1
|
Pfaus JG, García-Juárez M, Ordóñez RD, Tecamachaltzi-Silvarán MB, Lucio RA, González-Flores O. Cellular and molecular mechanisms of action of ovarian steroid hormones II: Regulation of sexual behavior in female rodents. Neurosci Biobehav Rev 2025; 168:105946. [PMID: 39571668 DOI: 10.1016/j.neubiorev.2024.105946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/25/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
Female sexual behaviors in rodents (lordosis and appetitive or "proceptive" behaviors) are induced through a genomic mechanism by the sequential actions of estradiol (E2) and progesterone (P), or E2 and testosterone (T) at their respective receptors. However, non-steroidal agents, such as gonadotropin-releasing hormone (GnRH), Prostaglandin E2 (PGE2), noradrenaline, dopamine, oxytocin, α-melanocyte stimulating hormone, nitric oxide, leptin, apelin, and others, facilitate different aspects of female sexual behavior through their cellular and intracellular effects at the membrane and genomic levels in ovariectomized rats primed with E2. These neurotransmitters often act as intermediaries of E2 and P (or T). The classical model of steroid hormone action through intracellular receptor binding has been complemented by an alternative scenario wherein the steroid functions as a transcription factor after binding the receptor protein to DNA. Another possible mechanism occurs through the activation of second messenger systems (cyclic AMP, cyclic GMP, calcium), which subsequently initiate phosphorylation events via diverse kinase systems (protein kinases A, G, or C). These kinases target the progesterone receptor (PR) or associated effector proteins that connect the PR to the trans-activation machinery. This may also happen to the androgen receptor (AR). In addition, other cellular mechanisms could be involved since the chemical structure of these non-steroidal agents causes a change in their lipophobicity that prevents them from penetrating the cell and exerting direct transcriptional effects; however, they can exert effects on different components of the cell membrane activating a cross-talk between the cell membrane and the regulation of the transcriptional mechanisms.
Collapse
Affiliation(s)
- James G Pfaus
- Center for Sexual Health and Intervention, Czech National Institute of Mental Health, Klecany 25067, Czech Republic; Department of Psychology and Life Sciences, Faculty of Humanities, Charles University, Prague 18200, Czech Republic
| | - Marcos García-Juárez
- Centro de Investigación de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México
| | - Raymundo Domínguez Ordóñez
- Centro de Investigación de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México; Licenciatura en Ingeniería Agronómica y Zootecnia, Complejo Regional Centro, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | | | - Rosa Angélica Lucio
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Oscar González-Flores
- Centro de Investigación de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México.
| |
Collapse
|
2
|
Memi E, Pavli P, Papagianni M, Vrachnis N, Mastorakos G. Diagnostic and therapeutic use of oral micronized progesterone in endocrinology. Rev Endocr Metab Disord 2024; 25:751-772. [PMID: 38652231 PMCID: PMC11294403 DOI: 10.1007/s11154-024-09882-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
Progesterone is a natural steroid hormone, while progestins are synthetic molecules. In the female reproductive system, progesterone contributes to the control of luteinizing hormone and follicle-stimulating hormone secretion and their pulsatility, via its receptors on the kisspeptin, neurokinin B, and dynorphin neurons in the hypothalamus. Progesterone together with estradiol controls the cyclic changes of proliferation and decidualization of the endometrium; exerts anti-mitogenic actions on endometrial epithelial cells; regulates normal menstrual bleeding; contributes to fertilization and pregnancy maintenance; participates in the onset of labor. In addition, it exerts numerous effects on other endocrine systems. Micronized progesterone (MP) is natural progesterone with increased bioavailability, due to its pharmacotechnical micronized structure, which makes it an attractive diagnostic and therapeutic tool. This critical literature review aims to summarize and put forward the potential diagnostic and therapeutic uses of MP in the field of endocrinology. During reproductive life, MP is used for diagnostic purposes in the evaluation of primary or secondary amenorrhea as a challenge test. Moreover, it can be prescribed to women presenting with amenorrhea or oligomenorrhea for induction of withdrawal bleeding, in order to time blood-sampling for diagnostic purposes in early follicular phase. Therapeutically, MP, alone or combined with estrogens, is a useful tool in various endocrine disorders including primary amenorrhea, abnormal uterine bleeding due to disordered ovulation, luteal phase deficiency, premenstrual syndrome, polycystic ovary syndrome, secondary amenorrhea [functional hypothalamic amenorrhea, premature ovarian insufficiency], perimenopause and menopause. When administrated per os, acting as a neurosteroid directly or through its metabolites, it exerts beneficial effects on brain function such as alleviation of symptoms of anxiety and depression, asw well as of sleep problems, while it improves working memory in peri- and menopausal women. Micronized progesterone preserves full potential of progesterone activity, without presenting many of the side-effects of progestins. Although it has been associated with more frequent drowsiness and dizziness, it can be well tolerated with nocturnal administration. Because of its better safety profile, especially with regard to metabolic ailments, breast cancer risk and veno-thromboembolism risk, MP is the preferred option for individuals with an increased risk of cardiovascular and metabolic diseases and of all-cause mortality.
Collapse
Affiliation(s)
- Eleni Memi
- Unit of Endocrinology, Diabetes mellitus, and Metabolism, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, Vas. Sophias Av. 76, 11528, Athens, Greece
| | - Polina Pavli
- Unit of Endocrinology, Diabetes mellitus, and Metabolism, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, Vas. Sophias Av. 76, 11528, Athens, Greece
| | - Maria Papagianni
- Department of Nutrition and Dietetics, School of Physical Education, Sport Science and Dietetics, University of Thessaly, 42100, Trikala, Greece
- Endocrine Unit, 3rd Department of Pediatrics, Hippokration Hospital of Thessaloniki, Aristotle University of Thessaloniki, 54642, Thessaloniki, Greece
| | - Nikolaos Vrachnis
- Third Department of Obstetrics and Gynecology, Attikon General Hospital, School of Medicine, National and Kapodistrian University of Athens, Rimini Str. 1, 12462, Chaidari, Athens, Greece
- St George's NHS Foundation Trust Teaching Hospitals, St George's University of London, London, UK
| | - George Mastorakos
- Unit of Endocrinology, Diabetes mellitus, and Metabolism, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, Vas. Sophias Av. 76, 11528, Athens, Greece.
| |
Collapse
|
3
|
Ruddenklau A, Glendining K, Prescott M, Campbell RE. Validation of a new Custom Polyclonal Progesterone Receptor Antibody for Immunohistochemistry in the Female Mouse Brain. J Endocr Soc 2023; 7:bvad113. [PMID: 37693686 PMCID: PMC10492226 DOI: 10.1210/jendso/bvad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Indexed: 09/12/2023] Open
Abstract
Immunohistochemical visualization of progesterone receptor (PR)-expressing cells in the brain is a powerful technique to investigate the role of progesterone in the neuroendocrine regulation of fertility. A major obstacle to the immunohistochemical visualization of progesterone-sensitive cells in the rodent brain has been the discontinuation of the commercially produced A0098 rabbit polyclonal PR antibody by DAKO. To address the unavailability of this widely used PR antibody, we optimized and evaluated 4 alternative commercial PR antibodies and found that each lacked the specificity and/or sensitivity to immunohistochemically label PR-expressing cells in paraformaldehyde-fixed female mouse brain sections. As a result, we developed and validated a new custom RC269 PR antibody, directed against the same 533-547 amino acid sequence of the human PR as the discontinued A0098 DAKO PR antibody. Immunohistochemical application of the RC269 PR antibody on paraformaldehyde-fixed mouse brain sections resulted in nuclear PR labeling that was highly distinguishable from background, specific to its antigen, highly regulated by estradiol, matched the known distribution of PR protein expression in the female mouse hypothalamus, and nearly identical to that of the discontinued A0098 DAKO PR antibody. In summary, the RC269 PR antibody is a specific and sensitive antibody to immunohistochemically visualize PR-expressing cells in the mouse brain.
Collapse
Affiliation(s)
- Amy Ruddenklau
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Kelly Glendining
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Melanie Prescott
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Rebecca E Campbell
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
4
|
Meng Z, Wang X, Zhang D, Lan Z, Cai X, Bian C, Zhang J. Steroid receptor coactivator-1: The central intermediator linking multiple signals and functions in the brain and spinal cord. Genes Dis 2021; 9:1281-1289. [PMID: 35873031 PMCID: PMC9293692 DOI: 10.1016/j.gendis.2021.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/31/2021] [Accepted: 06/21/2021] [Indexed: 11/28/2022] Open
Abstract
The effects of steroid hormones are believed to be mediated by their nuclear receptors (NRs). The p160 coactivator family, including steroid receptor coactivator-1 (SRC-1), 2 and 3, has been shown to physically interact with NRs to enhance their transactivational activities. Among which SRC-1 has been predominantly localized in the central nervous system including brain and spinal cord. It is not only localized in neurons but also detectable in neuroglial cells (mainly localized in the nuclei but also detectable in the extra-nuclear components). Although the expression of SRC-1 is regulated by many steroids, it is also regulated by some non-steroidal factors such as injury, sound and light. Functionally, SRC-1 has been implied in normal function such as development and ageing, learning and memory, central regulation on reproductive behaviors, motor and food intake. Pathologically, SRC-1 may play a role in the regulation of neuropsychiatric disorders (including stress, depression, anxiety, and autism spectrum disorder), metabolite homeostasis and obesity as well as tumorigenesis. Under most conditions, the related mechanisms are far from elucidation; although it may regulate spatial memory through Rictor/mTORC2-actin polymerization related synaptic plasticity. Several inhibitors and stimulator of SRC-1 have shown anti-cancer potentials, but whether these small molecules could be used to modulate ageing and central disorder related neuropathology remain unclear. Therefore, to elucidate when and how SRC-1 is turned on and off under different stimuli is very interesting and great challenge for neuroscientists.
Collapse
Affiliation(s)
- Zhaoyou Meng
- Department of Neurobiology, Army Medical University, Chongqing 400038, PR China
| | - Xiaoya Wang
- Department of Neurosurgery, Nanchong Central Hospital, the Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, PR China
| | - Dongmei Zhang
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing 400038, PR China
| | - Zhen Lan
- Department of Neurobiology, Army Medical University, Chongqing 400038, PR China
| | - Xiaoxia Cai
- Department of Neurobiology, Army Medical University, Chongqing 400038, PR China
- School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Chen Bian
- School of Psychology, Amy Medical University, Chongqing 400038, PR China
- Corresponding author.
| | - Jiqiang Zhang
- Department of Neurobiology, Army Medical University, Chongqing 400038, PR China
- Corresponding author.
| |
Collapse
|
5
|
Tibolone regulates systemic metabolism and the expression of sex hormone receptors in the central nervous system of ovariectomised rats fed with high-fat and high-fructose diet. Brain Res 2020; 1748:147096. [DOI: 10.1016/j.brainres.2020.147096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/04/2023]
|
6
|
Acharya KD, Nettles SA, Lichti CF, Warre-Cornish K, Polit LD, Srivastava DP, Denner L, Tetel MJ. Dopamine-induced interactions of female mouse hypothalamic proteins with progestin receptor-A in the absence of hormone. J Neuroendocrinol 2020; 32:e12904. [PMID: 33000549 PMCID: PMC7591852 DOI: 10.1111/jne.12904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 11/26/2022]
Abstract
Neural progestin receptors (PR) function in reproduction, neural development, neuroprotection, learning, memory and the anxiety response. In the absence of progestins, PR can be activated by dopamine (DA) in the rodent hypothalamus to elicit female sexual behaviour. The present study investigated mechanisms of DA activation of PR by testing the hypothesis that proteins from DA-treated hypothalami interact with PR in the absence of progestins. Ovariectomised, oestradiol-primed mice were infused with a D1-receptor agonist, SKF38393 (SKF), into the third ventricle 30 minutes prior to death. Proteins from SKF-treated hypothalami were pulled-down with glutathione S-transferase-tagged mouse PR-A or PR-B and the interactomes were analysed by mass spectrometry. The largest functional group to interact with PR-A in a DA-dependent manner was synaptic proteins. To test the hypothesis that DA activation of PR regulates synaptic proteins, we developed oestradiol-induced PR-expressing hypothalamic-like neurones derived from human-induced pluripotent stem cells (hiPSCs). Similar to progesterone (P4), SKF treatment of hiPSCs increased synapsin1/2 expression. This SKF-dependent effect was blocked by the PR antagonist RU486, suggesting that PR are necessary for this DA-induced increase. The second largest DA-dependent PR-A protein interactome comprised metabolic regulators involved in glucose metabolism, lipid synthesis and mitochondrial energy production. Interestingly, hypothalamic proteins interacted with PR-A, but not PR-B, in an SKF-dependent manner, suggesting that DA promotes the interaction of multiple hypothalamic proteins with PR-A. These in vivo and in vitro results indicate novel mechanisms by which DA can differentially activate PR isoforms in the absence of P4 and provide a better understanding of ligand-independent PR activation in reproductive, metabolic and mental health disorders in women.
Collapse
Affiliation(s)
| | | | - Cheryl F. Lichti
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110
| | - Katherine Warre-Cornish
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, SE5 8AF, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Lucia Dutan Polit
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, SE5 8AF, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Deepak P. Srivastava
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, SE5 8AF, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Larry Denner
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555
| | - Marc J. Tetel
- Neuroscience Department, Wellesley College, Wellesley, MA 02481
| |
Collapse
|
7
|
Bizzozzero-Hiriart M, Di Giorgio NP, Libertun C, Lux-Lantos V. GABAergic input through GABA B receptors is necessary during a perinatal window to shape gene expression of factors critical to reproduction such as Kiss1. Am J Physiol Endocrinol Metab 2020; 318:E901-E919. [PMID: 32286880 DOI: 10.1152/ajpendo.00547.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Lack of GABAB receptors in GABAB1 knockout mice decreases neonatal ARC kisspeptin 1 (Kiss1) expression in the arcuate nucleus of the hypothalamus (ARC) in females, which show impaired reproduction as adults. Our aim was to selectively impair GABAB signaling during a short postnatal period to evaluate its impact on the reproductive system. Neonatal male and female mice were injected with the GABAB antagonist CGP 55845 (CGP, 1 mg/kg body wt sc) or saline from postnatal day 2 (PND2) to PND6, three times per day (8 AM, 1 PM, and 6 PM). One group was killed on PND6 for collection of blood samples (hormones by radioimmunoassay), brains for gene expression in the anteroventral periventricular nucleus-periventricular nucleus continuum (AVPV/PeN), and ARC micropunches [quantitative PCR (qPCR)] and gonads for qPCR, hormone contents, and histology. A second group of mice was injected with CGP (1 mg/kg body wt sc) or saline from PND2 to PND6, three times per day (8 AM, 1 PM, and 6 PM), and left to grow to adulthood. We measured body weight during development and parameters of sexual differentiation, puberty onset, and estrous cycles. Adult mice were killed, and trunk blood (hormones), brains for qPCR, and gonads for qPCR and hormone contents were obtained. Our most important findings on PND6 include the CGP-induced decrease in ARC Kiss1 and increase in neurokinin B (Tac2) in both sexes; the decrease in AVPV/PeN tyrosine hydroxylase (Th) only in females; the increase in gonad estradiol content in both sexes; and the increase in primordial follicles and decrease in primary and secondary follicles. Neonatally CGP-treated adults showed decreased ARC Kiss1 and ARC gonadotropin-releasing hormone (Gnrh1) and increased ARC glutamic acid decarboxylase 67 (Gad1) only in males; increased ARC GABAB receptor subunit 1 (Gabbr1) in both sexes; and decreased AVPV/PeN Th only in females. We demonstrate that ARC Kiss1 expression is chronically downregulated in males and that the normal sex difference in AVPV/PeN Th expression is abolished. In conclusion, neonatal GABAergic input through GABAB receptors shapes gene expression of factors critical to reproduction.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Arcuate Nucleus of Hypothalamus/drug effects
- Arcuate Nucleus of Hypothalamus/metabolism
- Estradiol/metabolism
- Female
- Follicle Stimulating Hormone/metabolism
- GABA-B Receptor Antagonists/pharmacology
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/physiology
- Glutamate Decarboxylase/genetics
- Glutamate Decarboxylase/metabolism
- Gonadotropin-Releasing Hormone/genetics
- Gonadotropin-Releasing Hormone/metabolism
- Hypothalamus, Anterior/drug effects
- Hypothalamus, Anterior/metabolism
- Kisspeptins/genetics
- Kisspeptins/metabolism
- Luteinizing Hormone/metabolism
- Male
- Mice
- Ovary/drug effects
- Ovary/metabolism
- Phosphinic Acids/pharmacology
- Propanolamines/pharmacology
- Protein Precursors/genetics
- Protein Precursors/metabolism
- Puberty/drug effects
- Puberty/genetics
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, GABA-B/genetics
- Receptors, GABA-B/metabolism
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Reproduction/drug effects
- Reproduction/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sex Differentiation/drug effects
- Sex Differentiation/genetics
- Tachykinins/genetics
- Tachykinins/metabolism
- Testis/drug effects
- Testis/metabolism
- Testosterone/metabolism
- Tyrosine 3-Monooxygenase/genetics
- Tyrosine 3-Monooxygenase/metabolism
Collapse
Affiliation(s)
- Marianne Bizzozzero-Hiriart
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Noelia P Di Giorgio
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Carlos Libertun
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Victoria Lux-Lantos
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
8
|
Zhou T, Lin W, Lin S, Zhong Z, Luo Y, Lin Z, Xie W, Shen W, Hong K. Association of Nuclear Receptor Coactivators with Hypoxia-Inducible Factor-1 α in the Serum of Patients with Chronic Kidney Disease. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1587915. [PMID: 32884936 PMCID: PMC7455818 DOI: 10.1155/2020/1587915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/29/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
Abstract
Nuclear receptor coactivators (NCOAs), consisting of coactivators and corepressors, dramatically enhance the transcriptional activity of nuclear receptors. Hypoxia-inducible factor-1α (HIF-1α) is a transcription factor that plays a major role under hypoxic conditions. This study was performed with the focus on the association of NCOAs with HIF-1α in the serum of chronic kidney disease (CKD) patients. Sixty patients with stage 5 CKD and 30 healthy controls from The Second Affiliated Hospital of Shantou University Medical College, between March 21, 2019, and October 30, 2019, were recruited in this prospective cohort study. We analyzed the serum levels of NCOAs (NCOA1, NCOA2, and NCOA3), HIF-1α, vascular endothelial growth factor (VEGF), etc. and assessed whether there was any relationship between these parameters and CKD disease. We found that circulating NCOA1 was positively associated with circulating NCOA2, NCOA3, and HIF-1α. A positive correlation was also observed between NCOA2 and NCOA1, NCOA3, HIF-1α, and VEGF. Furthermore, statistically significant correlations between NCOA3 and NCOA1, NCOA2, and HIF-1α were observed. The serum levels of VEGF in the CKD group were higher than those of the healthy control group. Circulating NCOA1 and circulating NCOA2 were negatively associated with procalcitonin. In conclusion, there was an association between circulating NCOA1, NCOA2, NCOA3, and circulating HIF-1α, and circulating VEGF was a risk factor for CKD disease. However, more studies should be performed to confirm this hypothesis.
Collapse
Affiliation(s)
- Tianbiao Zhou
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, 515041 Shantou, China
| | - Wenshan Lin
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, 515041 Shantou, China
| | - Shujun Lin
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, 515041 Shantou, China
| | - Zhiqing Zhong
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, 515041 Shantou, China
| | - Yuanyuan Luo
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, 515041 Shantou, China
| | - Zhijun Lin
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, 515041 Shantou, China
| | - Weiji Xie
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, 515041 Shantou, China
| | - Weitao Shen
- Department of Clinical Laboratory, The Second Affiliated Hospital, Shantou University Medical College, 515041 Shantou, China
| | - Kai Hong
- Department of Clinical Laboratory, The Second Affiliated Hospital, Shantou University Medical College, 515041 Shantou, China
| |
Collapse
|
9
|
Pfaff DW, Gagnidze K, Hunter RG. Molecular endocrinology of female reproductive behavior. Mol Cell Endocrinol 2018; 467:14-20. [PMID: 29100890 DOI: 10.1016/j.mce.2017.10.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 10/19/2017] [Accepted: 10/30/2017] [Indexed: 12/17/2022]
Abstract
Epigenetic methodologies address mechanisms of estrogenic effects on hypothalamic and preoptic neurons, as well as mechanisms by which stress can interfere with female reproductive behaviors. Recent results are reviewed.
Collapse
Affiliation(s)
- D W Pfaff
- The Rockefeller University, New York, NY, United States.
| | - K Gagnidze
- The Rockefeller University, New York, NY, United States.
| | - R G Hunter
- University of Massachusetts, Boston, MA, United States.
| |
Collapse
|
10
|
Camacho-Arroyo I, González-Arenas A, Jiménez-Arellano C, Morimoto S, Galván-Rosas A, Gómora-Arrati P, García-Juárez M, González-Flores O. Sex hormone levels and expression of their receptors in lactating and lactating pregnant rats. J Steroid Biochem Mol Biol 2018; 178:213-220. [PMID: 29277708 DOI: 10.1016/j.jsbmb.2017.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/16/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022]
Abstract
Parturient rats show a postpartum estrus, a period of sexual receptivity that occurs from 6 to 15 h after the birth of a litter, which allows the mother to gestate a second litter while simultaneously nursing the first one (lactating and pregnant). The present study investigated hormone levels and the expression pattern of estrogen receptor α, and β, progesterone receptor isoforms and SRC1 in the hypothalamus and the preoptic area of lactating as well as in lactating-pregnant rats. In the latter, estradiol levels were 3-fold higher than those observed in lactating rats on day 14, meanwhile progesterone levels did not change in any condition. There were higher levels of prolactin in both lactating and lactating-pregnant rats on day 7 and decreased on the following days. In the hypothalamus of the lactating rat, the content of ERα increased during lactation meanwhile that of ERβ decreased 50% on day 10. The content of both estrogen receptor subtypes in the hypothalamus increased 3-fold on day 21 in lactating-pregnant rats. In the preoptic area, the content of ERα was higher in lactating-pregnant rats on days 14 and 21 while the content of progesterone receptor isoforms was lower as compared with those found in lactating animals on days 7 and 10. The content of SRC1 increased 2-fold in the preoptic area only in lactating rats at day 14 and 21. These findings suggest that lactating- pregnant animals should exhibit differential neuroendocrine and molecular characteristics as compared to lactating animals.
Collapse
Affiliation(s)
- Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Aliesha González-Arenas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Carolina Jiménez-Arellano
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Sumiko Morimoto
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Agustín Galván-Rosas
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México
| | - Porfirio Gómora-Arrati
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México
| | - Marcos García-Juárez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México
| | - Oscar González-Flores
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México; Área de Neurociencias, Departamento de Biología de la Reproducción, CBS, UAM-I, Ciudad de México, México.
| |
Collapse
|
11
|
Camacho-Arroyo I, Hansberg-Pastor V, Gutiérrez-Rodríguez A, Chávez-Jiménez J, González-Morán MG. Expression of sex hormone receptors in the brain of male and female newly hatched chicks. Anim Reprod Sci 2017; 188:123-129. [PMID: 29175176 DOI: 10.1016/j.anireprosci.2017.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/14/2017] [Accepted: 11/21/2017] [Indexed: 12/11/2022]
Abstract
Chromosomal sex and steroid hormones play a determining role in brain sexual differentiation during chick embryonic development. Hormone effects on the brain are associated with the expression pattern of their intracellular receptors, which is sexually dimorphic in many species. We determined by Western blot the content of progesterone, estrogen, and androgen receptors (PR-A and PR-B, ERα, and AR, respectively) in the cortex, cerebellum, tectum, and hypothalamus of female and male newly hatched chicks. Males presented a higher content of PR-B in the tectum whereas females exhibited a higher content of PR-A in the hypothalamus. ERα was only detected as a band of 66kDa, and it showed a higher content in the cerebellum and tectum of females as compared to these regions in males. Besides, males exhibited a higher content of AR in the tectum than females. Our study suggests that newly hatched chicks show a sexual dimorphism in the expression of sex hormone receptors in brain regions involved in sexual behavior such as the hypothalamus, and in non-sexual behavior such as the optic tectum and the cerebellum.
Collapse
Affiliation(s)
- Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | | | - Araceli Gutiérrez-Rodríguez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Jorge Chávez-Jiménez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - María Genoveva González-Morán
- Facultad de Ciencias, Departamento de Biología Comparada, Laboratorio de Biología de la Reproducción Animal, UNAM, Ciudad de México, México.
| |
Collapse
|
12
|
The Progestin Receptor Interactome in the Female Mouse Hypothalamus: Interactions with Synaptic Proteins Are Isoform Specific and Ligand Dependent. eNeuro 2017; 4:eN-NWR-0272-17. [PMID: 28955722 PMCID: PMC5605756 DOI: 10.1523/eneuro.0272-17.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 01/06/2023] Open
Abstract
Progestins bind to the progestin receptor (PR) isoforms, PR-A and PR-B, in brain to influence development, female reproduction, anxiety, and stress. Hormone-activated PRs associate with multiple proteins to form functional complexes. In the present study, proteins from female mouse hypothalamus that associate with PR were isolated using affinity pull-down assays with glutathione S-transferase–tagged mouse PR-A and PR-B. Using complementary proteomics approaches, reverse phase protein array (RPPA) and mass spectrometry, we identified hypothalamic proteins that interact with PR in a ligand-dependent and isoform-specific manner and were confirmed by Western blot. Synaptic proteins, including synapsin-I and synapsin-II, interacted with agonist-bound PR isoforms, suggesting that both isoforms function in synaptic plasticity. In further support, synaptogyrin-III and synapsin-III associated with PR-A and PR-B, respectively. PR also interacted with kinases, including c-Src, mTOR, and MAPK1, confirming phosphorylation as an integral process in rapid effects of PR in the brain. Consistent with a role in transcriptional regulation, PR associated with transcription factors and coactivators in a ligand-specific and isoform-dependent manner. Interestingly, both PR isoforms associated with a key regulator of energy homeostasis, FoxO1, suggesting a novel role for PR in energy metabolism. Because many identified proteins in this PR interactome are synaptic proteins, we tested the hypothesis that progestins function in synaptic plasticity. Indeed, progesterone enhanced synaptic density, by increasing synapsin-I–positive synapses, in rat primary cortical neuronal cultures. This novel combination of RPPA and mass spectrometry allowed identification of PR action in synaptic remodeling and energy homeostasis and reveals unique roles for progestins in brain function and disease.
Collapse
|
13
|
Guglielmotto M, Reineri S, Iannello A, Ferrero G, Vanzan L, Miano V, Ricci L, Tamagno E, De Bortoli M, Cutrupi S. E2 Regulates Epigenetic Signature on Neuroglobin Enhancer-Promoter in Neuronal Cells. Front Cell Neurosci 2016; 10:147. [PMID: 27313512 PMCID: PMC4887468 DOI: 10.3389/fncel.2016.00147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/18/2016] [Indexed: 12/13/2022] Open
Abstract
Estrogens are neuroprotective factors in several neurological diseases. Neuroglobin (NGB) is one of the estrogen target genes involved in neuroprotection, but little is known about its transcriptional regulation. Estrogen genomic pathway in gene expression regulation is mediated by estrogen receptors (ERα and ERβ) that bind to specific regulatory genomic regions. We focused our attention on 17β-estradiol (E2)-induced NGB expression in human differentiated neuronal cell lines (SK-N-BE and NT-2). Previously, using bioinformatics analysis we identified a putative enhancer in the first intron of NGB locus. Therefore, we observed that E2 increased the enrichment of the H3K4me3 epigenetic marks at the promoter and of the H3K4me1 and H3K27Ac at the intron enhancer. In these NGB regulatory regions, we found estrogen receptor alpha (ERα) binding suggesting that ERα may mediate chromatin remodeling to induce NGB expression upon E2 treatment. Altogether our data show that NGB expression is regulated by ERα binding on genomic regulatory regions supporting hormone therapy applications for the neuroprotection against neurodegenerative diseases.
Collapse
Affiliation(s)
- Michela Guglielmotto
- Neuroscience Institute of the Cavalieri Ottolenghi Foundation (NICO), University of TurinTurin, Italy
- Department Neurosciences, University of TurinTurin, Italy
| | - Stefania Reineri
- Center for Molecular Systems Biology, University of TurinOrbassano, Turin, Italy
- Department of Clinical and Biological Sciences, University of TurinOrbassano, Turin, Italy
| | - Andrea Iannello
- Center for Molecular Systems Biology, University of TurinOrbassano, Turin, Italy
- Department of Clinical and Biological Sciences, University of TurinOrbassano, Turin, Italy
| | - Giulio Ferrero
- Center for Molecular Systems Biology, University of TurinOrbassano, Turin, Italy
- Department of Clinical and Biological Sciences, University of TurinOrbassano, Turin, Italy
- Department of Computer Science, University of TurinTurin, Italy
| | - Ludovica Vanzan
- Center for Molecular Systems Biology, University of TurinOrbassano, Turin, Italy
| | - Valentina Miano
- Center for Molecular Systems Biology, University of TurinOrbassano, Turin, Italy
- Department of Clinical and Biological Sciences, University of TurinOrbassano, Turin, Italy
| | - Laura Ricci
- Center for Molecular Systems Biology, University of TurinOrbassano, Turin, Italy
- Department of Clinical and Biological Sciences, University of TurinOrbassano, Turin, Italy
| | - Elena Tamagno
- Neuroscience Institute of the Cavalieri Ottolenghi Foundation (NICO), University of TurinTurin, Italy
- Department Neurosciences, University of TurinTurin, Italy
| | - Michele De Bortoli
- Center for Molecular Systems Biology, University of TurinOrbassano, Turin, Italy
- Department of Clinical and Biological Sciences, University of TurinOrbassano, Turin, Italy
| | - Santina Cutrupi
- Center for Molecular Systems Biology, University of TurinOrbassano, Turin, Italy
- Department of Clinical and Biological Sciences, University of TurinOrbassano, Turin, Italy
| |
Collapse
|
14
|
Zhang R, Hu Y, Wang H, Yan P, Zhou Y, Wu R, Wu X. Molecular cloning, characterization, tissue distribution and mRNA expression changes during the hibernation and reproductive periods of estrogen receptor alpha (ESR1) in Chinese alligator, Alligator sinensis. Comp Biochem Physiol B Biochem Mol Biol 2016; 200:28-35. [PMID: 27212643 DOI: 10.1016/j.cbpb.2016.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 02/07/2023]
Abstract
Chinese alligator, Alligator sinensis, is a critically endangered reptile species unique to China. Little is known about the mechanism of growth- and reproduction-related hormones gene expression in Chinese alligator. Estrogens play important roles in regulating multiple reproduction- and non-reproduction-related functions by binding to their corresponding receptors. Here, the full-length cDNA of estrogen receptor alpha (ERα/ESR1) was cloned and sequenced from Chinese alligator for the first time, which comprises 1764bp nucleotides and encodes a predicted protein of 587 amino acids. Phylogenetic analysis of ESR1 showed that crocodilians and turtles were the sister-group of birds. The results of real-time quantitative PCR indicated that the ESR1 mRNA was widely expressed in the brain and peripheral tissues. In the brain and pituitary gland, ESR1 was most highly transcribed in the cerebellum. But in other peripheral tissues, ESR1 mRNA expression level was the highest in the ovary. Compared with hibernation period, ESR1 mRNA expression levels were increased significantly in the reproductive period (P<0.05) in cerebellum, pituitary gland, liver, spleen, lung, kidney and ovary, while no significant change in other examined tissues (P>0.05). The ESR1 mRNA expression levels changes during the two periods of different tissues suggested that ESR1 might play an important role in mediation of estrogenic multiple reproductive effects in Chinese alligator. Furthermore, it was the first time to quantify ESR1 mRNA level in the brain of crocodilians, and the distribution and expression of ESR1 mRNA in the midbrain, cerebellum and medulla oblongata was also reported for the first time in reptiles.
Collapse
Affiliation(s)
- Ruidong Zhang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, People's Republic of China
| | - Yuehong Hu
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, People's Republic of China
| | - Huan Wang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, People's Republic of China
| | - Peng Yan
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, People's Republic of China
| | - Yongkang Zhou
- Alligator Research Center of Anhui Province, Xuanzhou 242000, People's Republic of China
| | - Rong Wu
- Alligator Research Center of Anhui Province, Xuanzhou 242000, People's Republic of China
| | - Xiaobing Wu
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, People's Republic of China.
| |
Collapse
|