1
|
Luo A, Liu H, Huang C, Wei S. Exosome-transmitted circular RNA circ-LMO7 facilitates the progression of osteosarcoma by regulating miR-21-5p/ARHGAP24 axis. Cancer Biol Ther 2024; 25:2343450. [PMID: 38742566 PMCID: PMC11095575 DOI: 10.1080/15384047.2024.2343450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
The potential function and mechanism of circRNAs in regulating malignant performances of Osteosarcoma (OS) cells have not been well investigated. The expression level of CircLMO7, miR-21-5p and ARHGAP24 were detected by RT-qPCR. The relationship between miR-21-5p and circ-LMO7, as well as between miR-21-5p and ARHGAP24, was predicted and examined through bioinformatics analysis and luciferase reporter gene experiments. Moreover, OS cell growth, invasion, migration, and apoptosis were detected using the cell counting kit-8 (CCK-8), transwell and flow cytometry assays, respectively. ARHGAP24 protein level was measured using western blotting. In present study, we choose to investigate the role and mechanism of circ-LOM7 on OS cell proliferation, migration and invasion. circ-LOM7 was found to be down-regulated in OS tissues and cell lines. Enforced expression of circ-LOM7 suppressed the growth, invasion, and migration of OS cells. In contrast, decreasing circ-LMO7 expression had opposite effects. Furthermore, miR-21-5p was predicted to be sponged by circ-LMO7, and had an opposite role of circ-LMO7 in OS. Moreover, ARHGAP24 served as miR-21-5p's downstream target. Mechanistically, circ-LMO7 was packed in exosomes and acted as a cancer-suppresser on OS by sponging miR-21-5p and upregulating the expression of ARHGAP24. The exosomal circ-LMO7 expression was significantly decreased in OS cell exosomes, and co-culture experiments showed that exosomal circ-LMO7 suppressed the proliferation ability of OS cells. Circ-LMO7 exerts as a tumor suppressor in OS, and the circ-LMO7/miR-21-5P/ARHGAP24 axis is involved in OS progression.
Collapse
Affiliation(s)
- Anyu Luo
- Department of Orthopedics, Hanyang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Hanlin Liu
- Department of Orthopedics, Hanyang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Chen Huang
- Department of Orthopedics, Hanyang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Sheng Wei
- Department of Orthopedics, Hanyang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Zhang J, Luo X, Guo C, Dai Z, Tang X, Zhang F, Jiao Q, Lin S, Zou L, Zhang Z, Lv XB. LncRNA GClnc1 promotes osteosarcoma progression by stabilizing NONO and blocking FBXW7-mediated ubiquitination. BMC Cancer 2024; 24:1375. [PMID: 39523321 PMCID: PMC11552323 DOI: 10.1186/s12885-024-13138-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Long non-coding RNA (lncRNA) plays a vital role in the occurrence and development of varieties of tumors. Previous studies have shown that lncRNA GClnc1 is highly expressed in osteosarcoma (OS). However, the mechanism of lncRNA GClnc1 in osteosarcoma has not been fully elucidated. In this study, we investigated the biological roles of lncRNA GClnc1 in osteosarcoma and unveiled its underlying mechanisms. METHODS The expression of lncRNA GClnc1 in OS cells was detected by real-time quantitative PCR (qRT-PCR). The functional roles of lncRNA GClnc1 were examined by CCK8, trans-well, scratch wound healing assay, colony formation, and apoptosis assays in osteosarcoma cells upon silencing or overexpressing GClnc1. Western blot analysis, qRT-PCR, and RNA co-immunoprecipitation (RIP) assays were used to detect the interaction between lncRNA GClnc1 and NONO. RESULTS The expression of lncRNA GClnc1 was up-regulated in osteosarcoma cell lines. Knockdown of lncRNA GClnc1 suppressed the cell growth, migration, and invasion of OS cells, whereas the over-expression of GClnc1 improved the proliferation, migration, and invasion of OS cells. Mechanistically, we identified that lncRNA GClnc1 regulates the stability of NONO by blocking FBXW7-mediated ubiquitination degradation. Additionally, overexpression of NONO can reverse GClnc1 silencing exerted suppression of the cell proliferation, migration, and invasion, and vice versa. CONCLUSIONS Our study elucidated that lncRNA GClnc1 participates in the progression of OS by regulating the NONO signal pathway. Targeting GClnc1 provides a potential target for future clinical treatment of OS.
Collapse
Affiliation(s)
- Jiongfeng Zhang
- Jiangxi Key Laboratory of Oncology, The Central Lab of The First Hospital of Nanchang, The Third Affiliated Hospital, Jiangxi Medical College, Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, China
- Department of Orthopedics, Nanchang Key Laboratory of Orthopaedics, The First Hospital of Nanchang, The Third Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330008, China
| | - Xiaohui Luo
- Jiangxi Key Laboratory of Oncology, The Central Lab of The First Hospital of Nanchang, The Third Affiliated Hospital, Jiangxi Medical College, Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, China
- Department of Orthopedics, Nanchang Key Laboratory of Orthopaedics, The First Hospital of Nanchang, The Third Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330008, China
| | - Chong Guo
- Jiangxi Key Laboratory of Oncology, The Central Lab of The First Hospital of Nanchang, The Third Affiliated Hospital, Jiangxi Medical College, Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, China
- Department of Orthopedics, Nanchang Key Laboratory of Orthopaedics, The First Hospital of Nanchang, The Third Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330008, China
| | - Zhengzai Dai
- Jiangxi Key Laboratory of Oncology, The Central Lab of The First Hospital of Nanchang, The Third Affiliated Hospital, Jiangxi Medical College, Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, China
| | - Xiaofeng Tang
- Department of Orthopedics, Nanchang Key Laboratory of Orthopaedics, The First Hospital of Nanchang, The Third Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330008, China
| | - Feifei Zhang
- Department of Orthopedics, Nanchang Key Laboratory of Orthopaedics, The First Hospital of Nanchang, The Third Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330008, China
| | - Quanhui Jiao
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Shifan Lin
- Jiangxi Key Laboratory of Oncology, The Central Lab of The First Hospital of Nanchang, The Third Affiliated Hospital, Jiangxi Medical College, Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, China
| | - Le Zou
- Jiangxi Key Laboratory of Oncology, The Central Lab of The First Hospital of Nanchang, The Third Affiliated Hospital, Jiangxi Medical College, Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, China
| | - Zhiping Zhang
- Jiangxi Key Laboratory of Oncology, The Central Lab of The First Hospital of Nanchang, The Third Affiliated Hospital, Jiangxi Medical College, Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, China.
| | - Xiao-Bin Lv
- Department of Orthopedics, Nanchang Key Laboratory of Orthopaedics, The First Hospital of Nanchang, The Third Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330008, China.
| |
Collapse
|
3
|
Liu Z, Cheng L, Cao W, Shen C, Qiu Y, Li C, Xiong Y, Yang SB, Chen Z, Yin X, Zhang X. Present and future use of exosomes containing proteins and RNAs in neurodegenerative diseases for synaptic function regulation: A comprehensive review. Int J Biol Macromol 2024; 280:135826. [PMID: 39322147 DOI: 10.1016/j.ijbiomac.2024.135826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Neurodegenerative diseases (NDDs) are increasingly prevalent with global aging, demanding effective treatments. Exosomes, which contain biological macromolecules such as RNA (including miRNAs) and proteins like α-synuclein, tau, and amyloid-beta, are gaining attention as innovative therapeutics. This comprehensive review systematically explores the potential roles of exosomes in NDDs, with a particular focus on their role in synaptic dysfunction. We present the synaptic pathophysiology of NDDs and discuss the mechanisms of exosome formation, secretion, and action. Subsequently, we review the roles of exosomes in different types of NDDs, such as Alzheimer's disease and Parkinson's disease, with a special focus on their regulation of synaptic function. In addition, we explore the potential use of exosomes as biomarkers, as well as the challenges and opportunities in their clinical application. We provide perspectives on future research directions and development trends to provide a more comprehensive understanding of and guidance for the application of exosomes in the treatment of NDDs. In conclusion, exosomes rich in biological macromolecules, as a novel therapeutic strategy, have opened up new possibilities for the treatment of NDDs and brought new hope to patients.
Collapse
Affiliation(s)
- Ziying Liu
- Department of Pathology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Lin Cheng
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Wa Cao
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Respiratory Medicine, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Chunxiao Shen
- Department of Pathology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Yuemin Qiu
- Department of Pathology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Chuan Li
- Department of Pathology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Yinyi Xiong
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Rehabilitation, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Seung Bum Yang
- Department of Medical Non-commissioned Officer, Wonkwang Health Science University Iksan-si, Jeollabuk-do 54538, South Korea
| | - Zhiying Chen
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China.
| | - Xiaoping Yin
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China.
| | - Xiaorong Zhang
- Department of Pathology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China.
| |
Collapse
|
4
|
Shu J, Jiang L, Wang R, Wang M, Peng Y, Zhu L, Gao C, Xia Z. Exosomal MiR-653-3p Alleviates Hypoxic-Ischemic Brain Damage via the TRIM21/p62/Nrf2/CYLD Axis. Mol Neurobiol 2024:10.1007/s12035-024-04507-8. [PMID: 39298103 DOI: 10.1007/s12035-024-04507-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/14/2024] [Indexed: 09/21/2024]
Abstract
Hypoxic-ischemic brain damage (HIBD) is the main risk factor for preterm infants' brain injury. Exosomes originating from bone marrow mesenchymal stem cells (BMSCs) have a protective effect against hypoxic-ischemic conditions. However, it remains to be elucidated whether exosome carrying miR-653-3p released by BMSC exerts specific functions in HIBD. Based on the analyses of high-throughput miRNA sequencing and RT-qPCR data, the low expression of miR-653-3p was identified in HIBD rats and oxygen-glucose deprivation (OGD)-induced BMSCs and HMC3 cells. In vitro functional experiments indicated that exosomal miR-653-3p derived from BMSC alleviated OGD-induced HMC3 cell damage. Mechanistically, miR-653-3p targeted TRIM21, regulating p62 ubiquitination to modulate the activity of Keap1/Nrf2 pathway. Furthermore, Nrf2 transcriptionally activated CYLD to inhibit the NF-κB pathway in HIBD. Rescue experiments verified that miR-653-3p could mitigate OGD-induced HMC3 cellular injury through CYLD. Finally, in vivo animal experiments validated the alleviation of HIBD in model rats treated with BMSC-derived miR-653-3p. Our study demonstrated that exosomal miR-653-3p from BMSC alleviates HIBD by inactivating the NF-κB pathway through the TRIM21/p62/Nrf2/CYLD axis.
Collapse
Affiliation(s)
- Jiaping Shu
- Department of Pediatrics, School of Medicine, Southeast University, Nanjing, China
| | - Li Jiang
- Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Ren Wang
- Department of Pediatrics, Jinling Hospital, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Meiqiu Wang
- Department of Pediatrics, Jinling Hospital, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Yingchao Peng
- Department of Pediatrics, Jinling Hospital, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Lihua Zhu
- Jiangsu Health Vocational College, 69 Huangshanling Road, Pukou District, Nanjing, China
| | - Chunlin Gao
- Department of Pediatrics, Jinling Hospital, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Zhengkun Xia
- Department of Pediatrics, School of Medicine, Southeast University, Nanjing, China.
| |
Collapse
|
5
|
Nedaeinia R, Najafgholian S, Salehi R, Goli M, Ranjbar M, Nickho H, Haghjooy Javanmard S, A Ferns G, Manian M. The role of cancer-associated fibroblasts and exosomal miRNAs-mediated intercellular communication in the tumor microenvironment and the biology of carcinogenesis: a systematic review. Cell Death Discov 2024; 10:380. [PMID: 39187523 PMCID: PMC11347635 DOI: 10.1038/s41420-024-02146-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/24/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
CAFs (cancer-associated fibroblasts) are highly flexible cells of the cancer microenvironment. They produce the extracellular matrix (ECM) constituents that form the structure of the tumor stroma but are also a source of metabolites, growth factors, chemokines, and exosomes that impact every aspect of the tumor, including its response to treatment. It is believed that exosomal miRNAs facilitate intercellular signaling, which is essential for the development of cancer. The role of miRNAs and CAFs in the tumor microenvironment (TME) and carcinogenesis is reviewed in this paper. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) 2020 guidelines were used to perform a systematic review. Several databases, including Web of Science, Medline, Embase, Cochrane Library, and Scopus, were searched using the following keywords: CAFs, CAF, cancer-associated fibroblasts, stromal fibroblasts, miRNA, exosomal miRNAs, exosome and similar terms. We identified studies investigating exosomal miRNAs and CAFs in the TME and their role in carcinogenesis. A total of 12,572 papers were identified. After removing duplicates (n = 3803), 8774 articles were screened by title and abstract. Of these, 421 were excluded from further analysis. It has been reported that if exosomal miRNAs in CAFs are not functioning correctly, this may influence the secretory phenotype of tip cells and contribute to increased tumor invasiveness, tumor spread, decreased treatment efficacy, and a poorer prognosis. Under their influence, normal fibroblasts (NFs) are transformed into CAFs. Furthermore, they participate in metabolic reprogramming, which allows for fast proliferation of the cancer cell population, adaptation to growing energy demands, and the capacity to avoid immune system identification.
Collapse
Affiliation(s)
- Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Simin Najafgholian
- Department of Emergency Medicine, School of Medicine, Valiasr Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Rasoul Salehi
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Goli
- Department of Food Science and Technology, Laser and Biophotonics in Biotechnologies Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Maryam Ranjbar
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Hamid Nickho
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gordon A Ferns
- Brighton and Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, UK
| | - Mostafa Manian
- Department of Medical Laboratory Science, Faculty of Medical Science Kermanshah Branch, Islamic Azad University, Kermanshah, Iran.
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
6
|
Chen H, Gong Z, Zhou H, Han Y. Deciphering chemoresistance in osteosarcoma: Unveiling regulatory mechanisms and function through the lens of noncoding RNA. Drug Dev Res 2024; 85:e22167. [PMID: 38444106 DOI: 10.1002/ddr.22167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/24/2024] [Accepted: 02/18/2024] [Indexed: 03/07/2024]
Abstract
Osteosarcoma (OS) is a primary malignant bone tumor and is prevalent in children, adolescents, and elderly individuals. It has the characteristics of high invasion and metastasis. Neoadjuvant chemotherapy combined with surgical resection is the most commonly used treatment for OS. However, the efficacy of OS is considerably diminished by chemotherapy resistance. In recent years, noncoding RNAs (ncRNAs), including microRNAs, long noncoding RNAs, and circular RNAs, are hot topics in the field of chemotherapy resistance research. Several studies have demonstrated that ncRNAs are substantially associated with chemoresistance in OS. Thus, the present study overviews the abnormally expressed ncRNAs in OS and the molecular mechanisms involved in chemoresistance, with an emphasis on their function in promoting or inhibiting chemoresistance. ncRNAs are expected to become potential therapeutic targets for overcoming drug resistance and predictive biomarkers in OS, which are of great significance for enhancing the therapeutic effect and improving the prognosis.
Collapse
Affiliation(s)
- Hefen Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhujun Gong
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Hong Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Han
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Jiang Y, Ning Y, Cheng S, Huang Y, Deng M, Chen C. Single-cell aggrephagy-related patterns facilitate tumor microenvironment intercellular communication, influencing osteosarcoma progression and prognosis. Apoptosis 2024; 29:521-535. [PMID: 38066392 DOI: 10.1007/s10495-023-01922-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 02/18/2024]
Abstract
Osteosarcoma, a common malignant tumor in children, has emerged as a major threat to the life and health of pediatric patients. Presently, there are certain limitations in the diagnosis and treatment methods for this disease, resulting in inferior therapeutic outcomes. Therefore, it is of great importance to study its pathogenesis and explore innovative approaches to diagnosis and treatment. In this study, a non-negative matrix decomposition method was employed to conduct a comprehensive investigation and analysis of aggregated autophagy-related genes within 331,394 single-cell samples of osteosarcoma. Through this study, we have elucidated the intricate communication patterns among various cells within the tumor microenvironment. Based on the classification of aggregated autophagy-related genes, we are not only able to more accurately predict patients' prognosis but also offer robust guidance for treatment strategies. The findings of this study hold promise for breakthroughs in the diagnosis and treatment of osteosarcoma, intervention of aggrephagy is expected to improve the survival rate and quality of life of osteosarcoma patients.
Collapse
Affiliation(s)
- Yunsheng Jiang
- College of Medical Informatics, Chongqing Medical University, Chongqing, 400016, China
| | - Yun Ning
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing, 400038, China
| | - Shidi Cheng
- Department of Hematology, Army Medical Center of PLA, Chongqing, 400012, China
| | - Yinde Huang
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Muhai Deng
- College of Medical Informatics, Chongqing Medical University, Chongqing, 400016, China
| | - Cheng Chen
- College of Medical Informatics, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
8
|
Qi J, Liu S, Zhang Z. What role does GPR65 play in the progression of osteosarcoma? Its mechanism and clinical significance. Cancer Cell Int 2024; 24:31. [PMID: 38218960 PMCID: PMC10788037 DOI: 10.1186/s12935-024-03216-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND GPR65 is a pH-sensing G-protein-coupled receptor that acts as a key innate immune checkpoint in the human tumor microenvironment, inhibiting the release of inflammatory factors and inducing significant upregulation of tissue repair genes. However, the expression pattern and function of GPR65 in osteosarcoma (OS) remain unclear. The purpose of this study was to investigate and elucidate the role of GPR65 in the microenvironment, proliferation and migration of OS. METHODS Retrospective RNA-seq data analysis was conducted in a cohort of 97 patients with OS data in the TAEGET database. In addition, single-cell sequencing data from six surgical specimens of human OS patients was used to analyze the molecular evolution process during OS genesis. Tissues chips and bioinformatics results were used to verify GPR65 expression level in OS. MTT, colony formation, EdU assay, wound healing, transwell assay and F-actin assay were utilized to analyze cell proliferation and invasion of OS cancer cells. RNA-seq was used to explore the potential mechanism of GPR65's role in OS. RESULTS GPR65 expression was significantly low in OS, and subgroup analysis found that younger OS patients, OS patients in metastatic status, and overall survival and progression free survival OS patients had lower GPR65 expression. From ScRNA-seq data of GSE162454, we found the expression of GPR65 is significantly positively correlated with CD4 + T cells CD8 + T cells and OS related macrophage infiltration. Verification experiment found that silencing the expression of GPR65 in osteosarcoma cells U2OS and HOS could promote the proliferation and invasion process, RNA-seq results showed that the role of GPR65 in OS cells was related to immune system, metabolism and signal transduction. CONCLUSION The low expression of GPR65 in OS leads to high metastasis rate and poor prognosis in OS patients. The suppression of immune escape and inhibition of proliferation may be a key pathway for GPR65 to participate in the progression of OS. The current study strengthens the role of GPR65 in OS development and provides a potential biomarker for the prognosis of OS patients.
Collapse
Affiliation(s)
- Jin Qi
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui Province, China
| | - Sihang Liu
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui Province, China
| | - Zhirui Zhang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui Province, China.
| |
Collapse
|
9
|
Huang H, Chen P, Feng X, Qian Y, Peng Z, Zhang T, Wang Q. Translational studies of exosomes in sports medicine - a mini-review. Front Immunol 2024; 14:1339669. [PMID: 38259444 PMCID: PMC10800726 DOI: 10.3389/fimmu.2023.1339669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
This review in sports medicine focuses on the critical role of exosomes in managing chronic conditions and enhancing athletic performance. Exosomes, small vesicles produced by various cells, are essential for cellular communication and transporting molecules like proteins and nucleic acids. Originating from the endoplasmic reticulum, they play a vital role in modulating inflammation and tissue repair. Their significance in sports medicine is increasingly recognized, particularly in healing athletic injuries, improving articular cartilage lesions, and osteoarthritic conditions by modulating cellular behavior and aiding tissue regeneration. Investigations also highlight their potential in boosting athletic performance, especially through myocytes-derived exosomes that may enhance adaptability to physical training. Emphasizing a multidisciplinary approach, this review underlines the need to thoroughly understand exosome biology, including their pathways and classifications, to fully exploit their therapeutic potential. It outlines future directions in sports medicine, focusing on personalized treatments, clinical evaluations, and embracing technological advancements. This research represents a frontier in using exosomes to improve athletes' health and performance capabilities.
Collapse
Affiliation(s)
- Haoqiang Huang
- Department of Orthopaedics, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu, China
| | - Peng Chen
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xinting Feng
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yinhua Qian
- Department of Orthopaedics, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu, China
| | - Zhijian Peng
- Department of Orthopaedics, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu, China
| | - Ting Zhang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qing Wang
- Department of Orthopaedics, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu, China
| |
Collapse
|
10
|
Meng C, Yang Y, Feng W, Ma P, Bai R. Exosomal miR-331-3p derived from chemoresistant osteosarcoma cells induces chemoresistance through autophagy. J Orthop Surg Res 2023; 18:892. [PMID: 37993925 PMCID: PMC10666460 DOI: 10.1186/s13018-023-04338-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/01/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Osteosarcoma is a common malignant bone tumor, and chemotherapy can effectively improve the prognosis. MicroRNA-331 (MiR-331) is associated with poor cancer outcomes. However, the role of miR-331 in osteosarcoma remains to be explored. METHODS Drug-resistant osteosarcoma cells were cultured, and their exosomes were purified. The secretion and uptake of exosomes by drug-resistant osteosarcoma and osteosarcoma cells were confirmed using a fluorescence tracking assay and Transwell experiments. The effects of drug-resistant exosomes on cell proliferation were determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. siRNA-Drosha and neutral sphingomyelinase inhibitor GW4869 were used to determine the transfer of miRNAs. qRT-PCR and western blotting were used to detect the role of autophagy in the regulation of drug-resistant cell-derived exosomal miR-331-3p. RESULTS Exosomal miR-331-3p levels in drug-resistant cells were higher than in exosomes from osteosarcoma cells. The exosomes secreted by the drug-resistant osteosarcoma cells could be absorbed by osteosarcoma cells, leading to acquired drug resistance in previously non-resistance cells. Inhibition of miRNAs resulted in reduced transmission of drug resistance transmission by exosomes. Exosomes from drug-resistant osteosarcoma cells transfected with siRNA-Drosha or treated by GW4869 could not enhance the proliferation of MG63 and HOS cells. Finally, miR-331-3p in the exosomes secreted by drug-resistant osteosarcoma cells could induce autophagy of osteosarcoma cells, allowing them to acquire drug resistance. The inhibition of miR-331-3p decreased drug resistance of osteosarcoma cells. CONCLUSION Exosomes secreted from chemoresistant osteosarcoma cells promote drug resistance through miR-331-3p and autophagy. Inhibition of miR-331-3p could be used to alleviate drug resistance in osteosarcoma.
Collapse
Affiliation(s)
- Chenyang Meng
- Department of Orthopedic Surgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yun Yang
- Department of Orthopedic Surgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Wei Feng
- Department of Orthopedic Surgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Penglei Ma
- Department of Anesthesiology, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China.
| | - Rui Bai
- Department of Orthopedic Surgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China.
| |
Collapse
|
11
|
Li G, Yan X. Long non-coding RNA GAS5 promotes cisplatin-chemosensitivity of osteosarcoma cells via microRNA-26b-5p/TP53INP1 axis. J Orthop Surg Res 2023; 18:890. [PMID: 37993867 PMCID: PMC10666340 DOI: 10.1186/s13018-023-04387-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023] Open
Abstract
Osteosarcoma is a common malignant bone tumor. Cisplatin (DDP) achieves a high response rate in osteosarcoma. Here we aim to study the dysregulation of long non-coding RNA the growth arrest-specific transcript 5 (GAS5), and its roles in DDP-resistance of osteosarcoma. The expression of mRNA and microRNA in osteosarcoma tissues and osteosarcoma cell lines were detected by quantitative reverse-transcription polymerase chain reaction, and protein expression levels were measured by western blotting assay. Cell Counting Kit-8 and 5-Ethynyl-2'-deoxyuridine were used to measure cell proliferation. Flow cytometer assay was used to evaluate cell apoptosis. The interactions between miR-26b-5p and GAS5 or tumor protein p53-induced nuclear protein 1 (TP53INP1) were verified by dual luciferase reporter along with biotin RNA pull-down assays. GAS5 was identified to be significantly lowly expressed in osteosarcoma samples especially in cisplatin-resistant (DDP-resistant) tissues. GAS5 was also downregulated in DDP-resistant cells. Over-expressed GAS5 prominently increased the sensitivity of osteosarcoma cells to DDP in vitro. Furthermore, over-expression of GAS5 suppressed cell proliferation and facilitated apoptosis of DDP-resistant cells. Mechanistically, GAS5 sponged miR-26b-5p, over-expression of which reversed the effects of GAS5 on cell proliferation and apoptosis of DDP-resistant cells. In addition, miR-26b-5p targeted TP53INP1. TP53INP1 abrogated the functions of miR-26b-5p on cell proliferation and apoptosis in DDP-resistant cells. Taken together, GAS5 enhanced the sensitivity of osteosarcoma cells to DDP via GAS5/miR-26b-5p/TP53INP1 axis. Therefore, GAS5 may be a potential indicator for the management of osteosarcoma.
Collapse
Affiliation(s)
- Guowei Li
- Department of Spine Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Xue Yan
- Respiration Medicine, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, 121000, Liaoning, China.
| |
Collapse
|
12
|
Zhao J, Gao N, Xu J, Zhu X, Ling G, Zhang P. Novel strategies in melanoma treatment using silver nanoparticles. Cancer Lett 2023; 561:216148. [PMID: 36990267 DOI: 10.1016/j.canlet.2023.216148] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
Melanoma has remarkably gained extensive attention owing to its high morbidity and mortality. Conventional treatment methods still have some problems and defects. Therefore, more and more novel methods and materials have been continuously developed. Silver nanoparticles (AgNPs) have attracted significant interest in the field of cancer research especially for melanoma treatment because of their excellent properties including antioxidant, antiproliferative, anti-inflammatory, antibacterial, antifungal, and antitumor abilities. In this review, the applications of AgNPs in the prevention, diagnosis, and treatment of cutaneous melanoma are mainly introduced. It also focuses on the therapy strategies of photodynamic therapy (PDT), photothermal therapy (PTT), and chemotherapy for melanoma treatment. Taken together, AgNPs play an increasingly crucial role in cutaneous melanoma treatment, which have promising application in the future.
Collapse
|