions. Additionally, higher intensity or heavier loads tend to provide superior results. With regards to the RT type, multi-joint exercises induce similar or even larger effects than single-joint exercises. CONCLUSION The least amount of RT that can be performed to improve physical fitness for beginners for at least the first 12 weeks is one weekly session at intensities below 50% 1RM, with < 3 sets per multi-joint exercise.
Collapse
Affiliation(s)
- David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1C 5S7, Canada
| | - Urs Granacher
- Department of Sport and Sport Science Exercise and Human Movement Science, University of Freiburg, Freiburg, Germany
| | - Konstantin Warneke
- Institute for Exercise, Sport and Health, Leuphana University, Lüneburg, Germany
| | - Jose Carlos Aragão-Santos
- Department of Physical Education, Post Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Brazil
| | - Marzo Edir Da Silva-Grigoletto
- Department of Physical Education, Post Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Brazil
| | - Andreas Konrad
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1C 5S7, Canada.
- Institute of Human Movement Science, Sport and Health, Graz University, Graz, Austria.
| |
Collapse
|
7
|
Nuzzo JL, Pinto MD, Nosaka K, Steele J. Maximal Number of Repetitions at Percentages of the One Repetition Maximum: A Meta-Regression and Moderator Analysis of Sex, Age, Training Status, and Exercise. Sports Med 2024; 54:303-321. [PMID: 37792272 PMCID: PMC10933212 DOI: 10.1007/s40279-023-01937-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2023] [Indexed: 10/05/2023]
Abstract
The maximal number of repetitions that can be completed at various percentages of the one repetition maximum (1RM) [REPS ~ %1RM relationship] is foundational knowledge in resistance exercise programming. The current REPS ~ %1RM relationship is based on few studies and has not incorporated uncertainty into estimations or accounted for between-individuals variation. Therefore, we conducted a meta-regression to estimate the mean and between-individuals standard deviation of the number of repetitions that can be completed at various percentages of 1RM. We also explored if the REPS ~ %1RM relationship is moderated by sex, age, training status, and/or exercise. A total of 952 repetitions-to-failure tests, completed by 7289 individuals in 452 groups from 269 studies, were identified. Study groups were predominantly male (66%), healthy (97%), < 59 years of age (92%), and resistance trained (60%). The bench press (42%) and leg press (14%) were the most commonly studied exercises. The REPS ~ %1RM relationship for mean repetitions and standard deviation of repetitions were best described using natural cubic splines and a linear model, respectively, with mean and standard deviation for repetitions decreasing with increasing %1RM. More repetitions were evident in the leg press than bench press across the loading spectrum, thus separate REPS ~ %1RM tables were developed for these two exercises. Analysis of moderators suggested little influences of sex, age, or training status on the REPS ~ %1RM relationship, thus the general main model REPS ~ %1RM table can be applied to all individuals and to all exercises other than the bench press and leg press. More data are needed to develop REPS ~ %1RM tables for other exercises.
Collapse
Affiliation(s)
- James L Nuzzo
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia.
| | - Matheus D Pinto
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Kazunori Nosaka
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - James Steele
- School of Sport, Health, and Social Sciences, Solent University, Southampton, UK
| |
Collapse
|
8
|
Refalo MC, Helms ER, Robinson ZP, Hamilton DL, Fyfe JJ. Similar muscle hypertrophy following eight weeks of resistance training to momentary muscular failure or with repetitions-in-reserve in resistance-trained individuals. J Sports Sci 2024; 42:85-101. [PMID: 38393985 DOI: 10.1080/02640414.2024.2321021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
This study examined the influence of resistance training (RT) proximity-to-failure, determined by repetitions-in-reserve (RIR), on quadriceps hypertrophy and neuromuscular fatigue. Resistance-trained males (n = 12) and females (n = 6) completed an 8-week intervention involving two RT sessions per week. Lower limbs were randomised to perform the leg press and leg extension exercises either to i) momentary muscular failure (FAIL), or ii) a perceived 2-RIR and 1-RIR, respectively (RIR). Muscle thickness of the quadriceps [rectus femoris (RF) and vastus lateralis (VL)] and acute neuromuscular fatigue (i.e., repetition and lifting velocity loss) were assessed. Data was analysed with Bayesian linear mixed-effect models. Increases in quadriceps thickness (average of RF and VL) from pre- to post-intervention were similar for FAIL [0.181 cm (HDI: 0.119 to 0.243)] and RIR [0.182 cm (HDI: 0.115 to 0.247)]. Between-protocol differences in RF thickness slightly favoured RIR [-0.036 cm (HDI: -0.113 to 0.047)], but VL thickness slightly favoured FAIL [0.033 cm (HDI: -0.046 to 0.116)]. Mean volume was similar across the RT intervention between FAIL and RIR. Lifting velocity and repetition loss were consistently greater for FAIL versus RIR, with the magnitude of difference influenced by the exercise and the stage of the RT intervention.
Collapse
Affiliation(s)
- Martin C Refalo
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Eric R Helms
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
- Department of Exercise Science and Health Promotion, Muscle Physiology Laboratory, Florida Atlantic University, Boca Raton, FL, USA
| | - Zac P Robinson
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - D Lee Hamilton
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Jackson J Fyfe
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| |
Collapse
|
9
|
Refalo MC, Helms ER, Trexler ET, Hamilton DL, Fyfe JJ. Influence of Resistance Training Proximity-to-Failure on Skeletal Muscle Hypertrophy: A Systematic Review with Meta-analysis. Sports Med 2023; 53:649-665. [PMID: 36334240 PMCID: PMC9935748 DOI: 10.1007/s40279-022-01784-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND OBJECTIVE This systematic review with meta-analysis investigated the influence of resistance training proximity-to-failure on muscle hypertrophy. METHODS Literature searches in the PubMed, SCOPUS and SPORTDiscus databases identified a total of 15 studies that measured muscle hypertrophy (in healthy adults of any age and resistance training experience) and compared resistance training performed to: (A) momentary muscular failure versus non-failure; (B) set failure (defined as anything other than momentary muscular failure) versus non-failure; or (C) different velocity loss thresholds. RESULTS There was a trivial advantage for resistance training performed to set failure versus non-failure for muscle hypertrophy in studies applying any definition of set failure [effect size=0.19 (95% confidence interval 0.00, 0.37), p=0.045], with no moderating effect of volume load (p=0.884) or relative load (p=0.525). Given the variability in set failure definitions applied across studies, sub-group analyses were conducted and found no advantage for either resistance training performed to momentary muscular failure versus non-failure for muscle hypertrophy [effect size=0.12 (95% confidence interval -0.13, 0.37), p=0.343], or for resistance training performed to high (>25%) versus moderate (20-25%) velocity loss thresholds [effect size=0.08 (95% confidence interval -0.16, 0.32), p=0.529]. CONCLUSION Overall, our main findings suggest that (i) there is no evidence to support that resistance training performed to momentary muscular failure is superior to non-failure resistance training for muscle hypertrophy and (ii) higher velocity loss thresholds, and theoretically closer proximities-to-failure do not always elicit greater muscle hypertrophy. As such, these results provide evidence for a potential non-linear relationship between proximity-to-failure and muscle hypertrophy.
Collapse
Affiliation(s)
- Martin C Refalo
- Centre for Sport Research (CSR), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia.
| | - Eric R Helms
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | | | - D Lee Hamilton
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Jackson J Fyfe
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
10
|
Refalo MC, Helms ER, Hamilton DL, Fyfe JJ. Towards an improved understanding of proximity-to-failure in resistance training and its influence on skeletal muscle hypertrophy, neuromuscular fatigue, muscle damage, and perceived discomfort: A scoping review. J Sports Sci 2022; 40:1369-1391. [PMID: 35658845 DOI: 10.1080/02640414.2022.2080165] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
While proximity-to-failure is considered an important resistance training (RT) prescription variable, its influence on physiological adaptations and short-term responses to RT is uncertain. Given the ambiguity in the literature, a scoping review was undertaken to summarise evidence for the influence of proximity-to-failure on muscle hypertrophy, neuromuscular fatigue, muscle damage and perceived discomfort. Literature searching was performed according to PRISMA-ScR guidelines and identified three themes of studies comparing either: i) RT performed to momentary muscular failure versus non-failure, ii) RT performed to set failure (defined as anything other than momentary muscular failure) versus non-failure, and iii) RT performed to different velocity loss thresholds. The findings highlight that no consensus definition for "failure" exists in the literature, and the proximity-to-failure achieved in "non-failure" conditions is often ambiguous and variable across studies. This poses challenges when deriving practical recommendations for manipulating proximity-to-failure in RT to achieve desired outcomes. Based on the limited available evidence, RT to set failure is likely not superior to non-failure RT for inducing muscle hypertrophy, but may exacerbate neuromuscular fatigue, muscle damage, and post-set perceived discomfort versus non-failure RT. Together, these factors may impair post-exercise recovery and subsequent performance, and may also negatively influence long-term adherence to RT.KEY POINTS This scoping review identified three broad themes of studies investigating proximity-to-failure in RT, based on the specific definition of set failure used (and therefore the research question being examined), to improve the validity of study comparisons and interpretations.There is no consensus definition for set failure in RT, and the proximity-to-failure achieved during non-failure RT is often unclear and varies both within and between studies, which together poses challenges when interpreting study findings and deriving practical recommendations regarding the influence of RT proximity-to-failure on muscle hypertrophy and other short-term responses.Based on the limited available evidence, performing RT to set failure is likely not superior to non-failure RT to maximise muscle hypertrophy, but the optimal proximity to failure in RT for muscle hypertrophy is unclear and may be moderated by other RT variables (e.g., load, volume-load). Also, RT performed to set failure likely induces greater neuromuscular fatigue, muscle damage, and perceived discomfort than non-failure RT, which may negatively influence RT performance, post-RT recovery, and long-term adherence.
Collapse
Affiliation(s)
- Martin C Refalo
- Centre for Sport Research (CSR), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Eric R Helms
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - D Lee Hamilton
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, Australia
| | - Jackson J Fyfe
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, Australia
| |
Collapse
|