1
|
Fanikos M, Kohn SA, Stamato R, Brenhouse HC, Gildawie KR. Impacts of age and environment on postnatal microglial activity: Consequences for cognitive function following early life adversity. PLoS One 2024; 19:e0306022. [PMID: 38917075 PMCID: PMC11198844 DOI: 10.1371/journal.pone.0306022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Early life adversity (ELA) increases the likelihood of later-life neuropsychiatric disorders and cognitive dysfunction. Importantly, ELA, neuropsychiatric disorders, and cognitive deficits all involve aberrant immune signaling. Microglia are the primary neuroimmune cells and regulate brain development. Microglia are particularly sensitive to early life insults, which can program their responses to future challenges. ELA in the form of maternal separation (MS) in rats alters later-life microglial morphology and the inflammatory profile of the prefrontal cortex, a region important for cognition. However, the role of microglial responses during MS in the development of later cognition is not known. Therefore, here we aimed to determine whether the presence of microglia during MS mediates long-term impacts on adult working memory. Clodronate liposomes were used to transiently deplete microglia from the brain, while empty liposomes were used as a control. We hypothesized that if microglia mediate the long-term impacts of ELA on working memory in adulthood, then depleting microglia during MS would prevent these deficits. Importantly, microglial function shifts throughout the neonatal period, so an exploratory investigation assessed whether depletion during the early versus late neonatal period had different effects on adult working memory. Surprisingly, empty liposome treatment during the early, but not late, postnatal period induced microglial activity changes that compounded with MS to impair working memory in females. In contrast, microglial depletion later in infancy impaired later life working memory in females, suggesting that microglial function during late infancy plays an important role in the development of cognitive function. Together, these findings suggest that microglia shift their sensitivity to early life insults across development. Our findings also highlight the potential for MS to impact some developmental processes only when compounded with additional neuroimmune challenges in a sex-dependent manner.
Collapse
Affiliation(s)
- Michaela Fanikos
- Department of Psychology, Northeastern University, Boston, Massachusetts, United States of America
| | - Skylar A. Kohn
- Department of Psychology, Northeastern University, Boston, Massachusetts, United States of America
| | - Rebecca Stamato
- Department of Psychology, Northeastern University, Boston, Massachusetts, United States of America
| | - Heather C. Brenhouse
- Department of Psychology, Northeastern University, Boston, Massachusetts, United States of America
| | - Kelsea R. Gildawie
- Department of Psychology, Northeastern University, Boston, Massachusetts, United States of America
| |
Collapse
|
2
|
Poore CP, Wei S, Chen B, Low SW, Tan JSQ, Lee ATH, Nilius B, Liao P. In vivo evaluation of monoclonal antibody M4M using a humanised rat model of stroke demonstrates attenuation of reperfusion injury via blocking human TRPM4 channel. J Drug Target 2024; 32:413-422. [PMID: 38345028 DOI: 10.1080/1061186x.2024.2313522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/23/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Blocking Transient Receptor Potential Melastatin 4 (TRPM4) in rodents by our antibody M4P has shown to attenuate cerebral ischaemia-reperfusion injury. Since M4P does not interact with human TRPM4, the therapeutic potential of blocking human TRPM4 remains unclear. We developed a monoclonal antibody M4M that inhibited human TRPM4 in cultured cells. However, M4M has no effect on stroke outcome in wild-type rats. Therefore, M4M needs to be evaluated on animal models expressing human TRPM4. METHODS We generated a humanised rat model using the CRISPR/Cas technique to knock-in (KI) the human TRPM4 antigen sequence. RESULTS In primary neurons from human TRPM4 KI rats, M4M binds to hypoxic neurons, but not normoxic nor wild-type neurons. Electrophysiological studies showed that M4M blocked ATP depletion-induced activation of TRPM4 and inhibited hypoxia-associated cell volume increase. In a stroke model, administration of M4M reduced infarct volume in KI rats. Rotarod test and Neurological deficit score revealed improvement following M4M treatment. CONCLUSION M4M selectively binds and inhibits hypoxia-induced human TRPM4 channel activation in neurons from the humanised rat model, with no effect on healthy neurons. Use of M4M in stroke rats showed functional improvements, suggesting the potential for anti-human TRPM4 antibodies in treating acute ischaemic stroke patients.
Collapse
Affiliation(s)
- Charlene Priscilla Poore
- Calcium Signalling Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Shunhui Wei
- Calcium Signalling Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Bo Chen
- Calcium Signalling Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - See Wee Low
- Calcium Signalling Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Jeslyn Si Qi Tan
- Calcium Signalling Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Andy Thiam-Huat Lee
- Health and Social Sciences, Singapore Institute of Technology, Singapore, Singapore
| | - Bernd Nilius
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Ping Liao
- Calcium Signalling Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
- Health and Social Sciences, Singapore Institute of Technology, Singapore, Singapore
- Graduate Medical School, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
3
|
Huang S, Carter-Cusack D, Maxwell E, Patkar OL, Irvine KM, Hume DA. Genetic and Immunohistochemistry Tools to Visualize Rat Macrophages In Situ. Methods Mol Biol 2024; 2713:99-115. [PMID: 37639117 DOI: 10.1007/978-1-0716-3437-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Macrophages contribute to many aspects of development and homeostasis, innate and acquired immunity, immunopathology, and tissue repair. Every tissue contains an abundant resident macrophage population. Inflammatory stimuli promote the recruitment of monocytes from the blood and their adaptation promotes the removal of the stimulus and subsequent restoration of normal tissue architecture. Dysregulation of this response leads to chronic inflammation and tissue injury. In many tissues, their differentiation and survival are dependent on the colony stimulating factor 1 receptor (CSF1R) signalling axis, which is highly conserved across all vertebrates. Complete loss of either CSF1R or its cognate ligands, colony stimulating factor 1 (CSF1), and interleukin 34 (IL-34), results in the loss of many tissue-resident macrophage populations. This provides a useful paradigm to study macrophages.There are many tools used to visualize tissue-resident macrophages and their precursors, monocytes, in mice and humans. Particularly in mice there are genetic tools available to delete, enhance and manipulate monocytes and macrophages and their gene products to gain insight into phenotype and function. The laboratory rat has many advantages as an experimental model for the understanding of human disease, but the analytical resources are currently more limited than in mice. Here, we describe available genetic models, antibodies, and immunohistochemistry (IHC) methods that may be used to visualize tissue-resident macrophages in rats.
Collapse
Affiliation(s)
- Stephen Huang
- Mater Research Institute-UQ, Translational Research Institute, Woolloongabba, Brisbane, QLD, Australia
| | - Dylan Carter-Cusack
- Mater Research Institute-UQ, Translational Research Institute, Woolloongabba, Brisbane, QLD, Australia
| | - Emma Maxwell
- Mater Research Institute-UQ, Translational Research Institute, Woolloongabba, Brisbane, QLD, Australia
| | - Omkar L Patkar
- Mater Research Institute-UQ, Translational Research Institute, Woolloongabba, Brisbane, QLD, Australia
| | - Katharine M Irvine
- Mater Research Institute-UQ, Translational Research Institute, Woolloongabba, Brisbane, QLD, Australia.
| | - David A Hume
- Mater Research Institute-UQ, Translational Research Institute, Woolloongabba, Brisbane, QLD, Australia.
| |
Collapse
|
4
|
Vecchiarelli HA, Tremblay MÈ. Microglial Transcriptional Signatures in the Central Nervous System: Toward A Future of Unraveling Their Function in Health and Disease. Annu Rev Genet 2023; 57:65-86. [PMID: 37384734 DOI: 10.1146/annurev-genet-022223-093643] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), are primarily derived from the embryonic yolk sac and make their way to the CNS during early development. They play key physiological and immunological roles across the life span, throughout health, injury, and disease. Recent transcriptomic studies have identified gene transcript signatures expressed by microglia that may provide the foundation for unprecedented insights into their functions. Microglial gene expression signatures can help distinguish them from macrophage cell types to a reasonable degree of certainty, depending on the context. Microglial expression patterns further suggest a heterogeneous population comprised of many states that vary according to the spatiotemporal context. Microglial diversity is most pronounced during development, when extensive CNS remodeling takes place, and following disease or injury. A next step of importance for the field will be to identify the functional roles performed by these various microglial states, with the perspective of targeting them therapeutically.
Collapse
Affiliation(s)
- Haley A Vecchiarelli
- Division of Medical Sciences, University of Victoria, British Columbia, Canada; ,
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, British Columbia, Canada; ,
- Centre for Advanced Materials and Related Technology and Institute on Aging and Lifelong Health, University of Victoria, British Columbia, Canada
- Département de Médecine Moléculaire and Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Quebec, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine and Health Sciences, McGill University, Quebec, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, British Columbia, Canada
| |
Collapse
|
5
|
Reddaway J, Richardson PE, Bevan RJ, Stoneman J, Palombo M. Microglial morphometric analysis: so many options, so little consistency. Front Neuroinform 2023; 17:1211188. [PMID: 37637472 PMCID: PMC10448193 DOI: 10.3389/fninf.2023.1211188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/05/2023] [Indexed: 08/29/2023] Open
Abstract
Quantification of microglial activation through morphometric analysis has long been a staple of the neuroimmunologist's toolkit. Microglial morphological phenomics can be conducted through either manual classification or constructing a digital skeleton and extracting morphometric data from it. Multiple open-access and paid software packages are available to generate these skeletons via semi-automated and/or fully automated methods with varying degrees of accuracy. Despite advancements in methods to generate morphometrics (quantitative measures of cellular morphology), there has been limited development of tools to analyze the datasets they generate, in particular those containing parameters from tens of thousands of cells analyzed by fully automated pipelines. In this review, we compare and critique the approaches using cluster analysis and machine learning driven predictive algorithms that have been developed to tackle these large datasets, and propose improvements for these methods. In particular, we highlight the need for a commitment to open science from groups developing these classifiers. Furthermore, we call attention to a need for communication between those with a strong software engineering/computer science background and neuroimmunologists to produce effective analytical tools with simplified operability if we are to see their wide-spread adoption by the glia biology community.
Collapse
Affiliation(s)
- Jack Reddaway
- Division of Neuroscience, School of Biosciences, Cardiff University, Cardiff, United Kingdom
- Hodge Centre for Neuropsychiatric Immunology, Neuroscience and Mental Health Innovation Institute (NMHII), Cardiff University, Cardiff, United Kingdom
| | | | - Ryan J. Bevan
- UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Jessica Stoneman
- Division of Neuroscience, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Marco Palombo
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
- School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
6
|
Sehgal A, Carter-Cusack D, Keshvari S, Patkar O, Huang S, Summers KM, Hume DA, Irvine KM. Intraperitoneal transfer of wild-type bone marrow repopulates tissue macrophages in the Csf1r knockout rat without contributing to monocytopoiesis. Eur J Immunol 2023; 53:e2250312. [PMID: 37059596 DOI: 10.1002/eji.202250312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/13/2023] [Accepted: 04/13/2023] [Indexed: 04/16/2023]
Abstract
Homozygous null mutation of the Csf1r gene (Csf1rko) in rats leads to the loss of most tissue macrophage populations and pleiotropic impacts on postnatal growth and organ maturation, leading to early mortality. The phenotype can be reversed by intraperitoneal transfer of WT BM cells (BMT) at weaning. Here, we used a Csf1r-mApple transgenic reporter to track the fate of donor-derived cells. Following BMT into Csf1rko recipients, mApple+ve cells restored IBA1+ tissue macrophage populations in every tissue. However, monocytes, neutrophils, and B cells in the BM, blood, and lymphoid tissues remained of recipient (mApple-ve ) origin. An mApple+ve cell population expanded in the peritoneal cavity and invaded locally in the mesentery, fat pads, omentum, and diaphragm. One week after BMT, distal organs contained foci of mApple+ve , IBA1-ve immature progenitors that appeared to proliferate, migrate, and differentiate locally. We conclude that rat BM contains progenitor cells that are able to restore, replace, and maintain all tissue macrophage populations in a Csf1rko rat directly without contributing to the BM progenitor or blood monocyte populations.
Collapse
Affiliation(s)
- Anuj Sehgal
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Dylan Carter-Cusack
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Sahar Keshvari
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Omkar Patkar
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Stephen Huang
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| | - Katharine M Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| |
Collapse
|
7
|
Ni RJ, Wang YY, Gao TH, Wang QR, Wei JX, Zhao LS, Ma YR, Ma XH, Li T. Depletion of microglia with PLX3397 attenuates MK-801-induced hyperactivity associated with regulating inflammation-related genes in the brain. Zool Res 2023; 44:543-555. [PMID: 37147908 PMCID: PMC10236309 DOI: 10.24272/j.issn.2095-8137.2022.389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/28/2023] [Indexed: 05/07/2023] Open
Abstract
Acute administration of MK-801 (dizocilpine), an N-methyl-D-aspartate receptor (NMDAR) antagonist, can establish animal models of psychiatric disorders. However, the roles of microglia and inflammation-related genes in these animal models of psychiatric disorders remain unknown. Here, we found rapid elimination of microglia in the prefrontal cortex (PFC) and hippocampus (HPC) of mice following administration of the dual colony-stimulating factor 1 receptor (CSF1R)/c-Kit kinase inhibitor PLX3397 (pexidartinib) in drinking water. Single administration of MK-801 induced hyperactivity in the open-field test (OFT). Importantly, PLX3397-induced depletion of microglia prevented the hyperactivity and schizophrenia-like behaviors induced by MK-801. However, neither repopulation of microglia nor inhibition of microglial activation by minocycline affected MK-801-induced hyperactivity. Importantly, microglial density in the PFC and HPC was significantly correlated with behavioral changes. In addition, common and distinct glutamate-, GABA-, and inflammation-related gene (116 genes) expression patterns were observed in the brains of PLX3397- and/or MK-801-treated mice. Moreover, 10 common inflammation-related genes ( CD68, CD163, CD206, TMEM119, CSF3R, CX3CR1, TREM2, CD11b, CSF1R, and F4/80) with very strong correlations were identified in the brain using hierarchical clustering analysis. Further correlation analysis demonstrated that the behavioral changes in the OFT were most significantly associated with the expression of inflammation-related genes ( NLRP3, CD163, CD206, F4/80, TMEM119, and TMEM176a), but not glutamate- or GABA-related genes in PLX3397- and MK-801-treated mice. Thus, our results suggest that microglial depletion via a CSF1R/c-Kit kinase inhibitor can ameliorate the hyperactivity induced by an NMDAR antagonist, which is associated with modulation of immune-related genes in the brain.
Collapse
Affiliation(s)
- Rong-Jun Ni
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan 610044, China
| | - Yi-Yan Wang
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan 610044, China
| | - Tian-Hao Gao
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan 610044, China
| | - Qi-Run Wang
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan 610044, China
| | - Jin-Xue Wei
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan 610044, China
| | - Lian-Sheng Zhao
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan 610044, China
| | - Yang-Rui Ma
- Golden Apple Jincheng NO.1 Secondary School, Chengdu, Sichuan 610213, China
| | - Xiao-Hong Ma
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan 610044, China. E-mail:
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310013, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310014, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510799, China. E-mail:
| |
Collapse
|