1
|
Pashayee-Khamene F, Heidari Z, Asbaghi O, Ashtary-Larky D, Goudarzi K, Forbes SC, Candow DG, Bagheri R, Ghanavati M, Dutheil F. Creatine supplementation protocols with or without training interventions on body composition: a GRADE-assessed systematic review and dose-response meta-analysis. J Int Soc Sports Nutr 2024; 21:2380058. [PMID: 39042054 PMCID: PMC11268231 DOI: 10.1080/15502783.2024.2380058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/02/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Despite the robust evidence demonstrating positive effects from creatine supplementation (primarily when associated with resistance training) on measures of body composition, there is a lack of a comprehensive evaluation regarding the influence of creatine protocol parameters (including dose and form) on body mass and estimates of fat-free and fat mass. METHODS Randomized controlled trials (RCTs) evaluating the effect of creatine supplementation on body composition were included. Electronic databases, including PubMed, Web of Science, and Scopus were searched up to July 2023. Heterogeneity tests were performed. Random effect models were assessed based on the heterogeneity tests, and pooled data were examined to determine the weighted mean difference (WMD) with a 95% confidence interval (CI). RESULTS From 4831 initial records, a total of 143 studies met the inclusion criteria. Creatine supplementation increased body mass (WMD: 0.86 kg; 95% CI: 0.76 to 0.96, I2 = 0%) and fat-free mass (WMD: 0.82 kg; 95% CI: 0.57 to 1.06, I2 = 0%) while reducing body fat percentage (WMD: -0.28 %; 95% CI: -0.47 to -0.09; I2 = 0%). Studies that incorporated a maintenance dose of creatine or performed resistance training in conjunction with supplementation had greater effects on body composition. CONCLUSION Creatine supplementation has a small effect on body mass and estimates of fat-free mass and body fat percentage. These findings were more robust when combined with resistance training.
Collapse
Affiliation(s)
| | - Zeinab Heidari
- Ahvaz Jundishapur University of Medical Sciences, Student research committee, Ahvaz, Iran
| | - Omid Asbaghi
- Shahid Beheshti University of Medical Sciences, Cancer Research Center, Tehran, Iran
| | - Damoon Ashtary-Larky
- Ahvaz Jundishapur University of Medical Sciences, Nutrition and Metabolic Diseases Research Center, Ahvaz, Iran
| | - Kian Goudarzi
- Shahid Beheshti University of Medical Sciences, Faculty of Medicine, Tehran, Iran
| | - Scott C Forbes
- Brandon University, Department of Physical Education Studies, Brandon, MB, Canada
| | - Darren G. Candow
- University of Regina, Faculty of Kinesiology and Health Studies, Regina, SK, Canada
| | - Reza Bagheri
- University of Isfahan, Department of Exercise Physiology, Isfahan, Iran
| | - Matin Ghanavati
- Shahid Beheshti University of Medical Sciences, National Nutrition and Food Technology Research Institute, (Faculty of Nutrition Science and Food Technology), Tehran, Iran
| | - Fred Dutheil
- University Hospital of Clermont–Ferrand, Université Clermont Auvergne, CNRS, LaPSCo, Physiological and Psychosocial Stress, CHU Clermont–Ferrand, Occupational and Environmental Medicine, Clermont–Ferrand, France
| |
Collapse
|
2
|
Nuzzo JL, Pinto MD, Nosaka K, Steele J. Maximal Number of Repetitions at Percentages of the One Repetition Maximum: A Meta-Regression and Moderator Analysis of Sex, Age, Training Status, and Exercise. Sports Med 2024; 54:303-321. [PMID: 37792272 PMCID: PMC10933212 DOI: 10.1007/s40279-023-01937-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2023] [Indexed: 10/05/2023]
Abstract
The maximal number of repetitions that can be completed at various percentages of the one repetition maximum (1RM) [REPS ~ %1RM relationship] is foundational knowledge in resistance exercise programming. The current REPS ~ %1RM relationship is based on few studies and has not incorporated uncertainty into estimations or accounted for between-individuals variation. Therefore, we conducted a meta-regression to estimate the mean and between-individuals standard deviation of the number of repetitions that can be completed at various percentages of 1RM. We also explored if the REPS ~ %1RM relationship is moderated by sex, age, training status, and/or exercise. A total of 952 repetitions-to-failure tests, completed by 7289 individuals in 452 groups from 269 studies, were identified. Study groups were predominantly male (66%), healthy (97%), < 59 years of age (92%), and resistance trained (60%). The bench press (42%) and leg press (14%) were the most commonly studied exercises. The REPS ~ %1RM relationship for mean repetitions and standard deviation of repetitions were best described using natural cubic splines and a linear model, respectively, with mean and standard deviation for repetitions decreasing with increasing %1RM. More repetitions were evident in the leg press than bench press across the loading spectrum, thus separate REPS ~ %1RM tables were developed for these two exercises. Analysis of moderators suggested little influences of sex, age, or training status on the REPS ~ %1RM relationship, thus the general main model REPS ~ %1RM table can be applied to all individuals and to all exercises other than the bench press and leg press. More data are needed to develop REPS ~ %1RM tables for other exercises.
Collapse
Affiliation(s)
- James L Nuzzo
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia.
| | - Matheus D Pinto
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Kazunori Nosaka
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - James Steele
- School of Sport, Health, and Social Sciences, Solent University, Southampton, UK
| |
Collapse
|
3
|
Anders JPV, Neltner TJ, Smith RW, Keller JL, Housh TJ, Daugherty FJ, Tempesta MS, Dash AK, Munt DJ, Schmidt RJ, Johnson GO. The effects of phosphocreatine disodium salts plus blueberry extract supplementation on muscular strength, power, and endurance. J Int Soc Sports Nutr 2021; 18:60. [PMID: 34503541 PMCID: PMC8427883 DOI: 10.1186/s12970-021-00456-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Numerous studies have demonstrated the efficacy of creatine supplementation for improvements in exercise performance. Few studies, however, have examined the effects of phosphocreatine supplementation on exercise performance. Furthermore, while polyphenols have antioxidant and anti-inflammatory properties, little is known regarding the influence of polyphenol supplementation on muscular strength, power, and endurance. Thus, the purpose of the present study was to compare the effects of 28 days of supplementation with phosphocreatine disodium salts plus blueberry extract (PCDSB), creatine monohydrate (CM), and placebo on measures of muscular strength, power, and endurance. METHODS Thirty-three men were randomly assigned to consume either PCDSB, CM, or placebo for 28 days. Peak torque (PT), average power (AP), and percent decline for peak torque (PT%) and average power (AP%) were assessed from a fatigue test consisting of 50 maximal, unilateral, isokinetic leg extensions at 180°·s- 1 before and after the 28 days of supplementation. Individual responses were assessed to examine the proportion of subjects that exceeded a minimal important difference (MID). RESULTS The results demonstrated significant (p < 0.05) improvements in PT for the PCDSB and CM groups from pre- (99.90 ± 22.47 N·m and 99.95 ± 22.50 N·m, respectively) to post-supplementation (119.22 ± 29.87 N·m and 111.97 ± 24.50 N·m, respectively), but no significant (p = 0.112) change for the placebo group. The PCDSB and CM groups also exhibited significant improvements in AP from pre- (140.18 ± 32.08 W and 143.42 ± 33.84 W, respectively) to post-supplementation (170.12 ± 42.68 W and 159.78 ± 31.20 W, respectively), but no significant (p = 0.279) change for the placebo group. A significantly (p < 0.05) greater proportion of subjects in the PCDSB group exceeded the MID for PT compared to the placebo group, but there were no significant (p > 0.05) differences in the proportion of subjects exceeding the MID between the CM and placebo groups or between the CM and PCDSB groups. CONCLUSIONS These findings indicated that for the group mean responses, 28 days of supplementation with both PCDSB and CM resulted in increases in PT and AP. The PCDSB, however, may have an advantage over CM when compared to the placebo group for the proportion of individuals that respond favorably to supplementation with meaningful increases in muscular strength.
Collapse
Affiliation(s)
- John Paul V Anders
- Department of Nutrition and Human Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA.
| | - Tyler J Neltner
- Department of Nutrition and Human Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA
| | - Robert W Smith
- Department of Nutrition and Human Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA
| | - Joshua L Keller
- Department of Health, Kinesiology and Sport, University of South Alabama, Mobile, AL, 36688, USA
| | - Terry J Housh
- Department of Nutrition and Human Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA
| | | | | | - Alekha K Dash
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Omaha, NE, 68178, USA
| | - Daniel J Munt
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Omaha, NE, 68178, USA
| | - Richard J Schmidt
- Department of Nutrition and Human Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA
| | - Glen O Johnson
- Department of Nutrition and Human Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA
| |
Collapse
|
4
|
Benton MJ, Spicher JM, McCormick S. Community-Based Survey Exploring Use of the Dietary Supplement Creatine by Adult Non-Athletes. Nutrients 2021; 13:nu13082529. [PMID: 34444689 PMCID: PMC8401943 DOI: 10.3390/nu13082529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
Creatine is classified as a “sports supplement”, but it also has health benefits. The purpose of this study was to assess use of creatine as a dietary supplement in adult non-athletes. Three hundred ninety-nine adults (19–89 years) completed an online survey. Among the respondents, 77% (n = 307) were regularly active, including participation in weightlifting (34%), running (34%), and cycling (21%). Twenty-eight percent (n = 111) reported use of creatine with an average dose of 6.4 ± 4.5 g. Daily creatine use was reported by 45%, and 38% reported using creatine 2–6 times weekly. Primary sources of information about creatine were trainers/coaches (29%), friends/family (32%), and internet (28%). Forty percent (n = 44) of creatine users were female. When compared by age, 46% of young, 32% of midlife, and 6% of old respondents reported creatine use with no differences in dose or frequency. Young and midlife respondents reported primarily trainers/coaches, friends/family, and internet as sources of information about creatine, but old respondents limited their sources to friends/family and fitness magazines. Although creatine is widely used by adult non-athletes who regularly exercise, dietitians and other healthcare providers are not the primary source of information. Fitness trainers can appropriately provide guidance and education regarding safe and effective use of creatine.
Collapse
|
5
|
Wax B, Kerksick CM, Jagim AR, Mayo JJ, Lyons BC, Kreider RB. Creatine for Exercise and Sports Performance, with Recovery Considerations for Healthy Populations. Nutrients 2021; 13:1915. [PMID: 34199588 PMCID: PMC8228369 DOI: 10.3390/nu13061915] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 02/06/2023] Open
Abstract
Creatine is one of the most studied and popular ergogenic aids for athletes and recreational weightlifters seeking to improve sport and exercise performance, augment exercise training adaptations, and mitigate recovery time. Studies consistently reveal that creatine supplementation exerts positive ergogenic effects on single and multiple bouts of short-duration, high-intensity exercise activities, in addition to potentiating exercise training adaptations. In this respect, supplementation consistently demonstrates the ability to enlarge the pool of intracellular creatine, leading to an amplification of the cell's ability to resynthesize adenosine triphosphate. This intracellular expansion is associated with several performance outcomes, including increases in maximal strength (low-speed strength), maximal work output, power production (high-speed strength), sprint performance, and fat-free mass. Additionally, creatine supplementation may speed up recovery time between bouts of intense exercise by mitigating muscle damage and promoting the faster recovery of lost force-production potential. Conversely, contradictory findings exist in the literature regarding the potential ergogenic benefits of creatine during intermittent and continuous endurance-type exercise, as well as in those athletic tasks where an increase in body mass may hinder enhanced performance. The purpose of this review was to summarize the existing literature surrounding the efficacy of creatine supplementation on exercise and sports performance, along with recovery factors in healthy populations.
Collapse
Affiliation(s)
- Benjamin Wax
- Applied Physiology Laboratory, Department of Kinesiology, Mississippi State University, Mississippi State, MS 39759, USA
| | - Chad M. Kerksick
- Exercise & Performance Nutrition Laboratory, College of Science, Technology, and Health, Lindenwood University, St. Charles, MO 63301, USA
| | - Andrew R. Jagim
- Sports Medicine, Mayo Clinic Health System, La Crosse, WI 54601, USA;
| | - Jerry J. Mayo
- Department of Nutrition and Family Sciences, University of Central Arkansas, Conway, AR 72035, USA;
| | - Brian C. Lyons
- Health, Kinesiology, and Sport Management Department, University of Wisconsin—Parkside, Kenosha, WI 53141, USA;
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
6
|
Nutrition and physical activity interventions for the general population with and without cardiometabolic risk: a scoping review. Public Health Nutr 2021; 24:4718-4736. [PMID: 34030758 DOI: 10.1017/s1368980021002184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The objective of this scoping review was to examine the research question: In the adults with or without cardiometabolic risk, what is the availability of literature examining interventions to improve or maintain nutrition and physical activity-related outcomes? Sub-topics included: (1) behaviour counseling or coaching from a dietitian/nutritionist or exercise practitioner, (2) mobile applications to improve nutrition and physical activity and (3) nutritional ergogenic aids. DESIGN The current study is a scoping review. A literature search of the Medline Complete, CINAHL Complete, Cochrane Database of Systematic Reviews and other databases was conducted to identify articles published in the English language from January 2005 until May 2020. Data were synthesised using bubble charts and heat maps. SETTING Out-patient, community and workplace. PARTICIPANTS Adults with or without cardiometabolic risk factors living in economically developed countries. RESULTS Searches resulted in 19 474 unique articles and 170 articles were included in this scoping review, including one guideline, thirty systematic reviews (SR), 134 randomised controlled trials and five non-randomised trials. Mobile applications (n 37) as well as ergogenic aids (n 87) have been addressed in several recent studies, including SR. While primary research has examined the effect of individual-level nutrition and physical activity counseling or coaching from a dietitian/nutritionist and/or exercise practitioner (n 48), interventions provided by these practitioners have not been recently synthesised in SR. CONCLUSION SR of behaviour counseling or coaching provided by a dietitian/nutritionist and/or exercise practitioner are needed and can inform practice for practitioners working with individuals who are healthy or have cardiometabolic risk.
Collapse
|
7
|
Fry AC, Parra ME, Cabarkapa D. Supplemental Creatine Modified With Polyethylene Glycol Effectively Loads Skeletal Muscle With Lower Doses. J Strength Cond Res 2021; 35:1256-1261. [PMID: 33900258 DOI: 10.1519/jsc.0000000000003906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Fry, AC, Parra, ME, and Cabarkapa, D. Supplemental creatine modified with polyethylene glycol effectively loads skeletal muscle with lower doses. J Strength Cond Res 35(5): 1256-1261, 2021-The purpose of this study was to compare the efficacy of skeletal muscle uptake of creatine monohydrate (Cr H2O) with that of creatine bound to polyethylene glycol (Cr PEG). Healthy men (X ± SE; age = 23.5 ± 1.0 years) were divided into control (Con, n = 9, 20 g·d-1 of Cr H2O) and experimental (Exp, n = 8, 10 g·d-1 of Cr PEG) groups. Blood samples and muscle biopsies were used to determine acute gastrointestinal absorption over 5 hours and muscle cellular uptake over 5 days. Both groups exhibited significantly (p < 0.05) elevated concentrations of muscle-free Cr (M·gdw-1; Con, pre = 23.0 ± 4.2, post = 39.2 ± 2.7; Exp pre = 22.1 ± 2.9, post = 33.6 ± 3.2), total Cr (M·gdw-1, Con pre = 94.7 ± 5.4, post = 114.8 ± 7.4; Exp pre = 92.6 ± 5.4, post = 106.6 ± 8.4), which were also elevated when these values were normalized for adenosine triphosphate using molar ratios. Circulatory uptake of Cr was significantly different between the groups, with blood concentrations (mg·dL-1) for the Con group peaking at 2 hours post-ingestion (25.99 ± 2.96), whereas the concentrations for the Exp group were lower and were still rising at 5 hours (4.05 ± 0.87). The integrated area under the curve for the 5-hour postingestion period was 7-fold greater for the Con group. Although total Cr ingested over the 5 days supplementation period was less for the Cr PEG group, skeletal muscle uptake of Cr PEG was similar to Cr H2O. Based on circulating Cr concentrations, it seems that Cr PEG is cleared more slowly from the gastrointestinal tract. Thus, lower dosages of Cr may be ingested while maintaining optimal loading kinetics.
Collapse
Affiliation(s)
- Andrew C Fry
- Jayhawk Athletic Performance Laboratory, Department of Health, Sport, and Exercise Sciences, University of Kansas, Lawrence, Kansas
| | - Mandy E Parra
- Department of Applied Health Sciences, Baker University, Baldwin City, Kansas
| | - Dimitrije Cabarkapa
- Jayhawk Athletic Performance Laboratory, Department of Health, Sport, and Exercise Sciences, University of Kansas, Lawrence, Kansas
| |
Collapse
|
8
|
Hummer E, Suprak DN, Buddhadev HH, Brilla L, San Juan JG. Creatine electrolyte supplement improves anaerobic power and strength: a randomized double-blind control study. J Int Soc Sports Nutr 2019; 16:24. [PMID: 31126306 PMCID: PMC6534934 DOI: 10.1186/s12970-019-0291-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/19/2019] [Indexed: 12/02/2022] Open
Abstract
Background Creatine supplementation aids the Phosphagen system by increasing the amount of free creatine and phosphocreatine available to replenish adenosine triphosphate. The purpose of this study was to investigate the effects of a creatine and electrolyte formulated multi-ingredient performance supplement (MIPS) on strength and power performance compared to a placebo. Maximal strength along with total concentric work, mean rate of force development (mRFD), mean power, peak power, and peak force for both bench press and back squat were determined at pre-test and post-test separated by 6 weeks of supplementation. Methods Twenty-two subjects (6 females, 21 ± 2 yrs., 72.46 ± 11.18 kg, 1.72 ± 0.09 m) performed a one-repetition maximum (1RM) for back squat and bench press. Eighty percent of the subject’s pre-test 1RM was used for a maximal repetition test to assess performance variables. Testing was separated by 6 weeks of supplementation of a MIPS dose per day in a double-blind fashion for comparison. A two-way mixed analysis of covariance (ANCOVA) was applied with an alpha level of 0.05. Results For their back squat 1RM, the MIPS group displayed significant increase of 13.4% (95% CI: 2.77, 23.8%) while placebo displayed a decrease of − 0.2% (95% CI: − 1.46, 2.87%) (p = 0.047, ηp2 = 0.201). The MIPS displayed a significant increase of 5.9% (95% CI: 2.5, 10.1%) and placebo displayed a non-significant increase of 0.7% (95% CI: − 3.49, 3.9%) in bench press maximal strength (p = 0.033,0.217). The MIPS group displayed a significant increase as well in total concentric work (26.5, 95% CI: 6.07, 46.87%, p = 0.008, ηp2 = 0.330) and mean power (17.9, 95% CI: 3.42, 32.46%, p = 0.003, ηp2 = 0.402) for the maximal repetition bench press test at 80% of their 1RM. Conclusions The MIPS was found to be beneficial to recreationally trained individuals compared to a placebo. The greatest benefits are seen in bench press and back squat maximal strength as well as multiple repetition tests to fatigue during the bench press exercise.
Collapse
Affiliation(s)
- Erik Hummer
- The University of Tennessee, 1914 Andy Holt Ave, Knoxville, TN, 37996, USA
| | - David N Suprak
- Western Washington University, 516 High St, Bellingham, WA, 98225-9067, USA
| | - Harsh H Buddhadev
- Western Washington University, 516 High St, Bellingham, WA, 98225-9067, USA
| | - Lorrie Brilla
- Western Washington University, 516 High St, Bellingham, WA, 98225-9067, USA.
| | - Jun G San Juan
- Western Washington University, 516 High St, Bellingham, WA, 98225-9067, USA
| |
Collapse
|
9
|
Effects of Low-Dose Creatine Monohydrate on Muscle Strength and Endurance. Asian J Sports Med 2018. [DOI: 10.5812/asjsm.62739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
10
|
Creatine Supplementation and Upper Limb Strength Performance: A Systematic Review and Meta-Analysis. Sports Med 2018; 47:163-173. [PMID: 27328852 DOI: 10.1007/s40279-016-0571-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Creatine is the most widely used supplementation to increase performance in strength; however, the most recent meta-analysis focused specifically on supplementation responses in muscles of the lower limbs without regard to upper limbs. OBJECTIVE We aimed to systematically review the effect of creatine supplementation on upper limb strength performance. METHODS We conducted a systematic review and meta-analyses of all randomized controlled trials comparing creatine supplementation with a placebo, with strength performance measured in exercises shorter than 3 min in duration. The search strategy used the keywords 'creatine', 'supplementation', and 'performance'. Independent variables were age, sex and level of physical activity at baseline, while dependent variables were creatine loading, total dose, duration, time interval between baseline (T0) and the end of the supplementation (T1), and any training during supplementation. We conducted three meta-analyses: at T0 and T1, and on changes between T0 and T1. Each meta-analysis was stratified within upper limb muscle groups. RESULTS We included 53 studies (563 individuals in the creatine supplementation group and 575 controls). Results did not differ at T0, while, at T1, the effect size (ES) for bench press and chest press were 0.265 (95 % CI 0.132-0.398; p < 0.001) and 0.677 (95 % CI 0.149-1.206; p = 0.012), respectively. Overall, pectoral ES was 0.289 (95 % CI 0.160-0.419; p = 0.000), and global upper limb ES was 0.317 (95 % CI 0.185-0.449; p < 0.001). Meta-analysis of changes between T0 and T1 gave similar results. The meta-regression showed no link with characteristics of population or supplementation, demonstrating the efficacy of creatine independently of all listed conditions. CONCLUSION Creatine supplementation is effective in upper limb strength performance for exercise with a duration of less than 3 min, independent of population characteristics, training protocols, and supplementary doses or duration.
Collapse
|
11
|
De Andrade Nemezio KM, Bertuzzi R, Correia-Oliveira CR, Gualano B, Bishop DJ, Lima-Silva AE. Effect of Creatine Loading on Oxygen Uptake during a 1-km Cycling Time Trial. Med Sci Sports Exerc 2016; 47:2660-8. [PMID: 26083771 DOI: 10.1249/mss.0000000000000718] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE For the first time, we investigated the effects of altering cellular metabolic capacitance, via a 5-d creatine (Cr) loading protocol (20 g·d⁻¹), on oxygen uptake (VO2), accumulated oxygen deficit, muscle recruitment, and performance during a 1-km cycling time trial. METHODS In a double-blind, randomized, placebo-controlled design, 19 amateur cyclists were allocated to a Cr (n = 10, VO2peak = 56.0 ± 7.8 mL·kg⁻¹·min⁻¹) or placebo (n = 9, VO2peak = 56.0 ± 8.4 mL·kg⁻¹·min⁻¹) group, and performed a 1-km cycling time trial before and after the supplementation period. RESULTS Body mass was significantly increased in the Cr group (P < 0.05), but not in the placebo group. Participants adopted an "all-out" pacing strategy in both groups. However, Cr loading reduced VO2 immediately after the beginning (12th to 23th seconds), and this was accompanied by a reduced aerobic and increased anaerobic contribution. The VO2 mean response time was slower (pre: 17.2 ± 5.6 s vs post: 19.9 ± 4.6 s), the total O2 uptake was reduced (pre: 4.64 ± 0.59 L vs post: 4.47 ± 0.53 L), and the oxygen deficit was increased (pre: 0.82 ± 0.27 L vs post: 0.98 ± 0.25 L) after Cr loading. No differences were observed in the placebo group for these variables. Plasma lactate and integrated electromyography were not altered in either group, nor was the time to complete the trial (Cr group: pre: 89.1 ± 6.7 s vs post 89.1 ± 6.2 s and placebo group: pre 85.9 ± 4.9 s vs post 87.0 ± 5.4 s). CONCLUSION Cr loading slows the V˙O2 response and increases the anaerobic contribution during a 1-km cycling time trial.
Collapse
Affiliation(s)
- Kleiner Marcio De Andrade Nemezio
- 1Sports Science Research Group, Department of Physical Education and Sports Science CAV, Federal University of Pernambuco, BRAZIL; 2Endurance Performance Research Group, School of Physical Education and Sport, University of São Paulo, São Paulo, BRAZIL; 3School of Physical Education and Sport, University of São Paulo, BRAZIL; 4Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, AUSTRALIA
| | | | | | | | | | | |
Collapse
|
12
|
Lanhers C, Pereira B, Naughton G, Trousselard M, Lesage FX, Dutheil F. Creatine Supplementation and Lower Limb Strength Performance: A Systematic Review and Meta-Analyses. Sports Med 2016; 45:1285-1294. [PMID: 25946994 DOI: 10.1007/s40279-015-0337-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Creatine is the most widely used supplementation to increase strength performance. However, the few meta-analyses are more than 10 years old and suffer from inclusion bias such as the absence of randomization and placebo, the diversity of the inclusion criteria (aerobic/endurance, anaerobic/strength), no evaluation on specific muscles or group of muscles, and the considerable amount of conflicting results within the last decade. OBJECTIVE The objective of this systematic review was to evaluate meta-analyzed effects of creatine supplementation on lower limb strength performance. METHODS We conducted a systematic review and meta-analyses of all randomized controlled trials comparing creatine supplementation with a placebo, with strength performance of the lower limbs measured in exercises lasting less than 3 min. The search strategy used the keywords "creatine supplementation" and "performance". Dependent variables were creatine loading, total dose, duration, the time-intervals between baseline (T0) and the end of the supplementation (T1), as well as any training during supplementation. Independent variables were age, sex, and level of physical activity at baseline. We conducted meta-analyses at T1, and on changes between T0 and T1. Each meta-analysis was stratified within lower limb muscle groups and exercise tests. RESULTS We included 60 studies (646 individuals in the creatine supplementation group and 651 controls). At T1, the effect size (ES) among stratification for squat and leg press were, respectively, 0.336 (95 % CI 0.047-0.625, p = 0.023) and 0.297 (95 % CI 0.098-0.496, p = 0.003). Overall quadriceps ES was 0.266 (95 % CI 0.150-0.381, p < 0.001). Global lower limb ES was 0.235 (95 % CI 0.125-0.346, p < 0.001). Meta-analysis on changes between T0 and T1 gave similar results. The meta-regression showed no links with characteristics of population or of supplementation, demonstrating the creatine efficacy effects, independent of all listed conditions. CONCLUSION Creatine supplementation is effective in lower limb strength performance for exercise with a duration of less than 3 min, independent of population characteristic, training protocols, and supplementary doses and duration.
Collapse
Affiliation(s)
- Charlotte Lanhers
- Preventive and Occupational Medicine, University Hospital of Clermont-Ferrand (CHU), 58 rue Montalembert, Clermont-Ferrand, France
| | - Bruno Pereira
- Clinical research and innovation direction, University Hospital of Clermont-Ferrand (CHU), Clermont-Ferrand, France
| | - Geraldine Naughton
- School of Exercise Science, Australian Catholic University, Melbourne, VIC, Australia
| | - Marion Trousselard
- Neurophysiology of stress, Armies' Biomedical Research Institute, Armies' Health Service, Bretigny sur Orge, France
| | | | - Frédéric Dutheil
- School of Exercise Science, Australian Catholic University, Melbourne, VIC, Australia. .,Preventive and Occupational Medicine, University Hospital of Clermont-Ferrand (CHU), 58 rue Montalembert, Clermont-Ferrand, France. .,Laboratory of Metabolic Adaptations to Exercise in Physiological and Pathological Conditions EA3533, Blaise Pascal University, Clermont-Ferrand, France. .,Research Centre in Human Nutrition (CRNH) Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
13
|
Camic CL, Housh TJ, Zuniga JM, Traylor DA, Bergstrom HC, Schmidt RJ, Johnson GO, Housh DJ. The effects of polyethylene glycosylated creatine supplementation on anaerobic performance measures and body composition. J Strength Cond Res 2014; 28:825-33. [PMID: 23897021 DOI: 10.1519/jsc.0b013e3182a361a5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The purpose of this study was to examine the effects of 28 days of polyethylene glycosylated creatine (PEG-creatine) supplementation (1.25 and 2.50 g·d) on anaerobic performance measures (vertical and broad jumps, 40-yard dash, 20-yard shuttle run, and 3-cone drill), upper- and lower-body muscular strength and endurance (bench press and leg extension), and body composition. This study used a randomized, double-blind, placebo-controlled parallel design. Seventy-seven adult men (mean age ± SD, 22.1 ± 2.5 years; body mass, 81.7 ± 10.8 kg) volunteered to participate and were randomly assigned to a placebo (n = 23), 1.25 g·d of PEG-creatine (n = 27), or 2.50 g·d of PEG-creatine (n = 27) group. The subjects performed anaerobic performance measures, muscular strength (one-repetition maximum [1RM]), and endurance (80% 1RM) tests for bench press and leg extension, and underwater weighing for the determination of body composition at day 0 (baseline), day 14, and day 28. The results indicated that there were improvements (p < 0.0167) in vertical jump, 20-yard shuttle run, 3-cone drill, muscular endurance for bench press, and body mass for at least one of the PEG-creatine groups without changes for the placebo group. Thus, the present results demonstrated that PEG-creatine supplementation at 1.25 or 2.50 g·d had an ergogenic effect on lower-body vertical power, agility, change-of-direction ability, upper-body muscular endurance, and body mass.
Collapse
Affiliation(s)
- Clayton L Camic
- 1Department of Exercise and Sport Science, Human Performance Laboratory, University of Wisconsin-La Crosse, La Crosse, Wisconsin; 2Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska; 3Department of Exercise Science, Creighton University, Omaha, Nebraska; and 4Department of Oral Biology, University of Nebraska Medical Center, Lincoln, Nebraska
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Herda AA, Herda TJ, Costa PB, Ryan ED, Stout JR, Cramer JT. Muscle performance, size, and safety responses after eight weeks of resistance training and protein supplementation: a randomized, double-blinded, placebo-controlled clinical trial. J Strength Cond Res 2014; 27:3091-100. [PMID: 23442287 DOI: 10.1519/jsc.0b013e31828c289f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The purpose of this study was to examine the effects of 2 different types of protein supplementation on thigh muscle cross-sectional area (CSA), blood markers, muscular strength, endurance, and body composition after 8 weeks of low- or moderate-volume resistance training in healthy, recreationally trained, college-aged men. One hundred and six men were randomized into 5 groups: low-volume resistance training with bioenhanced whey protein (BWPLV; n = 22), moderate-volume resistance training with BWP (BWPMV; n = 20), moderate-volume resistance training with standard whey protein (SWPMV; n = 22), moderate-volume resistance training with a placebo (PLA; n = 21), or moderate-volume resistance training with no supplementation (CON; n = 21). Except for CON, all groups consumed 1 shake before and after each exercise session and one each on the nontraining day. The BWPLV, BWPMV, and SWPMV groups received approximately 20 g of whey protein per shake, whereas the BWP groups received 5 g of additional polyethylene glycosylated (PEG) leucine. Resistance training sessions were performed 3 times per week for 8 weeks. There were no interactions (p > 0.05) for muscle strength and endurance variables, body composition, muscle CSA, and safety blood markers, but the main effects for training were observed (p ≤ 0.05). However, the Albumin:Globulin ratio for SWPMV was lower (p = 0.037) than BWPLV and BWPMV. Relative protein intake (PROREL) indicated a significant interaction (p < 0.001) with no differences across groups at pre; however, BWPLV, BWPMV, and SWPMV had a greater intake than did PLA or CON at post (p < 0.001). This study indicated that 8 weeks of resistance training improved muscle performance and size similarly among groups regardless of supplementation.
Collapse
Affiliation(s)
- Ashley A Herda
- 1Department of Ophthalmology, KU Eye, University of Kansas Medical Center, Prairie Village, Kansas; 2Department of Health, Sport, and Exercise Sciences, Biomechanics Laboratory, University of Kansas, Lawrence, Kansas; 3Department of Kinesiology, Human Performance Laboratory, California State University-San Bernardino, San Bernardino, California; 4Department of Exercise and Sport Science, Neuromuscular Research Laboratory, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina; 5Department of Sport and Exercise Science, University of Central Florida, Orlando, Florida; and 6Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska
| | | | | | | | | | | |
Collapse
|
15
|
Cooper R, Naclerio F, Allgrove J, Jimenez A. Creatine supplementation with specific view to exercise/sports performance: an update. J Int Soc Sports Nutr 2012; 9:33. [PMID: 22817979 PMCID: PMC3407788 DOI: 10.1186/1550-2783-9-33] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 07/20/2012] [Indexed: 11/23/2022] Open
Abstract
Creatine is one of the most popular and widely researched natural supplements. The majority of studies have focused on the effects of creatine monohydrate on performance and health; however, many other forms of creatine exist and are commercially available in the sports nutrition/supplement market. Regardless of the form, supplementation with creatine has regularly shown to increase strength, fat free mass, and muscle morphology with concurrent heavy resistance training more than resistance training alone. Creatine may be of benefit in other modes of exercise such as high-intensity sprints or endurance training. However, it appears that the effects of creatine diminish as the length of time spent exercising increases. Even though not all individuals respond similarly to creatine supplementation, it is generally accepted that its supplementation increases creatine storage and promotes a faster regeneration of adenosine triphosphate between high intensity exercises. These improved outcomes will increase performance and promote greater training adaptations. More recent research suggests that creatine supplementation in amounts of 0.1 g/kg of body weight combined with resistance training improves training adaptations at a cellular and sub-cellular level. Finally, although presently ingesting creatine as an oral supplement is considered safe and ethical, the perception of safety cannot be guaranteed, especially when administered for long period of time to different populations (athletes, sedentary, patient, active, young or elderly).
Collapse
Affiliation(s)
- Robert Cooper
- Centre for Sports Science and Human Performance, School of Science, University of Greenwich at Medway, Central Avenue, Chatham Maritime, Kent, ME4 4TB, United Kingdom.
| | | | | | | |
Collapse
|
16
|
Zuniga JM, Housh TJ, Camic CL, Hendrix CR, Mielke M, Johnson GO, Housh DJ, Schmidt RJ. The Effects of Creatine Monohydrate Loading on Anaerobic Performance and One-Repetition Maximum Strength. J Strength Cond Res 2012; 26:1651-6. [DOI: 10.1519/jsc.0b013e318234eba1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
|
18
|
Sobolewski EJ, Thompson BJ, Smith AE, Ryan ED. The Physiological Effects of Creatine Supplementation on Hydration: A Review. Am J Lifestyle Med 2011. [DOI: 10.1177/1559827611406071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In 1992, Harris and colleagues demonstrated that oral creatine supplementation can enhance muscle creatine stores. Since then, creatine has become an important and popular ergogenic aid for improving athletic performance with reports of up to 74% of athletes supplementing with creatine. Although many recent studies have addressed the safety concerns of creatine supplementation on hydration status in hot and humid environments, anecdotal reports still exist linking creatine usage to heat-related problems. These concerns are based on the premise that creatine is an osmotically active substance resulting in an alteration in fluid balance by increasing intracellular fluid volume and preventing fluid from entering the extracellular environment to aid in thermoregulation. However, a number studies have demonstrated that when recommended amounts of creatine are consumed, creatine does not appear to increase the risk of heat-related problems during exercise and may actually have a positive influence on core temperature and heart rate responses.
Collapse
Affiliation(s)
- Eric J. Sobolewski
- Department of Health and Human Performance, Oklahoma State University, Stillwater, Oklahoma
| | - Brennan J. Thompson
- Department of Health and Human Performance, Oklahoma State University, Stillwater, Oklahoma
| | - Abbie E. Smith
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina,
| | - Eric D. Ryan
- Department of Health and Human Performance, Oklahoma State University, Stillwater, Oklahoma
| |
Collapse
|
19
|
Low-dose creatine supplementation enhances fatigue resistance in the absence of weight gain. Nutrition 2011; 27:451-5. [DOI: 10.1016/j.nut.2010.04.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 04/07/2010] [Accepted: 04/07/2010] [Indexed: 11/20/2022]
|
20
|
Camic CL, Hendrix CR, Housh TJ, Zuniga JM, Mielke M, Johnson GO, Schmidt RJ, Housh DJ. The effects of polyethylene glycosylated creatine supplementation on muscular strength and power. J Strength Cond Res 2011; 24:3343-51. [PMID: 21068676 DOI: 10.1519/jsc.0b013e3181fc5c5c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The purpose of the present investigation was to examine the effects of 28 days of polyethylene glycosylated creatine (PEG-creatine) supplementation on 1-repetition maximum bench press (1RMBP) and leg extension (1RMLE), mean power (MP), and peak power (PP) from the Wingate Anaerobic test and body weight (BW). This study used a randomized, double-blind, placebo-controlled, parallel design. Twenty-two untrained men (mean age ± SD = 22.1 ± 2.1 years) were randomly assigned to either a Creatine (n = 10) or Placebo (n = 12) group. The Creatine group ingested PEG-creatine (5 g·d), whereas the Placebo group ingested maltodextrin powder (5 g·d). All subjects performed bench press and bilateral leg extension exercises to determine their 1RM values, and 2 consecutive Wingate Anaerobic Tests (separated by 7 minutes) on a cycle ergometer to determine MP and PP before supplementation (day 0) and after 7 (day 7) and 28 (day 28) days of supplementation. The results indicated that there was a significant (p < 0.05) increase in 1RMBP between days 0 and 28 for the Creatine group but not for the Placebo group. There were no significant changes, however, in 1RMLE, MP, PP, or BW for the Creatine or Placebo group. These findings indicated that 28 days of PEG-creatine supplementation without resistance training increased upper body strength but not lower body strength or muscular power. These findings supported the use of the PEG-creatine supplement for increasing 1RMBP strength in untrained individuals.
Collapse
Affiliation(s)
- Clayton L Camic
- Department of Nutrition and Health Sciences, Human Performance Laboratory, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Camic CL, Housh TJ, Mielke M, Zuniga JM, Hendrix CR, Johnson GO, Schmidt RJ, Housh DJ. The effects of 4 weeks of an arginine-based supplement on the gas exchange threshold and peak oxygen uptake. Appl Physiol Nutr Metab 2010; 35:286-93. [DOI: 10.1139/h10-019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of the present study was to examine the effects of the daily administration of an arginine-based supplement for 4 weeks on the gas exchange threshold (GET) and peak oxygen uptake. The study used a double-blind, placebo-controlled design. Forty-one college-aged males (mean age ± SD = 22.1 ± 2.4 years) were randomized into either the PLACEBO (n = 20) or ARGININE (n = 21) group. The placebo was microcrystalline cellulose. The ARGININE group ingested 3.0 g of arginine, 300 mg of grape seed extract, and 300 mg of polyethylene glycol. All subjects performed an incremental test to exhaustion on a cycle ergometer prior to supplementation (PRE) and after 4 weeks of supplementation (POST). The GET was determined by using the V-slope method of the carbon dioxide output vs. oxygen uptake relationship. The results indicated that there were significant mean increases (PRE to POST) in GET (4.1%), as well as in carbon dioxide output (4.3%) and power output (5.4%) at the GET for the ARGININE group, but no significant changes for the PLACEBO group (2.5%, 4.3%, and 3.9%, respectively). In addition, there were no significant changes in peak oxygen uptake for the ARGININE (–1.0%) or PLACEBO (–1.5%) groups. These findings supported the use of the arginine-based supplement for increasing GET and the associated power output, but not for increasing peak oxygen uptake during cycle ergometry.
Collapse
Affiliation(s)
- Clayton L. Camic
- Department of Nutrition and Health Sciences, Human Performance Laboratory, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Department of Sport Sciences, University of the Pacific, Stockton, CA 95211, USA
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583, USA
| | - Terry J. Housh
- Department of Nutrition and Health Sciences, Human Performance Laboratory, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Department of Sport Sciences, University of the Pacific, Stockton, CA 95211, USA
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583, USA
| | - Michelle Mielke
- Department of Nutrition and Health Sciences, Human Performance Laboratory, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Department of Sport Sciences, University of the Pacific, Stockton, CA 95211, USA
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583, USA
| | - Jorge M. Zuniga
- Department of Nutrition and Health Sciences, Human Performance Laboratory, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Department of Sport Sciences, University of the Pacific, Stockton, CA 95211, USA
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583, USA
| | - C. Russell Hendrix
- Department of Nutrition and Health Sciences, Human Performance Laboratory, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Department of Sport Sciences, University of the Pacific, Stockton, CA 95211, USA
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583, USA
| | - Glen O. Johnson
- Department of Nutrition and Health Sciences, Human Performance Laboratory, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Department of Sport Sciences, University of the Pacific, Stockton, CA 95211, USA
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583, USA
| | - Richard J. Schmidt
- Department of Nutrition and Health Sciences, Human Performance Laboratory, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Department of Sport Sciences, University of the Pacific, Stockton, CA 95211, USA
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583, USA
| | - Dona J. Housh
- Department of Nutrition and Health Sciences, Human Performance Laboratory, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Department of Sport Sciences, University of the Pacific, Stockton, CA 95211, USA
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583, USA
| |
Collapse
|
22
|
Camic CL, Housh TJ, Zuniga JM, Hendrix RC, Mielke M, Johnson GO, Schmidt RJ. Effects of Arginine-Based Supplements on the Physical Working Capacity at the Fatigue Threshold. J Strength Cond Res 2010; 24:1306-12. [DOI: 10.1519/jsc.0b013e3181d68816] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|