1
|
Lacroix G, Bhat S, Shafia Z, Blunck R. KCNG4 Genetic Variant Linked to Migraine Prevents Expression of KCNB1. Int J Mol Sci 2024; 25:8960. [PMID: 39201645 PMCID: PMC11354983 DOI: 10.3390/ijms25168960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Migraines are a common type of headache affecting around 15% of the population. The signalling pathways leading to migraines have not been fully understood, but neuronal voltage-gated ion channels, such as KCNG4, have been linked to this pathology. KCNG4 (Kv6.4) is a silent member of the superfamily of voltage-gated potassium (Kv) channels, which expresses in heterotetramers with members of the KCNB (Kv2) family. The genetic variant Kv6.4-L360P has previously been linked to migraines, but their mode of action remains unknown. Here, we characterized the molecular characteristics of Kv6.4-L360P when co-expressed with Kv2.1. We found that Kv6.4-L360P almost completely abolishes Kv2 currents, and we propose that this mechanism in the trigeminal system, linked to the initiation of migraine, leads to the pathology.
Collapse
Affiliation(s)
- Gabriel Lacroix
- Department of Physics, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Shreyas Bhat
- Department of Physics, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Interdisciplinary Research Center on Brain and Learning (CIRCA), Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Zerghona Shafia
- Interdisciplinary Research Center on Brain and Learning (CIRCA), Université de Montréal, Montréal, QC H3T 1J4, Canada
- Department of Neuroscience, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Rikard Blunck
- Department of Physics, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Interdisciplinary Research Center on Brain and Learning (CIRCA), Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
2
|
Renigunta V, Xhaferri N, Shaikh IG, Schlegel J, Bisen R, Sanvido I, Kalpachidou T, Kummer K, Oliver D, Leitner MG, Lindner M. A versatile functional interaction between electrically silent K V subunits and K V7 potassium channels. Cell Mol Life Sci 2024; 81:301. [PMID: 39003683 PMCID: PMC11335225 DOI: 10.1007/s00018-024-05312-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 07/15/2024]
Abstract
Voltage-gated K+ (KV) channels govern K+ ion flux across cell membranes in response to changes in membrane potential. They are formed by the assembly of four subunits, typically from the same family. Electrically silent KV channels (KVS), however, are unable to conduct currents on their own. It has been assumed that these KVS must obligatorily assemble with subunits from the KV2 family into heterotetrameric channels, thereby giving rise to currents distinct from those of homomeric KV2 channels. Herein, we show that KVS subunits indeed also modulate the activity, biophysical properties and surface expression of recombinant KV7 isoforms in a subunit-specific manner. Employing co-immunoprecipitation, and proximity labelling, we unveil the spatial coexistence of KVS and KV7 within a single protein complex. Electrophysiological experiments further indicate functional interaction and probably heterotetramer formation. Finally, single-cell transcriptomic analyses identify native cell types in which this KVS and KV7 interaction may occur. Our findings demonstrate that KV cross-family interaction is much more versatile than previously thought-possibly serving nature to shape potassium conductance to the needs of individual cell types.
Collapse
Affiliation(s)
- Vijay Renigunta
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037, Marburg, Germany
| | - Nermina Xhaferri
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037, Marburg, Germany
| | - Imran Gousebasha Shaikh
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037, Marburg, Germany
| | - Jonathan Schlegel
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037, Marburg, Germany
| | - Rajeshwari Bisen
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037, Marburg, Germany
| | - Ilaria Sanvido
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Kai Kummer
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Oliver
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037, Marburg, Germany
| | - Michael G Leitner
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Moritz Lindner
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037, Marburg, Germany.
- The Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
- Department of Ophthalmology, Philipps University Marburg, 35037, Marburg, Germany.
| |
Collapse
|
3
|
Sato T, Kuniyoshi K, Hayashi T, Nishiwaki H, Mizobuchi K, Kusaka S. Clinical course of two siblings with potassium voltage-gated channel modifier subfamily V member 2 (KCNV2)-associated retinopathy. Doc Ophthalmol 2024; 148:173-182. [PMID: 38630375 DOI: 10.1007/s10633-024-09971-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/15/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND KCNV2-associated retinopathy causes a phenotype reported as "cone dystrophy with nyctalopia and supernormal rod responses (CDSRR; OMIM# 610356)," featuring pathognomonic findings on electroretinography (ERG). Here, we report the clinical courses of two siblings with CDSRR. CASE REPORTS Patient 1: A 3-year-old boy with intermittent exophoria was referred to our hospital. The patient's decimal best-corrected visual acuity (BCVA) at age 6 was 0.7 and 0.7 in the right and left eyes, respectively. Photophobia and night blindness were also observed. Because the ERG showed a delayed and supernormal b-wave with a "squaring (trough-flattened)" a-wave in the DA-30 ERG, and CDSRR was diagnosed. The patient's vision gradually worsened, and faint bilateral bull's eye maculopathy was observed at the age of 27 years, although the fundi were initially unremarkable. Genetic examination revealed a homozygous missense variant, c.529T > C (p.Cys177Arg), in the KCNV2 gene. Patient 2: The second patient was Patient 1's younger sister, who was brought to our hospital at 3 years of age. The patient presented with exotropia, mild nystagmus, photophobia, night blindness, and color vision abnormalities. The patients' decimal BCVA at age 13 was 0.6 and 0.4 in the right and left eyes, respectively, and BCVA gradually decreased until the age of 24 years. The fundi were unremarkable. The siblings had similar ERG findings and the same homozygous missense variant in the KCNV2 gene. CONCLUSIONS The siblings had clinical findings typical of CDSRR. High-intense flash ERG is recommended for identifying pathognomonic "squaring" a-waves in patients with CDSRR.
Collapse
Affiliation(s)
- Tomoko Sato
- Department of Ophthalmology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Kazuki Kuniyoshi
- Department of Ophthalmology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan.
| | - Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | | | - Kei Mizobuchi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Shunji Kusaka
- Department of Ophthalmology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| |
Collapse
|
4
|
Stewart RG, Marquis MJ, Jo S, Aberra A, Cook V, Whiddon Z, Ferns M, Sack JT. A Kv2 inhibitor combination reveals native neuronal conductances consistent with Kv2/KvS heteromers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578214. [PMID: 38352561 PMCID: PMC10862871 DOI: 10.1101/2024.01.31.578214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
KvS proteins are voltage-gated potassium channel subunits that form functional channels when assembled into heterotetramers with Kv2.1 ( KCNB1 ) or Kv2.2 ( KCNB2 ). Mammals have 10 KvS subunits: Kv5.1 ( KCNF1 ), Kv6.1 ( KCNG1 ), Kv6.2 ( KCNG2 ), Kv6.3 ( KCNG3 ), Kv6.4 ( KCNG4 ), Kv8.1 ( KCNV1 ), Kv8.2 ( KCNV2 ), Kv9.1 ( KCNS1 ), Kv9.2 ( KCNS2 ), and Kv9.3 ( KCNS3 ). Electrically excitable cells broadly express channels containing Kv2 subunits and most neurons have substantial Kv2 conductance. However, whether KvS subunits contribute to these conductances has not been clear, leaving the physiological roles of KvS subunits poorly understood. Here, we identify that two potent Kv2 inhibitors, used in combination, can distinguish conductances of Kv2/KvS channels and Kv2-only channels. We find that Kv5, Kv6, Kv8, or Kv9-containing channels are resistant to the Kv2-selective pore-blocker RY785 yet remain sensitive to the Kv2-selective voltage sensor modulator guangxitoxin-1E (GxTX). Using these inhibitors in mouse superior cervical ganglion neurons, we find that little of the Kv2 conductance is carried by KvS-containing channels. In contrast, conductances consistent with KvS-containing channels predominate over Kv2-only channels in mouse and human dorsal root ganglion neurons. These results establish an approach to pharmacologically distinguish conductances of Kv2/KvS heteromers from Kv2-only channels, enabling investigation of the physiological roles of endogenous KvS subunits. These findings suggest that drugs targeting KvS subunits could modulate electrical activity of subsets of Kv2-expressing cell types.
Collapse
|
5
|
Ferns M, van der List D, Vierra NC, Lacey T, Murray K, Kirmiz M, Stewart RG, Sack JT, Trimmer JS. Electrically silent KvS subunits associate with native Kv2 channels in brain and impact diverse properties of channel function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577135. [PMID: 38328147 PMCID: PMC10849721 DOI: 10.1101/2024.01.25.577135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Voltage-gated K+ channels of the Kv2 family are highly expressed in brain and play dual roles in regulating neuronal excitability and in organizing endoplasmic reticulum - plasma membrane (ER-PM) junctions. Studies in heterologous cells suggest that the two pore-forming alpha subunits Kv2.1 and Kv2.2 assemble with "electrically silent" KvS subunits to form heterotetrameric channels with distinct biophysical properties. Here, using mass spectrometry-based proteomics, we identified five KvS subunits as components of native Kv2.1 channels immunopurified from mouse brain, the most abundant being Kv5.1. We found that Kv5.1 co-immunoprecipitates with Kv2.1 and to a lesser extent with Kv2.2 from brain lysates, and that Kv5.1 protein levels are decreased by 70% in Kv2.1 knockout mice and 95% in Kv2.1/2.2 double knockout mice. Multiplex immunofluorescent labelling of rodent brain sections revealed that in neocortex Kv5.1 immunolabeling is apparent in a large percentage of Kv2.1 and Kv2.2-positive layer 2/3 neurons, and in a smaller percentage of layer 5 and 6 neurons. At the subcellular level, Kv5.1 is co-clustered with Kv2.1 and Kv2.2 at ER-PM junctions in cortical neurons, although clustering of Kv5.1-containing channels is reduced relative to homomeric Kv2 channels. We also found that in heterologous cells coexpression with Kv5.1 reduces the clustering and alters the pharmacological properties of Kv2.1 channels. Together, these findings demonstrate that the Kv5.1 electrically silent subunit is a component of a substantial fraction of native brain Kv2 channels, and that its incorporation into heteromeric channels can impact diverse aspects of Kv2 channel function.
Collapse
Affiliation(s)
- Michael Ferns
- Dept. of Anesthesiology and Pain Medicine, University of California Davis, One Shields Ave, Davis, CA 95616, USA
- Dept. of Physiology and Membrane Biology, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Deborah van der List
- Dept. of Physiology and Membrane Biology, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Nicholas C. Vierra
- Dept. of Physiology and Membrane Biology, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Taylor Lacey
- Dept. of Anesthesiology and Pain Medicine, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Karl Murray
- Dept. of Physiology and Membrane Biology, University of California Davis, One Shields Ave, Davis, CA 95616, USA
- Dept. of Psychiatry and Behavioral Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Michael Kirmiz
- Dept. of Physiology and Membrane Biology, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Robert G. Stewart
- Dept. of Physiology and Membrane Biology, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Jon T. Sack
- Dept. of Physiology and Membrane Biology, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - James S. Trimmer
- Dept. of Physiology and Membrane Biology, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
6
|
Nagae Y, Kuniyoshi K, Ishibashi M, Tanabe F, Matsumoto C, Kusaka S. Fundus autofluorescence, optical coherence tomography and electroretinography abnormalities in a patient with digoxin retinopathy that resemble those in KCNV2-associated retinopathy. Doc Ophthalmol 2023; 147:131-137. [PMID: 37460904 DOI: 10.1007/s10633-023-09942-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/21/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Digoxin related retinal toxicity causes blurred vision, photophobia, central scotoma, color vision abnormality, and electroretinography (ERG) abnormalities. Here, we report a case with transient abnormalities in vison, in which fundus autofluorescence (FAF), optical coherence tomography (OCT), and ERG findings resembled those in KCNV2 (potassium voltage-gated channel modifier subfamily V member 2)-associated retinopathy. CASE REPORT An 89-year-old woman presented with complaints of acute blurred vision, nyctalopia, photophobia, and color vision abnormality. She received digoxin for tachycardia induced by atrial fibrillation for a month. The fundi showed a faint white ring at the fovea, which showed hyperfluorescence in FAF. OCT showed a thickened EZ in the macula. A dark-adapted (DA)-30 ERG showed a reduced and "squaring (trough-flattened)" a-wave, and a delayed, supernormal b-wave, resulting in a high b/a-wave amplitude ratio. The digoxin dose was reduced following an elevation in serum levels. Five weeks later, her visual acuities improved, and abnormal hyperfluorescence on FAF disappeared. After 6 months, no visual symptoms were reported. The ellipsoid-zone thickening in OCT improved; however, the b/a-wave amplitude ratio on DA-30 ERG remained high. The b-wave in LA-long-flash ERG was initially reduced, which improved after correction of serum level of digoxin. CONCLUSIONS The patient's clinical findings resembled those of patients with KCNV2-associated retinopathy or temporal hyperkalemia. These disorders appear to have a common pathogenesis, which may be related to abnormal extracellular potassium levels in the retina. The on-bipolar cells seemed to be more affected than the off-bipolar cells in digoxin related retinal toxicity.
Collapse
Affiliation(s)
- Yuki Nagae
- Department of Ophthalmology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama City, Osaka, 589-8511, Japan
| | - Kazuki Kuniyoshi
- Department of Ophthalmology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama City, Osaka, 589-8511, Japan.
| | - Marika Ishibashi
- Department of Ophthalmology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama City, Osaka, 589-8511, Japan
| | - Fumi Tanabe
- Department of Ophthalmology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama City, Osaka, 589-8511, Japan
| | - Chota Matsumoto
- Department of Ophthalmology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama City, Osaka, 589-8511, Japan
| | - Shunji Kusaka
- Department of Ophthalmology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama City, Osaka, 589-8511, Japan
| |
Collapse
|
7
|
Bhatt Y, Hunt DM, Carvalho LS. The origins of the full-field flash electroretinogram b-wave. Front Mol Neurosci 2023; 16:1153934. [PMID: 37465364 PMCID: PMC10351385 DOI: 10.3389/fnmol.2023.1153934] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/12/2023] [Indexed: 07/20/2023] Open
Abstract
The electroretinogram (ERG) measures the electrical activity of retinal neurons and glial cells in response to a light stimulus. Amongst other techniques, clinicians utilize the ERG to diagnose various eye diseases, including inherited conditions such as cone-rod dystrophy, rod-cone dystrophy, retinitis pigmentosa and Usher syndrome, and to assess overall retinal health. An ERG measures the scotopic and photopic systems separately and mainly consists of an a-wave and a b-wave. The other major components of the dark-adapted ERG response include the oscillatory potentials, c-wave, and d-wave. The dark-adapted a-wave is the initial corneal negative wave that arises from the outer segments of the rod and cone photoreceptors hyperpolarizing in response to a light stimulus. This is followed by the slower, positive, and prolonged b-wave, whose origins remain elusive. Despite a large body of work, there remains controversy around the mechanisms involved in the generation of the b-wave. Several hypotheses attribute the origins of the b-wave to bipolar or Müller glial cells or a dual contribution from both cell types. This review will discuss the current hypothesis for the cellular origins of the dark-adapted ERG, with a focus on the b-wave.
Collapse
Affiliation(s)
- Yashvi Bhatt
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia
- Lions Eye Institute Ltd., Nedlands, WA, Australia
| | - David M. Hunt
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia
- Lions Eye Institute Ltd., Nedlands, WA, Australia
| | - Livia S. Carvalho
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia
- Lions Eye Institute Ltd., Nedlands, WA, Australia
| |
Collapse
|
8
|
Inamdar SM, Lankford CK, Poria D, Laird JG, Solessio E, Kefalov VJ, Baker SA. Differential impact of Kv8.2 loss on rod and cone signaling and degeneration. Hum Mol Genet 2022; 31:1035-1050. [PMID: 34652420 PMCID: PMC8976434 DOI: 10.1093/hmg/ddab301] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022] Open
Abstract
Heteromeric Kv2.1/Kv8.2 channels are voltage-gated potassium channels localized to the photoreceptor inner segment. They carry IKx, which is largely responsible for setting the photoreceptor resting membrane potential. Mutations in Kv8.2 result in childhood-onset cone dystrophy with supernormal rod response (CDSRR). We generated a Kv8.2 knockout (KO) mouse and examined retinal signaling and photoreceptor degeneration to gain deeper insight into the complex phenotypes of this disease. Using electroretinograms, we show that there were delayed or reduced signaling from rods depending on the intensity of the light stimulus, consistent with reduced capacity for light-evoked changes in membrane potential. The delayed response was not seen ex vivo where extracellular potassium levels were controlled by the perfusion buffer, so we propose the in vivo alteration is influenced by genotype-associated ionic imbalance. We observed mild retinal degeneration. Signaling from cones was reduced but there was no loss of cone density. Loss of Kv8.2 altered responses to flickering light with responses attenuated at high frequencies and altered in shape at low frequencies. The Kv8.2 KO line on an all-cone retina background had reduced cone-driven ERG b wave amplitudes and underwent degeneration. Altogether, we provide insight into how a deficit in the dark current affects the health and function of photoreceptors.
Collapse
Affiliation(s)
- Shivangi M Inamdar
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa, IA 52252, USA
| | - Colten K Lankford
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa, IA 52252, USA
| | - Deepak Poria
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, MO 63110, USA
- Gavin Herbert Eye Institute, School of Medicine, Irvine, CA 92697, USA
| | - Joseph G Laird
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa, IA 52252, USA
| | - Eduardo Solessio
- Department of Ophthalmology and Visual Sciences, Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Vladimir J Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, MO 63110, USA
- Gavin Herbert Eye Institute, School of Medicine, Irvine, CA 92697, USA
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Sheila A Baker
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa, IA 52252, USA
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa, IA 52252, USA
| |
Collapse
|
9
|
Rashwan R, Hunt DM, Carvalho LS. The role of voltage-gated ion channels in visual function and disease in mammalian photoreceptors. Pflugers Arch 2021; 473:1455-1468. [PMID: 34255151 DOI: 10.1007/s00424-021-02595-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/31/2021] [Accepted: 06/10/2021] [Indexed: 12/26/2022]
Abstract
Light activation of the classical light-sensing retinal neurons, the photoreceptors, results in a graded change in membrane potential that ultimately leads to a reduction in neurotransmitter release to the post-synaptic retinal neurons. Photoreceptors show striking powers of adaptation, and for visual processing to function optimally, they must adjust their gain to remain responsive to different levels of ambient light intensity. The presence of a tightly controlled balance of inward and outward currents modulated by several different types of ion channels is what gives photoreceptors their remarkably dynamic operating range. Part of the resetting and modulation of this operating range is controlled by potassium and calcium voltage-gated channels, which are involved in setting the dark resting potential and synapse signal processing, respectively. Their essential contribution to visual processing is further confirmed in patients suffering from cone dystrophy with supernormal rod response (CDSRR) and congenital stationary night blindness type 2 (CSNB2), both conditions that lead to irreversible vision loss. This review will discuss these two types of voltage-gated ion channels present in photoreceptors, focussing on their structure and physiology, and their role in visual processing. It will also discuss the use and benefits of knockout mouse models to further study the function of these channels and what routes to potential treatments could be applied for CDSRR and CSNB2.
Collapse
Affiliation(s)
- Rabab Rashwan
- Lions Eye Institute, Nedlands, Western Australia, 6009, Australia
- Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, Egypt
| | - David M Hunt
- Lions Eye Institute, Nedlands, Western Australia, 6009, Australia
- Centre for Ophthalmology and Vision Science, The University of Western Australia, Perth, Western Australia, 6009, Australia
- School of Biological Sciences, University of Western Australia, Nedlands, Western Australia, 6009, Australia
| | - Livia S Carvalho
- Lions Eye Institute, Nedlands, Western Australia, 6009, Australia.
- Centre for Ophthalmology and Vision Science, The University of Western Australia, Perth, Western Australia, 6009, Australia.
| |
Collapse
|
10
|
Jiang X, Rashwan R, Voigt V, Nerbonne J, Hunt DM, Carvalho LS. Molecular, Cellular and Functional Changes in the Retinas of Young Adult Mice Lacking the Voltage-Gated K + Channel Subunits Kv8.2 and K2.1. Int J Mol Sci 2021; 22:4877. [PMID: 34063002 PMCID: PMC8124447 DOI: 10.3390/ijms22094877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/24/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
Cone Dystrophy with Supernormal Rod Response (CDSRR) is a rare autosomal recessive disorder leading to severe visual impairment in humans, but little is known about its unique pathophysiology. We have previously shown that CDSRR is caused by mutations in the KCNV2 (Potassium Voltage-Gated Channel Modifier Subfamily V Member 2) gene encoding the Kv8.2 subunit, a modulatory subunit of voltage-gated potassium (Kv) channels. In a recent study, we validated a novel mouse model of Kv8.2 deficiency at a late stage of the disease and showed that it replicates the human electroretinogram (ERG) phenotype. In this current study, we focused our investigation on young adult retinas to look for early markers of disease and evaluate their effect on retinal morphology, electrophysiology and immune response in both the Kv8.2 knockout (KO) mouse and in the Kv2.1 KO mouse, the obligate partner of Kv8.2 in functional retinal Kv channels. By evaluating the severity of retinal dystrophy in these KO models, we demonstrated that retinas of Kv KO mice have significantly higher apoptotic cells, a thinner outer nuclear cell layer and increased activated microglia cells in the subretinal space. Our results indicate that in the murine retina, the loss of Kv8.2 subunits contributes to early cellular and physiological changes leading to retinal dysfunction. These results could have potential implications in the early management of CDSRR despite its relatively nonprogressive nature in humans.
Collapse
Affiliation(s)
- Xiaotian Jiang
- Centre for Ophthalmology and Vision Science, The University of Western Australia, Perth, WA 6009, Australia; (X.J.); (D.M.H.)
| | - Rabab Rashwan
- Lions Eye Institute, Nedlands, WA 6009, Australia; (R.R.); (V.V.)
- Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia 61519, Egypt
| | - Valentina Voigt
- Lions Eye Institute, Nedlands, WA 6009, Australia; (R.R.); (V.V.)
| | - Jeanne Nerbonne
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - David M. Hunt
- Centre for Ophthalmology and Vision Science, The University of Western Australia, Perth, WA 6009, Australia; (X.J.); (D.M.H.)
- Lions Eye Institute, Nedlands, WA 6009, Australia; (R.R.); (V.V.)
| | - Livia S. Carvalho
- Centre for Ophthalmology and Vision Science, The University of Western Australia, Perth, WA 6009, Australia; (X.J.); (D.M.H.)
- Lions Eye Institute, Nedlands, WA 6009, Australia; (R.R.); (V.V.)
| |
Collapse
|
11
|
Georgiou M, Robson AG, Fujinami K, Leo SM, Vincent A, Nasser F, Cabral De Guimarães TA, Khateb S, Pontikos N, Fujinami-Yokokawa Y, Liu X, Tsunoda K, Hayashi T, Vargas ME, Thiadens AAHJ, de Carvalho ER, Nguyen XTA, Arno G, Mahroo OA, Martin-Merida MI, Jimenez-Rolando B, Gordo G, Carreño E, Ayuso C, Sharon D, Kohl S, Huckfeldt RM, Wissinger B, Boon CJF, Banin E, Pennesi ME, Khan AO, Webster AR, Zrenner E, Héon E, Michaelides M. KCNV2-Associated Retinopathy: Genetics, Electrophysiology, and Clinical Course-KCNV2 Study Group Report 1. Am J Ophthalmol 2021; 225:95-107. [PMID: 33309813 PMCID: PMC8186730 DOI: 10.1016/j.ajo.2020.11.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 12/01/2022]
Abstract
PURPOSE To investigate genetics, electrophysiology, and clinical course of KCNV2-associated retinopathy in a cohort of children and adults. STUDY DESIGN This was a multicenter international clinical cohort study. METHODS Review of clinical notes and molecular genetic testing. Full-field electroretinography (ERG) recordings, incorporating the international standards, were reviewed and quantified and compared with age and recordings from control subjects. RESULTS In total, 230 disease-associated alleles were identified from 117 patients, corresponding to 75 different KCNV2 variants, with 28 being novel. The mean age of onset was 3.9 years old. All patients were symptomatic before 12 years of age (range, 0-11 years). Decreased visual acuity was present in all patients, and 4 other symptoms were common: reduced color vision (78.6%), photophobia (53.5%), nyctalopia (43.6%), and nystagmus (38.6%). After a mean follow-up of 8.4 years, the mean best-corrected visual acuity (BCVA ± SD) decreased from 0.81 ± 0.27 to 0.90 ± 0.31 logarithm of minimal angle of resolution. Full-field ERGs showed pathognomonic waveform features. Quantitative assessment revealed a wide range of ERG amplitudes and peak times, with a mean rate of age-associated reduction indistinguishable from the control group. Mean amplitude reductions for the dark-adapted 0.01 ERG, dark-adapted 10 ERG a-wave, and LA 3.0 30 Hz and LA3 ERG b-waves were 55%, 21%, 48%, and 74%, respectively compared with control values. Peak times showed stability across 6 decades. CONCLUSION In KCNV2-associated retinopathy, full-field ERGs are diagnostic and consistent with largely stable peripheral retinal dysfunction. Report 1 highlights the severity of the clinical phenotype and established a large cohort of patients, emphasizing the unmet need for trials of novel therapeutics.
Collapse
Affiliation(s)
- Michalis Georgiou
- Moorfields Eye Hospital, London, United Kingdom; University College London Institute of Ophthalmology, London, United Kingdom
| | - Anthony G Robson
- Moorfields Eye Hospital, London, United Kingdom; University College London Institute of Ophthalmology, London, United Kingdom
| | - Kaoru Fujinami
- Moorfields Eye Hospital, London, United Kingdom; University College London Institute of Ophthalmology, London, United Kingdom; Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan; Department of Ophthalmology, Keio University School of Medicine, Tokyo, Ontario, Japan
| | - Shaun M Leo
- Moorfields Eye Hospital, London, United Kingdom; University College London Institute of Ophthalmology, London, United Kingdom
| | - Ajoy Vincent
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Fadi Nasser
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | | | - Samer Khateb
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nikolas Pontikos
- Moorfields Eye Hospital, London, United Kingdom; University College London Institute of Ophthalmology, London, United Kingdom
| | - Yu Fujinami-Yokokawa
- University College London Institute of Ophthalmology, London, United Kingdom; Department of Health Policy and Management, Keio University School of Medicine, Tokyo, Japan
| | - Xiao Liu
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan; Department of Ophthalmology, Keio University School of Medicine, Tokyo, Ontario, Japan
| | - Kazushige Tsunoda
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan; Department of Ophthalmology, Keio University School of Medicine, Tokyo, Ontario, Japan
| | - Takaaki Hayashi
- Department of Ophthalmology, Katsushika Medical Center, The Jikei University School of Medicine, Tokyo, Japan
| | - Mauricio E Vargas
- Department of Ophthalmology, Oregon Health and Science University, Casey Eye Institute, Portland, Oregon, USA
| | | | - Emanuel R de Carvalho
- University College London Institute of Ophthalmology, London, United Kingdom; Department of Ophthalmology, Amsterdam UMC, Academic Medical Center, Amsterdam, the Netherlands
| | - Xuan-Thanh-An Nguyen
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Gavin Arno
- Moorfields Eye Hospital, London, United Kingdom; University College London Institute of Ophthalmology, London, United Kingdom
| | - Omar A Mahroo
- Moorfields Eye Hospital, London, United Kingdom; University College London Institute of Ophthalmology, London, United Kingdom
| | - Maria Inmaculada Martin-Merida
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid, Madrid, Spain; Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Belen Jimenez-Rolando
- Department of Ophthalmology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid, Madrid, Spain
| | - Gema Gordo
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid, Madrid, Spain; Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Ester Carreño
- Department of Ophthalmology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid, Madrid, Spain
| | - Carmen Ayuso
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid, Madrid, Spain; Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Susanne Kohl
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Rachel M Huckfeldt
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Camiel J F Boon
- Department of Ophthalmology, Amsterdam UMC, Academic Medical Center, Amsterdam, the Netherlands; Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mark E Pennesi
- Department of Ophthalmology, Oregon Health and Science University, Casey Eye Institute, Portland, Oregon, USA
| | - Arif O Khan
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western University, Cleveland, Ohio, USA; Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Andrew R Webster
- Moorfields Eye Hospital, London, United Kingdom; University College London Institute of Ophthalmology, London, United Kingdom
| | - Eberhart Zrenner
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Elise Héon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Michel Michaelides
- Moorfields Eye Hospital, London, United Kingdom; University College London Institute of Ophthalmology, London, United Kingdom.
| |
Collapse
|
12
|
Fortenbach C, Peinado Allina G, Shores CM, Karlen SJ, Miller EB, Bishop H, Trimmer JS, Burns ME, Pugh EN. Loss of the K+ channel Kv2.1 greatly reduces outward dark current and causes ionic dysregulation and degeneration in rod photoreceptors. J Gen Physiol 2021; 153:211728. [PMID: 33502442 PMCID: PMC7845921 DOI: 10.1085/jgp.202012687] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/25/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022] Open
Abstract
Vertebrate retinal photoreceptors signal light by suppressing a circulating “dark current” that maintains their relative depolarization in the dark. This dark current is composed of an inward current through CNG channels and NCKX transporters in the outer segment that is balanced by outward current exiting principally from the inner segment. It has been hypothesized that Kv2.1 channels carry a predominant fraction of the outward current in rods. We examined this hypothesis by comparing whole cell, suction electrode, and electroretinographic recordings from Kv2.1 knockout (Kv2.1−/−) and wild-type (WT) mouse rods. Single cell recordings revealed flash responses with unusual kinetics, and reduced dark currents that were quantitatively consistent with the measured depolarization of the membrane resting potential in the dark. A two-compartment (outer and inner segment) physiological model based on known ionic mechanisms revealed that the abnormal Kv2.1−/− rod photoresponses arise principally from the voltage dependencies of the known conductances and the NCKX exchanger, and a highly elevated fraction of inward current carried by Ca2+ through CNG channels due to the aberrant depolarization. Kv2.1−/− rods had shorter outer segments than WT and dysmorphic mitochondria in their inner segments. Optical coherence tomography of knockout animals demonstrated a slow photoreceptor degeneration over a period of 6 mo. Overall, these findings reveal that Kv2.1 channels carry 70–80% of the non-NKX outward dark current of the mouse rod, and that the depolarization caused by the loss of Kv2.1 results in elevated Ca2+ influx through CNG channels and elevated free intracellular Ca2+, leading to progressive degeneration.
Collapse
Affiliation(s)
| | | | - Camilla M Shores
- Center for Neuroscience, University of California, Davis, Davis, CA
| | - Sarah J Karlen
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA
| | - Eric B Miller
- Center for Neuroscience, University of California, Davis, Davis, CA
| | - Hannah Bishop
- Center for Neuroscience, University of California, Davis, Davis, CA.,Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA
| | - James S Trimmer
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA.,Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA
| | - Marie E Burns
- Center for Neuroscience, University of California, Davis, Davis, CA.,Department of Ophthalmology and Vision Science, University of California, Davis, Davis, CA.,Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA
| | - Edward N Pugh
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA.,Department of Ophthalmology and Vision Science, University of California, Davis, Davis, CA.,Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA
| |
Collapse
|
13
|
Lankford CK, Laird JG, Inamdar SM, Baker SA. A Comparison of the Primary Sensory Neurons Used in Olfaction and Vision. Front Cell Neurosci 2020; 14:595523. [PMID: 33250719 PMCID: PMC7676898 DOI: 10.3389/fncel.2020.595523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/06/2020] [Indexed: 12/18/2022] Open
Abstract
Vision, hearing, smell, taste, and touch are the tools used to perceive and navigate the world. They enable us to obtain essential resources such as food and highly desired resources such as mates. Thanks to the investments in biomedical research the molecular unpinning’s of human sensation are rivaled only by our knowledge of sensation in the laboratory mouse. Humans rely heavily on vision whereas mice use smell as their dominant sense. Both modalities have many features in common, starting with signal detection by highly specialized primary sensory neurons—rod and cone photoreceptors (PR) for vision, and olfactory sensory neurons (OSN) for the smell. In this chapter, we provide an overview of how these two types of primary sensory neurons operate while highlighting the similarities and distinctions.
Collapse
Affiliation(s)
- Colten K Lankford
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States
| | - Joseph G Laird
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States
| | - Shivangi M Inamdar
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States
| | - Sheila A Baker
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States.,Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
14
|
Sensing through Non-Sensing Ocular Ion Channels. Int J Mol Sci 2020; 21:ijms21186925. [PMID: 32967234 PMCID: PMC7554890 DOI: 10.3390/ijms21186925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Ion channels are membrane-spanning integral proteins expressed in multiple organs, including the eye. In the eye, ion channels are involved in various physiological processes, like signal transmission and visual processing. A wide range of mutations have been reported in the corresponding genes and their interacting subunit coding genes, which contribute significantly to an array of blindness, termed ocular channelopathies. These mutations result in either a loss- or gain-of channel functions affecting the structure, assembly, trafficking, and localization of channel proteins. A dominant-negative effect is caused in a few channels formed by the assembly of several subunits that exist as homo- or heteromeric proteins. Here, we review the role of different mutations in switching a “sensing” ion channel to “non-sensing,” leading to ocular channelopathies like Leber’s congenital amaurosis 16 (LCA16), cone dystrophy, congenital stationary night blindness (CSNB), achromatopsia, bestrophinopathies, retinitis pigmentosa, etc. We also discuss the various in vitro and in vivo disease models available to investigate the impact of mutations on channel properties, to dissect the disease mechanism, and understand the pathophysiology. Innovating the potential pharmacological and therapeutic approaches and their efficient delivery to the eye for reversing a “non-sensing” channel to “sensing” would be life-changing.
Collapse
|
15
|
Brunet AA, Fuller-Carter PI, Miller AL, Voigt V, Vasiliou S, Rashwan R, Hunt DM, Carvalho LS. Validating Fluorescent Chrnb4.EGFP Mouse Models for the Study of Cone Photoreceptor Degeneration. Transl Vis Sci Technol 2020; 9:28. [PMID: 32879784 PMCID: PMC7442867 DOI: 10.1167/tvst.9.9.28] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose To validate the application of a known transgenic mouse line with green fluorescent cones (Chrnb4.EGFP) to study cone photoreceptor biology and function in health and disease. Methods Chrnb4.EGFP retinas containing GFP+ cones were compared with retinas without the GFP transgene via immunohistochemistry, quantitative real-time polymerase chain reaction, electroretinograms, and flow cytometry. The Chrnb4.EGFP line was backcrossed to the mouse models of cone degeneration, Pde6ccpfl1 and Gnat2cpfl3 , generating the new lines Gnat2.GFP and Pde6c.GFP, which were also studied as described. Results GFP expression spanned the length of the cone cell in the Chrnb4.EGFP line, as well as in the novel Gnat2.GFP and Pde6c.GFP lines. The effect of GFP expression showed no significant changes to outer nuclear layer cell death, cone-specific gene expression, and immune response activation. A temporal decrease in GFP expression over time was observed, but GFP fluorescence was still detected through flow cytometry as late as 6 months. Furthermore, a functional analysis of photopic and scotopic electroretinogram responses of the Chrnb4 mouse showed no significant difference between GFP- and GFP+ mice, whereas electroretinogram recordings for the Pde6c.GFP and Gnat2.GFP lines matched previous reports from the original lines. Conclusions This study demonstrates that the Chrnb4.EGFP mouse can be a powerful tool to overcome the limitations of studying cone biology, including the use of this line to study different types of cone degeneration. Translational Relevance This work validates research tools that could potentially offer more reliable preclinical data in the development of treatments for cone-mediated vision loss conditions, shortening the gap to clinical translation.
Collapse
Affiliation(s)
- Alicia A. Brunet
- Centre for Ophthalmology and Visual Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
- Lions Eye Institute, Nedlands, Western Australia, Australia
| | | | - Annie L. Miller
- Centre for Ophthalmology and Visual Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
- Lions Eye Institute, Nedlands, Western Australia, Australia
| | | | | | - Rabab Rashwan
- Lions Eye Institute, Nedlands, Western Australia, Australia
- Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, Egypt
| | - David M. Hunt
- Centre for Ophthalmology and Visual Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
- Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Livia S. Carvalho
- Centre for Ophthalmology and Visual Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
- Lions Eye Institute, Nedlands, Western Australia, Australia
| |
Collapse
|
16
|
Guimaraes TACD, Georgiou M, Robson AG, Michaelides M. KCNV2 retinopathy: clinical features, molecular genetics and directions for future therapy. Ophthalmic Genet 2020; 41:208-215. [PMID: 32441199 PMCID: PMC7446039 DOI: 10.1080/13816810.2020.1766087] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
-associated retinopathy or “cone dystrophy with supernormal rod responses” is an
autosomal recessive cone-rod dystrophy with pathognomonic ERG findings. This gene
encodes Kv8.2, a voltage-gated potassium channel subunit that acts as a modulator by
shifting the activation range of the K+ channels in photoreceptor inner
segments. Currently, no treatment is available for the condition. However, there is a
lack of prospective long-term data in large molecularly confirmed cohorts, which is a
prerequisite for accurate patient counselling/prognostication, to identify an optimal
window for intervention and outcome measures, and ultimately to design future therapy
trials. Herein we provide a detailed review of the clinical features, retinal imaging,
electrophysiology and psychophysical studies, molecular genetics, and briefly discuss
future prospects for therapy trials.
Collapse
Affiliation(s)
- Thales A C De Guimaraes
- UCL Institute of Ophthalmology, University College London , London, UK.,Moorfields Eye Hospital , London, UK
| | - Michalis Georgiou
- UCL Institute of Ophthalmology, University College London , London, UK.,Moorfields Eye Hospital , London, UK
| | - Anthony G Robson
- UCL Institute of Ophthalmology, University College London , London, UK.,Moorfields Eye Hospital , London, UK
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London , London, UK.,Moorfields Eye Hospital , London, UK
| |
Collapse
|
17
|
Abstract
PURPOSE To investigate receptor and post-receptor function in KCNV2 retinopathy [cone dystrophy with supernormal rod electroretinogram (ERG)], using the pupillary light reflex (PLR) and the ERG. METHODS Two unrelated patients (1 male and 1 female) with molecularly confirmed KCNV2 retinopathy underwent full-field two-color pupillometry testing in one eye, with monitoring of the stimulated eye by an infrared digital camera. Pupillometry stimuli consisted of 1-s duration, short-wavelength (465-nm, blue) and long-wavelength (642-nm, red) stimuli. Pupillometry intensity series were performed under both a dark-adapted condition and a light-adapted condition (on a 0.76-log cd m-2 blue background). The transient PLR, defined as the maximum constriction following flash onset, was measured under all conditions. The melanopsin-mediated sustained constriction was measured 5-7 s following flash offset for the highest flash luminance presented in the dark. Both patients were also tested in one eye with the full-field ERG, including a dark-adapted intensity series and ISCEV standard stimuli. RESULTS Dark-adapted PLRs were markedly attenuated or extinguished for low-luminance stimuli, but the responses to higher-luminance blue stimuli were within normal limits. Light-adapted PLRs to blue stimuli were generally within normal limits, exceeding the responses to photopically matched red stimuli. Thus, light-adapted responses were consistent with either rod or S-cone mediation of the PLR. Melanopsin-mediated sustained PLRs were within normal limits. ERG showed the characteristic findings previously reported in this condition. Cone-mediated ERG responses were markedly decreased in amplitude. Rod-mediated ERG responses were absent for low-luminance stimuli (- 3 log cd s m-2), but had normal amplitude for stimuli of - 2 log cd s m-2 and above (although none were "supernormal"). The b-wave for the dark-adapted ISCEV standard - 2 log cd s m-2 stimulus was markedly delayed, whereas the b-wave timing was generally normal for higher flash luminances. CONCLUSIONS The abnormalities measured by pupillometry have a similar pattern to the outer-retinal abnormalities measured by ERG in KCNV2 retinopathy. These findings as well as the normal sustained PLR suggest that inner-retinal function may be preserved in KCNV2 retinopathy and highlight the potential for therapies designed to restore outer-retinal function in these individuals.
Collapse
|