1
|
Do Nascimento Amorim MS, Rates ERD, Isabela Vitoria DAC, Silva Diniz Filho JF, dos Santos CC, Santos-Oliveira R, Simões Gaspar R, Rodrigues Sanches J, Araújo Serra Pinto B, de Andrade Paes AM, Alencar LMR. Diabetes and Cognitive Decline: An Innovative Approach to Analyzing the Biophysical and Vibrational Properties of the Hippocampus. ACS OMEGA 2024; 9:40870-40881. [PMID: 39371966 PMCID: PMC11447714 DOI: 10.1021/acsomega.4c05869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 10/08/2024]
Abstract
Diabetes Mellitus (DM) is a disease characterized by high blood glucose levels, known as hyperglycemia. Diabetes represents a risk factor for the development of neurodegenerative diseases, such as Alzheimer's Disease (AD), one of the most prevalent neurodegenerative diseases worldwide, which leads to progressive mental, behavioral, and functional decline, affecting many brain structures, especially the hippocampus. Here, we aim to characterize the ultrastructural, nanomechanical, and vibrational changes in hyperglycemic hippocampal tissue using atomic force microscopy (AFM) and Raman spectroscopy. DM was induced in rats by streptozotocin injection (type 1) or dietary intervention (type 2). Cryosections of the hippocampus were prepared and analyzed on an MM8 AFM (Bruker) in Peak Force Quantitative Nanomechanics mode, performing 25 μm2 scans in 9 regions of 3 samples from each group. Ultrastructural and nanomechanical data such as surface roughness, area, volume, Young's modulus, and adhesion were evaluated. The hippocampal samples were also analyzed on a T64000 Spectrometer (Horiba), using a laser λ = 632.8 nm, and for each sample, four spectra were obtained in different regions. AFM analyses show changes on the ultrastructural scale since diabetic animals had hippocampal tissue with greater roughness and volume. Meanwhile, diabetic tissues had decreased adhesion and Young's modulus compared to control tissues. These were corroboratedby Raman data that shows changes in the molecular composition of diabetic tissues. The individual spectra show that the most significant changes are in the amide, cholesterol, and lipid bands. Overall, the data presented here show that hyperglycemia induces biophysical alterations in the hippocampal tissue of diabetic rats, providing novel biophysical and vibrational cues on the relationship between hyperglycemia and dementia.
Collapse
Affiliation(s)
- Maria
Do Socorro Do Nascimento Amorim
- Federal
University of Maranhão, Department of Physics, Laboratory of Biophysics and Nanosystems, Campus Bacanga, São Luís, Maranhão 65080-805, Brazil
- Federal
University of Maranhão, University
School, Campus Bacanga, São Luís, Maranhão 65080-805, Brazil
| | - Erick Rafael Dias Rates
- Federal
University of Maranhão, Department of Physics, Laboratory of Biophysics and Nanosystems, Campus Bacanga, São Luís, Maranhão 65080-805, Brazil
| | - de Araujo Costa
Melo Isabela Vitoria
- Federal
University of Maranhão, Department of Physics, Laboratory of Biophysics and Nanosystems, Campus Bacanga, São Luís, Maranhão 65080-805, Brazil
| | - Joel Félix Silva Diniz Filho
- Federal
University of Maranhão, Department of Physics, Laboratory of Biophysics and Nanosystems, Campus Bacanga, São Luís, Maranhão 65080-805, Brazil
| | - Clenilton Costa dos Santos
- Federal
University of Maranhão, Department of Physics, Laboratory of Biophysics and Nanosystems, Campus Bacanga, São Luís, Maranhão 65080-805, Brazil
| | - Ralph Santos-Oliveira
- Brazilian
Nuclear Energy Commission, Nuclear Engineering
Institute, Rio de
Janeiro 21941906, Brazil
- Rio
de Janeiro State University, Laboratory
of Nanoradiopharmacy, Rio de Janeiro 23070200, Brazil
| | - Renato Simões Gaspar
- Campinas
State University, Translational Medicine
Department, Campinas, Sao Paulo 13083888, Brazil
| | - Jonas Rodrigues Sanches
- Federal
University of Maranhão, Department of Physiological Sciences, Laboratory of Experimental
Physiology, Campus Bacanga, São Luís, Maranhão 65080-805, Brazil
| | - Bruno Araújo Serra Pinto
- Federal
University of Maranhão, Department of Physiological Sciences, Laboratory of Experimental
Physiology, Campus Bacanga, São Luís, Maranhão 65080-805, Brazil
| | - Antonio Marcus de Andrade Paes
- Federal
University of Maranhão, Department of Physiological Sciences, Laboratory of Experimental
Physiology, Campus Bacanga, São Luís, Maranhão 65080-805, Brazil
| | - Luciana Magalhães Rebelo Alencar
- Federal
University of Maranhão, Department of Physics, Laboratory of Biophysics and Nanosystems, Campus Bacanga, São Luís, Maranhão 65080-805, Brazil
| |
Collapse
|
2
|
El-Naga EMA, Ali ME, Sindi RA, Hussein HA. Effect of histidine and L-Tyrosine supplementation in maturation medium on in-vitro developmental outcomes of buffalo oocytes. BMC Vet Res 2024; 20:414. [PMID: 39272083 PMCID: PMC11396686 DOI: 10.1186/s12917-024-04212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 07/30/2024] [Indexed: 09/15/2024] Open
Abstract
The present study was designed to investigate the effects of amino acid (histidine and L-Tyrosine) on in vitro maturation (IVM), in vitro fertilization (IVF), cleavage (CR) rates, and in vitro embryonic cultivation (IVC; Morula and Blastocyst stage) in buffaloes. Within two hours of buffalo slaughter, the ovaries were collected and transported to the laboratory. Follicles with a diameter of 2 to 8 mm were aspirated to recover the cumulus oocyte complexes (COCs). Histidine (0.5, 1, and 3 mg/ml) or L-Tyrosine (1, 5, and 10 mg/ml) were added to the synthetic oviductal fluid (SOF) and Ferticult media. The IVM, IVF, CR, and IVC (Morula and Blastocyst) rates were evaluated. The results showed that SOF maturation media containing histidine at 0.5 mg/ml significantly (P ≤ 0.01) improved the oocyte maturation when compared to control and other concentrations. The addition of histidine to FertiCult media at 0.5, 1, and 3 mg/ml did not improve the IVM, IVF, CR, or IVC percentages. However, the embryos in the control group were unable to grow into a morula or blastocyst in the SOF or Ferticult, while addition of L-Tyrosine to the SOF or Ferticult at various concentrations improved IVC (morula and blastocyst rates). There was a significant (P ≤ 0.01) increase in IVM when histidine was added to SOF medium at a concentration of 0.5 mg/ml compared with L-Tyrosine. Also, there were significant (P ≤ 0.01) increases in IVC when L-Tyrosine was added to SOF medium at concentrations of 1 and 10 mg/ml compared with histidine. In conclusion, the supplementation of the SOF and FertiCult with the amino acids histidine and L-Tyrosine improve the maturation rate of oocytes and development of in vitro-produced buffalo embryos.
Collapse
Affiliation(s)
- Eman M Abu El-Naga
- Department of Theriogenology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Montaser Elsayed Ali
- Animal Production Department, Faculty of Agriculture, Al-Azhar University, Assiut, Egypt
| | - Ramya A Sindi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Hassan A Hussein
- Department of Theriogenology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt.
- Faculty Veterinary medicine, Sphinx University, New Assiut, Egypt.
| |
Collapse
|
3
|
Yoon D, Oh SM, Na HS, Choi BR, Kim KW, Lee YS, Lee DR, Lee DY. Metabolomics study to reveal cognitive improvement with treatment of Scrophularia buergeriana. Sci Rep 2024; 14:17007. [PMID: 39043762 PMCID: PMC11266482 DOI: 10.1038/s41598-024-66371-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/01/2024] [Indexed: 07/25/2024] Open
Abstract
Population aging around the world is rapidly progressing; as a result, cognitive decline developing into dementia is becoming a social problem. There is no drug that can cure dementia, and though drugs that alleviate the symptoms of dementia have been developed, they also have side effects. Therefore, we conducted a study on improving cognitive function using natural products that have secured safety. We confirmed the effect of an extract of Scrophularia buergeriana on scopolamine-induced cognitive impairment through mouse behavioral experiments, and we observed metabolic changes in the cortex and hippocampus via brain tissue dissection after the behavioral experiment. Mitigating effects of S. buergeriana on cognitive impairment caused by scopolamine were observed in passive avoidance and Morris water maze tests. A metabolic analysis revealed biomarkers related to the alleviating effect of cognitive impairment. Niacinamide, tyrosine, uridine, and valine in the cortex and GABA, choline, creatine, formate, fumarate, hypoxanthine, leucine, myo-inositol, pyroglutamate, and taurine in the hippocampus were identified as biomarker candidates for recovering cognitive impairment. In addition to behavioral experiments, this metabolomics study using specific regions of the brain may be helpful in understanding the effects of cognitive improvement.
Collapse
Affiliation(s)
- Dahye Yoon
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 27709, Republic of Korea
| | - Seon Min Oh
- Natural Product Research Center and Natural Product Central Bank, KRIBB, Ochang, 28116, Republic of Korea
| | - Hyeon Seon Na
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 27709, Republic of Korea
| | - Bo-Ram Choi
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 27709, Republic of Korea
| | - Kwan-Woo Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 27709, Republic of Korea
| | - Young-Seob Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 27709, Republic of Korea
| | | | - Dae Young Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
4
|
Al-Beltagi M, Saeed NK, Bediwy AS, Elbeltagi R. Metabolomic changes in children with autism. World J Clin Pediatr 2024; 13:92737. [PMID: 38947988 PMCID: PMC11212761 DOI: 10.5409/wjcp.v13.i2.92737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficits in social communication and repetitive behaviors. Metabolomic profiling has emerged as a valuable tool for understanding the underlying metabolic dysregulations associated with ASD. AIM To comprehensively explore metabolomic changes in children with ASD, integrating findings from various research articles, reviews, systematic reviews, meta-analyses, case reports, editorials, and a book chapter. METHODS A systematic search was conducted in electronic databases, including PubMed, PubMed Central, Cochrane Library, Embase, Web of Science, CINAHL, Scopus, LISA, and NLM catalog up until January 2024. Inclusion criteria encompassed research articles (83), review articles (145), meta-analyses (6), systematic reviews (6), case reports (2), editorials (2), and a book chapter (1) related to metabolomic changes in children with ASD. Exclusion criteria were applied to ensure the relevance and quality of included studies. RESULTS The systematic review identified specific metabolites and metabolic pathways showing consistent differences in children with ASD compared to typically developing individuals. These metabolic biomarkers may serve as objective measures to support clinical assessments, improve diagnostic accuracy, and inform personalized treatment approaches. Metabolomic profiling also offers insights into the metabolic alterations associated with comorbid conditions commonly observed in individuals with ASD. CONCLUSION Integration of metabolomic changes in children with ASD holds promise for enhancing diagnostic accuracy, guiding personalized treatment approaches, monitoring treatment response, and improving outcomes. Further research is needed to validate findings, establish standardized protocols, and overcome technical challenges in metabolomic analysis. By advancing our understanding of metabolic dysregulations in ASD, clinicians can improve the lives of affected individuals and their families.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
- Department of Pediatric, University Medical Center, Dr. Sulaiman Al Habib Medical Group, Manama, Bahrain, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 12, Bahrain
- Medical Microbiology Section, Department of Pathology, Irish Royal College of Surgeon, Bahrain, Busaiteen 15503, Muharraq, Bahrain
| | - Adel Salah Bediwy
- Department of Pulmonology, Faculty of Medicine, Tanta University, Tanta 31527, Alghrabia, Egypt
- Department of Chest Disease, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
- Department of Chest Disease, University Medical Center, Dr. Sulaiman Al Habib Medical Group, Manama, Manama 26671, Bahrain
| | - Reem Elbeltagi
- Department of Medicine, The Royal College of Surgeons in Ireland - Bahrain, Busiateen 15503, Muharraq, Bahrain
| |
Collapse
|
5
|
Ahrens AP, Hyötyläinen T, Petrone JR, Igelström K, George CD, Garrett TJ, Orešič M, Triplett EW, Ludvigsson J. Infant microbes and metabolites point to childhood neurodevelopmental disorders. Cell 2024; 187:1853-1873.e15. [PMID: 38574728 DOI: 10.1016/j.cell.2024.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 11/22/2023] [Accepted: 02/28/2024] [Indexed: 04/06/2024]
Abstract
This study has followed a birth cohort for over 20 years to find factors associated with neurodevelopmental disorder (ND) diagnosis. Detailed, early-life longitudinal questionnaires captured infection and antibiotic events, stress, prenatal factors, family history, and more. Biomarkers including cord serum metabolome and lipidome, human leukocyte antigen (HLA) genotype, infant microbiota, and stool metabolome were assessed. Among the 16,440 Swedish children followed across time, 1,197 developed an ND. Significant associations emerged for future ND diagnosis in general and for specific ND subtypes, spanning intellectual disability, speech disorder, attention-deficit/hyperactivity disorder, and autism. This investigation revealed microbiome connections to future diagnosis as well as early emerging mood and gastrointestinal problems. The findings suggest links to immunodysregulation and metabolism, compounded by stress, early-life infection, and antibiotics. The convergence of infant biomarkers and risk factors in this prospective, longitudinal study on a large-scale population establishes a foundation for early-life prediction and intervention in neurodevelopment.
Collapse
Affiliation(s)
- Angelica P Ahrens
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32603, USA
| | - Tuulia Hyötyläinen
- School of Science and Technology, Örebro University, Örebro 702 81, Sweden
| | - Joseph R Petrone
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32603, USA
| | - Kajsa Igelström
- Department of Biomedical and Clinical Sciences, Division of Neurobiology, Linköping University, Linköping 58185, Sweden
| | - Christian D George
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32603, USA
| | - Timothy J Garrett
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Matej Orešič
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro 702 81, Sweden; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; Department of Life Technologies, University of Turku, Turku 20014, Finland
| | - Eric W Triplett
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32603, USA.
| | - Johnny Ludvigsson
- Crown Princess Victoria Children's Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping 58185, Sweden
| |
Collapse
|
6
|
Huang M, Liu Y, Duan R, Yin J, Cao S. Effects of continuous and pulse lead exposure on the swimming behavior of tadpoles revealed by brain-gut axis analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133267. [PMID: 38150764 DOI: 10.1016/j.jhazmat.2023.133267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
Lead (Pb) is present in aquatic environments with a continuous or pulse form due to the regular or irregular discharge of wastewater. These two modes of exposure result in different toxicological effects on aquatic animals. To compare the effects of Pb exposure mode on the swimming behavior of amphibian larvae, this study proposed a combination method to examine the brain-gut axis (gut bacteria, histopathology, metabolomics, and ethology) in order to evaluate the ecotoxic differences in Pelophylax nigromaculatus tadpoles (Gs 21-28) when exposed to continuous (CE100) versus pulse exposure (PE100) of environmental concentrations of Pb (100 μg/L). The results showed that: 1) CE100 significantly decreased the movement distance and swimming activity of the tadpoles compared to PE100 and the control, while there were no significant differences between the control group and PE100. 2) At the phyla level, compared to PE100, CE100 treatment significantly decreased the abundance of Actinobacteria, Firmicutes, Proteobacteria, and Bacteroidetes and increased the abundance of Fusobacteria in the gut. At the genus level, compared to PE100, CE100 significantly increased the abundance of U114 and decreased the abundance of Anaerorhabdus, Exiguobacterium and Microbacterium. 3) Compared to PE100, CE100 changed the metabolites of the brain-gut axis pathway, such as quinolinic acid, L-valine, L-dopa, L-histidine, urocanic acid, L-threonine, γ-aminobutyric acid (GABA), L-glutamate (Glu), acetylcholine (Ach), L-tyrosine (Tyr), L-tryptophan (Trp), and levodopa (DOPA). 4) CE100 and PE100 played a repressive role in the histidine metabolism and tyrosine metabolism pathways and played a promoting role in the purine metabolism and pyrimidine metabolism pathways. This study provides a method for evaluating the toxic effects of heavy metal exposure via two different exposure modes (pulse versus continuous) which tadpoles may encounter in the natural environment from a combined study examining the brain-gut axis.
Collapse
Affiliation(s)
- Minyi Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China; Key Laboratory of Agricultural Resource Development, Utilisation and Quality and Safety Control of Hunan Characteristics in Hunan Universities, Loudi 417000, China
| | - Yang Liu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Renyan Duan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China; Key Laboratory of Agricultural Resource Development, Utilisation and Quality and Safety Control of Hunan Characteristics in Hunan Universities, Loudi 417000, China.
| | - Jiawei Yin
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| | - Songle Cao
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China
| |
Collapse
|
7
|
McAllister MJ, Martaindale MH, Dillard CC, McCullough R. Impact of L-theanine and L-tyrosine on markers of stress and cognitive performance in response to a virtual reality based active shooter training drill. Stress 2024; 27:2375588. [PMID: 38975711 DOI: 10.1080/10253890.2024.2375588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024] Open
Abstract
Ingestion of L-theanine and L-tyrosine has been shown to reduce salivary stress biomarkers and improve aspects of cognitive performance in response to stress. However, there have been no studies to concurrently examine the impact of both L-theanine and L-tyrosine ingestion during a mental stress challenge (MSC) involving a brief cognitive challenge and a virtual reality based active shooter training drill. Thus, the purpose of this study was to determine the impact of ingestion of L-theanine and L-tyrosine on markers of stress and cognitive performance in response to a virtual reality active shooter drill and cognitive challenge. The cognitive challenge involved a Stroop challenge and mental arithmetic. Eighty subjects (age = 21 ± 2.6 yrs; male = 46; female = 34) were randomly assigned L-tyrosine (n = 28; 2000 mg), L-theanine (n = 25; 200 mg), or placebo (n = 27) prior to MSC exposure. Saliva samples, state-anxiety inventory (SAI) scales, and heart rate (HR) were collected before and after exposure to the MSC. Saliva was analyzed for stress markers α-amylase (sAA) and secretory immunoglobulin A (SIgA). The MSC resulted in significant increases in sAA, SIgA, HR, and SAI. Ingestion of L-theanine and L-tyrosine did not impact markers of stress. However, the L-tyrosine treatment demonstrated significantly lower missed responses compared to the placebo treatment group during the Stroop challenge. These data demonstrate that ingestion of L-theanine or L-tyrosine does not impact markers of stress in response to a MSC but may impact cognitive performance. This study was pre-registered as a clinical trial ("Impact of supplements on stress markers": NCT05592561).
Collapse
Affiliation(s)
- Matthew J McAllister
- Metabolic & Applied Physiology Laboratory, Department of Health & Human Performance, Texas State University, San Marcos, TX, USA
| | | | - Courtney C Dillard
- Metabolic & Applied Physiology Laboratory, Department of Health & Human Performance, Texas State University, San Marcos, TX, USA
| | - Rory McCullough
- Metabolic & Applied Physiology Laboratory, Department of Health & Human Performance, Texas State University, San Marcos, TX, USA
| |
Collapse
|
8
|
Bose S, Mandal S, Khan R, Maji HS, Ashique S. Current Landscape on Development of Phenylalanine and Toxicity of its Metabolites - A Review. Curr Drug Saf 2024; 19:208-217. [PMID: 36999718 DOI: 10.2174/1574886318666230331112800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 04/01/2023]
Abstract
Phenylalanine, an essential amino acid, is the "building block" of protein. It has a tremendous role in different aspects of metabolic events. The tyrosine pathway is the prime one and is typically used to degrade dietary phenylalanine. Phenylalanine exceeds its limit in bodily fluids and the brain when the enzyme, phenylalanine decarboxylase, phenylalanine transaminase, phenylalanine hydroxylase (PAH) or its cofactor tetrahydrobiopterin (BH4) is deficient causes phenylketonuria, schizophrenia, attentiondeficit/ hyperactivity disorder and another neuronal effect. Tyrosine, an amino acid necessary for synthesizing the pigments in melanin, is produced by its primary metabolic pathway. Deficiency/abnormality in metabolic enzymes responsible for the catabolism pathway of Phenylalanine causes an accumulation of the active intermediate metabolite, resulting in several abnormalities, such as developmental delay, tyrosinemias, alkaptonuria, albinism, hypotension and several other undesirable conditions. Dietary restriction of the amino acid(s) can be a therapeutic approach to avoid such undesirable conditions when the level of metabolic enzyme is unpredictable. After properly identifying the enzymatic level, specific pathophysiological conditions can be managed more efficiently.
Collapse
Affiliation(s)
- Samrat Bose
- Division of Pharmacology, Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Road, Kolkata, 700114, West Bengal, India
| | - Shirsendu Mandal
- Division of Pharmacology, Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Road, Kolkata, 700114, West Bengal, India
| | - Rajesh Khan
- Division of Pharmacology, Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Road, Kolkata, 700114, West Bengal, India
| | - Himangshu Sekhar Maji
- Division of Pharmaceutical Technology, JIS University, 81, Nilgunj Road, Agarpara, Kolkata, 700109, West Bengal, India
| | - Sumel Ashique
- Department of Pharmaceutics, Bharat Institute of Technology (BIT), School of Pharmacy, Meerut, 250103, UP, India
| |
Collapse
|
9
|
Hawiset T, Sriraksa N, Kamsrijai U, Praman S, Inkaew P. Neuroprotective effect of Tiliacora triandra (Colebr.) Diels leaf extract on scopolamine-induced memory impairment in rats. Heliyon 2023; 9:e22545. [PMID: 38107289 PMCID: PMC10724565 DOI: 10.1016/j.heliyon.2023.e22545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023] Open
Abstract
Alzheimer's disease is characterized by progressive memory loss caused from alterations in the central cholinergic system. While existing medications often have adverse effects, traditional use of Tiliacora triandra in Thailand shows its potential as a revitalizing neurotonic agent. This study explores the impact of T. triandra leaf extract on cognitive behaviors, neuronal density, and oxidative stress in male rats with scopolamine-induced cognitive impairment. Experimental groups composed of a control, vehicle, positive control meditation, and T. triandra extract-treated groups (100, 200, and 400 mg/kg BW) over 14 days, with scopolamine administration (i.p.) between days 8 and 14. Results showed significant enhancements in the discrimination ratio and spontaneous alteration behavior percentage during novel object recognition (NORT) and Y-maze tests for scopolamine-administered rats treated with T. triandra extract or donepezil. In contrast, open field test (OFT)-assessed spontaneous locomotor activity displayed no significant difference. Notably, acetylcholinesterase (AChE) activity and malondialdehyde (MDA) levels reduced significantly in scopolamine-treated rats with T. triandra extract or the positive control. Moreover, neuronal density in the hippocampal CA3 region, superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) activities increased significantly. However, catalase (CAT) activity exhibited no significant difference. In conclusion, T. triandra leaf extract shows promise in mitigating scopolamine-induced memory deficits, potentially attributed to increased neuronal density, inhibited AChE activity, reduced MDA levels, and enhanced antioxidant activities. This extract has potential as a therapeutic agent for Alzheimer's disease-associated memory impairment.
Collapse
Affiliation(s)
- Thaneeya Hawiset
- School of Medicine, Mae Fah Luang University, Muang, Chiang Rai, 57100, Thailand
| | - Napatr Sriraksa
- School of Medical Sciences, University of Phayao, Muang, Phayao, 56000, Thailand
- Unit of Excellence in The Pulmonary and Cardiovascular Health Care, University of Phayao, Muang, Phayao, 56000, Thailand
| | | | - Siwaporn Praman
- School of Medicine, Mae Fah Luang University, Muang, Chiang Rai, 57100, Thailand
| | - Prachak Inkaew
- School of Science, Mae Fah Luang University, Muang, Chiang Rai, 57100, Thailand
- Center of Chemical Innovation for Sustainability (CIS), Mae Fah Luang University, Chiang Rai, 57100, Thailand
| |
Collapse
|
10
|
Castillo P, Kuda O, Kopecky J, Pomar CA, Palou A, Palou M, Picó C. Stachydrine, N-acetylornithine and trimethylamine N-oxide levels as candidate milk biomarkers of maternal consumption of an obesogenic diet during lactation. Biofactors 2023; 49:1022-1037. [PMID: 37227188 DOI: 10.1002/biof.1974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/04/2023] [Indexed: 05/26/2023]
Abstract
We aimed to evaluate whether improving maternal diet during lactation in diet-induced obese rats reverts the impact of western diet (WD) consumption on the metabolome of milk and offspring plasma, as well as to identify potential biomarkers of these conditions. Three groups of dams were followed: control-dams (CON-dams), fed with standard diet (SD); WD-dams, fed with WD prior and during gestation and lactation; and reversion-dams (REV-dams), fed as WD-dams but moved to SD during lactation. Metabolomic analysis was performed in milk at lactation days 5, 10, and 15, and in plasma from their male and female offspring at postnatal day 15. Milk of WD-dams presented, throughout lactation and compared to CON-dams, altered profiles of amino acids and of the carnitine pool, accompanied by changes in other polar metabolites, being stachydrine, N-acetylornithine, and trimethylamine N-oxide the most relevant and discriminatory metabolites between groups. The plasma metabolome profile was also altered in the offspring of WD-dams in a sex-dependent manner, and stachydrine, ergothioneine and the acylcarnitine C12:1 appeared as the top three most discriminating metabolites in both sexes. Metabolomic changes were largely normalized to control levels both in the milk of REV-dams and in the plasma of their offspring. We have identified a set of polar metabolites in maternal milk and in the plasma of the offspring whose alterations may indicate maternal intake of an unbalanced diet during gestation and lactation. Levels of these metabolites may also reflect the beneficial effects of implementing a healthier diet during lactation.
Collapse
Affiliation(s)
- Pedro Castillo
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation) of the University of the Balearic Islands, CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), and Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Ondrej Kuda
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Kopecky
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Catalina Amadora Pomar
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation) of the University of the Balearic Islands, CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), and Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation) of the University of the Balearic Islands, CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), and Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Mariona Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation) of the University of the Balearic Islands, CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), and Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation) of the University of the Balearic Islands, CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), and Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| |
Collapse
|
11
|
Plini ERG, Melnychuk MC, Harkin A, Dahl MJ, McAuslan M, Kühn S, Boyle RT, Whelan R, Andrews R, Düzel S, Drewelies J, Wagner GG, Lindenberger U, Norman K, Robertson IH, Dockree PM. Dietary Tyrosine Intake (FFQ) Is Associated with Locus Coeruleus, Attention and Grey Matter Maintenance: An MRI Structural Study on 398 Healthy Individuals of the Berlin Aging Study-II. J Nutr Health Aging 2023; 27:1174-1187. [PMID: 38151868 DOI: 10.1007/s12603-023-2005-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/19/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND AND OBJECTIVE It is documented that low protein and amino-acid dietary intake is related to poorer cognitive health and increased risk of dementia. Degradation of the neuromodulatory pathways, (comprising the cholinergic, dopaminergic, serotoninergic and noradrenergic systems) is observed in neurodegenerative diseases and impairs the proper biosynthesis of key neuromodulators from micro-nutrients and amino acids. How these micro-nutrients are linked to neuromodulatory pathways in healthy adults is less studied. The Locus Coeruleus-Noradrenergic System (LC-NA) is the earliest subcortical structure affected in Alzheimer's disease, showing marked neurodegeneration, but is also sensitive for age-related changes. The LC-NA system is critical for supporting attention and cognitive control, functions that are enhanced both by tyrosine administration and chronic tyrosine intake. The purpose of this study was to 1) investigate whether the dietary intake of tyrosine, the key precursor for noradrenaline (NA), is related to LC signal intensity 2) whether LC mediates the reported association between tyrosine intake and higher cognitive performance (measured with Trail Making Test - TMT), and 3) whether LC signal intensity relates to an objective measure of brain maintenance (BrainPAD). METHODS The analyses included 398 3T MRIs of healthy participants from the Berlin Aging Study II to investigate the relationship between LC signal intensity and habitual dietary tyrosine intake-daily average (HD-Tyr-IDA - measured with Food Frequency Questionnaire - FFQ). As a control procedure, the same analyses were repeated on other main seeds of the neuromodulators' subcortical system (Dorsal and Medial Raphe, Ventral Tegmental Area and Nucleus Basalis of Meynert). In the same way, the relationships between the five nuclei and BrainPAD were tested. RESULTS Results show that HD-Tyr-IDA is positively associated with LC signal intensity. Similarly, LC disproportionally relates to better brain maintenance (BrainPAD). Mediation analyses reveal that only LC, relative to the other nuclei tested, mediates the relationship between HD-Tyr-IDA I and performance in the TMT and between HD-Tyr-IDA and BrainPAD. CONCLUSIONS These findings provide the first evidence linking tyrosine intake with LC-NA system signal intensity and its correlation with neuropsychological performance. This study strengthens the role of diet for maintaining brain and cognitive health and supports the noradrenergic theory of cognitive reserve. Within this framework, adequate tyrosine intake might increase the resilience of LC-NA system functioning, by preventing degeneration and supporting noradrenergic metabolism required for LC function and neuropsychological performance.
Collapse
Affiliation(s)
- E R G Plini
- Emanuele RG Plini, Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Lloyd Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wang Z, Pi Y, Tan X, Wang Z, Chen R, Liu Y, Guo W, Zhang J. Effects of Wu Qin Xi exercise on reactive inhibition in Parkinson’s disease: A randomized controlled clinical trial. Front Aging Neurosci 2022; 14:961938. [PMID: 36158558 PMCID: PMC9490077 DOI: 10.3389/fnagi.2022.961938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveMotor symptom in patients with Parkinson’s disease (PD) are related to reduced motor inhibitory ability (proactive and reactive inhibition). Although exercise has been shown to improve this ability, its effects on different levels of motor inhibition have not been determined.Materials and methodsSixty patients with PD aged 55–75 years were allocated randomly to 24-week exercise interventions [Wu Qin Xi exercise (WQX) and stretching exercise (SE)]. The stop signal task and questionnaires were administered pre and post interventions. Twenty-five age-matched healthy controls were recruited to obtain reference values for inhibition.ResultsCompared to healthy controls, patients with PD showed motor inhibition deficits in reactive inhibition, but not in proactive inhibition. Post-intervention, the WQX group showed significant improvement in reactive inhibition compared to the SE group. In both the WQX and SE groups, movement speed was improved post-intervention, accompanied by reduction in negative emotions, stable improvement of sleep quality, and high self-reported satisfaction levels.ConclusionThis study demonstrated that Wu Qin Xi exercise can improve the reactive inhibition of patients with PD. Our results provide theoretical support for the formulation of reasonable and effective exercise prescriptions for PD rehabilitation.Clinical trial registration[http://www.chictr.org.cn], identifier [ChiCTR2000038517].
Collapse
Affiliation(s)
- Zhen Wang
- School of Psychology, Shanghai University of Sport, Shanghai, China
- School of Exercise and Healthy Science, Xi’an Physical Education University, Xi’an, China
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Yanling Pi
- Shanghai Punan Hospital of Pudong New District, Shanghai, China
| | - Xiaoyin Tan
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macao, Macao SAR, China
| | - Zhen Wang
- School of Martial Arts, Shanghai University of Sport, Shanghai, China
| | - Robert Chen
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Yu Liu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Wei Guo
- Shanghai Yishen Health Management Co., Ltd., Shanghai, China
| | - Jian Zhang
- School of Psychology, Shanghai University of Sport, Shanghai, China
- *Correspondence: Jian Zhang,
| |
Collapse
|
13
|
Long J, Song X, Wang Y, Wang C, Huang R, Zhang R. Distinct neural activation patterns of age in subcomponents of inhibitory control: A fMRI meta-analysis. Front Aging Neurosci 2022; 14:938789. [PMID: 35992590 PMCID: PMC9389163 DOI: 10.3389/fnagi.2022.938789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/11/2022] [Indexed: 11/15/2022] Open
Abstract
Inhibitory control (IC) is a fundamental cognitive function showing age-related change across the healthy lifespan. Since different cognitive resources are needed in the two subcomponents of IC (cognitive inhibition and response inhibition), regions of the brain are differentially activated. In this study, we aimed to determine whether there is a distinct age-related activation pattern in these two subcomponents. A total of 278 fMRI articles were included in the current analysis. Multilevel kernel density analysis was used to provide data on brain activation under each subcomponent of IC. Contrast analyses were conducted to capture the distinct activated brain regions for the two subcomponents, whereas meta-regression analyses were performed to identify brain regions with distinct age-related activation patterns in the two subcomponents of IC. The results showed that the right inferior frontal gyrus and the bilateral insula were activated during the two IC subcomponents. Contrast analyses revealed stronger activation in the superior parietal lobule during cognitive inhibition, whereas stronger activation during response inhibition was observed primarily in the right inferior frontal gyrus, bilateral insula, and angular gyrus. Furthermore, regression analyses showed that activation of the left anterior cingulate cortex, left inferior frontal gyrus, bilateral insula, and left superior parietal lobule increased and decreased with age during cognitive inhibition and response inhibition, respectively. The results showed distinct activation patterns of aging for the two subcomponents of IC, which may be related to the differential cognitive resources recruited. These findings may help to enhance knowledge of age-related changes in the activation patterns of IC.
Collapse
Affiliation(s)
- Jixin Long
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaoqi Song
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - You Wang
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
- Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chanyu Wang
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ruiwang Huang
- School of Psychology, South China Normal University, Guangzhou, China
| | - Ruibin Zhang
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
- Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
Wang Z, Pi YL, Wu Y, Wei J, Li Y, Zhang J, Wang Z. Selective effects of exercise on reactive and proactive inhibition in Parkinson's disease. PeerJ 2022; 10:e13628. [PMID: 35765594 PMCID: PMC9233896 DOI: 10.7717/peerj.13628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/02/2022] [Indexed: 01/17/2023] Open
Abstract
Objective Patients with Parkinson's disease (PD) have an obvious motor inhibition disorder, which is closely related to their motor symptoms. Although previous studies have shown that exercise can improve their inhibition deficits, the effect of exercise on different types of inhibition (proactive and reactive inhibition) has not been addressed. Methods We used a behavioral paradigm combined with a series of questionnaires to explore the effect of long-term exercise on different types of motor inhibition in 59 patients with PD aged 55-75 years. According to the intensity and frequency of exercise, the participants were divided into regular-exercise and no-exercise groups. To obtain the average reference value for inhibition ability at the same age, we also recruited 30 healthy elderly people as controls. Results The main defect in the motor inhibition of PD is reactive inhibition, while proactive inhibition has no obvious differences compared with healthy controls. Additionally, compared with the non-exercise group, PD in the exercise group showed significantly better reaction speeds and reactive control ability, fewer motor symptoms and negative emotions. Conclusions Taken together, the motor inhibition defects of patients with PD affect only reactive inhibition. In addition, PD with exercise reported fewer negative emotions than that of the non-exercise group, indicating that exercise can relieve negative emotions and improve behavioral symptoms and quality of life in PD to a certain extent. We demonstrate for the first time that exercise has and can improve reactive inhibition in PD patients and has no effect on proactive inhibition.
Collapse
Affiliation(s)
- Zhen Wang
- School of Exercise and Health Science, Xi’an Physical Education University, Xi’an, China,School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Yan-Ling Pi
- Shanghai Punan Hospital of Pudong New District, Shanghai, China
| | - Yin Wu
- School of Economics and Management, Shanghai University of Sport, Shanghai, China
| | - Jianing Wei
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Yuting Li
- School of Psychology, Shanghai University of Sport, Shanghai, China,School of Nursing, Anhui University of Chinese Medicine, Hefei, China
| | - Jian Zhang
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Zhen Wang
- School of Martial Arts, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
15
|
Cis- and trans-resveratrol have opposite effects on histone serine-ADP-ribosylation and tyrosine induced neurodegeneration. Nat Commun 2022; 13:3244. [PMID: 35688816 PMCID: PMC9187644 DOI: 10.1038/s41467-022-30785-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 05/19/2022] [Indexed: 11/08/2022] Open
Abstract
Serum tyrosine levels increase during aging, neurocognitive, metabolic, and cardiovascular disorders. However, calorie restriction (CR) and sleep lower serum tyrosine levels. We previously showed that tyrosine inhibits tyrosyl-tRNA synthetase (TyrRS)-mediated activation of poly-ADP-ribose polymerase 1 (PARP1). Here, we show that histone serine-ADP-ribosylation is decreased in Alzheimer's Disease (AD) brains, and increased tyrosine levels deplete TyrRS and cause neuronal DNA damage. However, dopamine and brain-derived neurotrophic factor (BDNF) increase TyrRS and histone serine-ADP-ribosylation. Furthermore, cis-resveratrol (cis-RSV) that binds to TyrRS mimicking a 'tyrosine-free' conformation increases TyrRS, facilitates histone serine-ADP-ribosylation-dependent DNA repair, and provides neuroprotection in a TyrRS-dependent manner. Conversely, trans-RSV that binds to TyrRS mimicking a 'tyrosine-like' conformation decreases TyrRS, inhibits serine-ADP-ribosylation-dependent DNA repair, and induces neurodegeneration in rat cortical neurons. Our findings suggest that age-associated increase in serum tyrosine levels may effect neurocognitive and metabolic disorders and offer a plausible explanation for divergent results obtained in clinical trials using resveratrol.
Collapse
|
16
|
Carving the senescent phenotype by the chemical reactivity of catecholamines: An integrative review. Ageing Res Rev 2022; 75:101570. [PMID: 35051644 DOI: 10.1016/j.arr.2022.101570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 11/21/2022]
Abstract
Macromolecules damaged by covalent modifications produced by chemically reactive metabolites accumulate in the slowly renewable components of living bodies and compromise their functions. Among such metabolites, catecholamines (CA) are unique, compared with the ubiquitous oxygen, ROS, glucose and methylglyoxal, in that their high chemical reactivity is confined to a limited set of cell types, including the dopaminergic and noradrenergic neurons and their direct targets, which suffer from CA propensities for autoxidation yielding toxic quinones, and for Pictet-Spengler reactions with carbonyl-containing compounds, which yield mitochondrial toxins. The functions progressively compromised because of that include motor performance, cognition, reward-driven behaviors, emotional tuning, and the neuroendocrine control of reproduction. The phenotypic manifestations of the resulting disorders culminate in such conditions as Parkinson's and Alzheimer's diseases, hypertension, sarcopenia, and menopause. The reasons to suspect that CA play some special role in aging accumulated since early 1970-ies. Published reviews address the role of CA hazardousness in the development of specific aging-associated diseases. The present integrative review explores how the bizarre discrepancy between CA hazardousness and biological importance could have emerged in evolution, how much does the chemical reactivity of CA contribute to the senescent phenotype in mammals, and what can be done with it.
Collapse
|
17
|
Zaman Q, Zhang D, Reddy OS, Wong WT, Lai WF. Roles and Mechanisms of Astragaloside IV in Combating Neuronal Aging. Aging Dis 2022; 13:1845-1861. [DOI: 10.14336/ad.2022.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/26/2022] [Indexed: 11/18/2022] Open
|
18
|
Managing mood-related symptoms utilizing diet, targeted nutrient supplementation, and lifestyle changes: A case series. Explore (NY) 2021; 18:591-600. [PMID: 34654656 DOI: 10.1016/j.explore.2021.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND The Office of Disease Prevention and Health Promotion reports that mental health disorders are one of the most "common causes of disability," affecting 18.1% of adults in the United States. This case series examines the use of diet, targeted nutrient supplementation with a focus on amino acids, and lifestyle interventions for the management of mood-related symptoms as a treatment option. CASE PRESENTATIONS The three cases included a personalized amino acid therapy protocol, nutrient cofactor supplementation, and diet and lifestyle recommendations. Clinical assessment questionnaires completed by the clients at intervals during care were used to determine proper amino acid dosing. The first client is a 65-year-old Caucasian male presenting with increased stress, anxiety, depression, and sleep disturbances. A marked decrease in symptoms was experienced three months. The second client is a 24-year-old Caucasian male presenting with concentration and memory impairment, anxiety and depression, food cravings leading to binge eating of carbohydrates, low sleep quality, and unsustainable energy. A substantial decrease in symptoms was achieved in under four months. The third client is a 23-year-old Caucasian male presenting with depression, easy agitation while ruminating on negative thoughts, difficulty focusing and making decisions, poor memory, concentration, and sleep quality, gaming addiction, and low energy and motivation. The client experienced considerable relief from all symptoms in under six months. CONCLUSION The case series demonstrated marked improvement in mood-related symptoms in as little as 3-6 months for three individuals utilizing amino acid therapy along with dietary, targeted nutrient supplementation, and lifestyle choices.
Collapse
|
19
|
Zhang M, Wu Q, Zhao R, Yao X, Du X, Liu Q, Lv G, Xiao S. Isobavachalcone ameliorates cognitive deficits, and Aβ and tau pathologies in triple-transgenic mice with Alzheimer's disease. Food Funct 2021; 12:7749-7761. [PMID: 34269361 DOI: 10.1039/d1fo01306h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects 50 million people worldwide. The current medicines have modest benefits in preventing or curing AD. Thus, it is urgent to discover drugs with the potential to change the progression of the disease. The primary clinical symptoms are memory loss and anxiety, while the critical pathological characteristics are Aβ plaques and hyperphosphorylated tau tangles. In this study, isobavachalcone (ISO), isolated from Psoralea corylifolia, was administered to 3×Tg-AD mice. It has been shown that this compound could significantly improve anxiety, memory and recognition deficits in the AD mice, attenuate the accumulation of Aβ oligomers, reduce the hyperphosphorylation of tau, and prevent the production of tau filaments. The metabolomic analysis implicates that the most probable pathways affected by ISO were bile secretion, tyrosine metabolism, and purine metabolism. In summary, ISO possesses the potential for further development as a drug candidate for AD.
Collapse
Affiliation(s)
- Mohan Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Westbrook A, Frank MJ, Cools R. A mosaic of cost-benefit control over cortico-striatal circuitry. Trends Cogn Sci 2021; 25:710-721. [PMID: 34120845 DOI: 10.1016/j.tics.2021.04.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/22/2022]
Abstract
Dopamine contributes to cognitive control through well-established effects in both the striatum and cortex. Although earlier work suggests that dopamine affects cognitive control capacity, more recent work suggests that striatal dopamine may also impact on cognitive motivation. We consider the emerging perspective that striatal dopamine boosts control by making people more sensitive to the benefits versus the costs of cognitive effort, and we discuss how this sensitivity shapes competition between controlled and prepotent actions. We propose that dopamine signaling in distinct cortico-striatal subregions mediates different types of cost-benefit tradeoffs, and also discuss mechanisms for the local control of dopamine release, enabling selectivity among cortico-striatal circuits. In so doing, we show how this cost-benefit mosaic can reconcile seemingly conflicting findings about the impact of dopamine signaling on cognitive control.
Collapse
Affiliation(s)
- Andrew Westbrook
- Donders Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands; Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA.
| | - Michael J Frank
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA; Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Roshan Cools
- Donders Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands; Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
21
|
Muth AK, Park SQ. The impact of dietary macronutrient intake on cognitive function and the brain. Clin Nutr 2021; 40:3999-4010. [PMID: 34139473 DOI: 10.1016/j.clnu.2021.04.043] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 12/20/2022]
Abstract
Macronutrients - carbohydrates, fats, and proteins - supply the nutrients required for optimal functioning. Inadequate intake compromises both physical and brain health. We synthesized research on macronutrients from whole meals on cognitive function in healthy adults and identified underlying mechanisms. Intake of simple carbohydrates ('sugars') is consistently associated with decreased global cognition whereas consumption of complex carbohydrates correlates with successful brain aging and improved memory both in the short- and long-term. Saturated fatty acid intake correlates with decreased memory and learning scores whereas omega-3 intake correlates positively with memory scores. Protein intake boosts executive function and working memory when task-demands are high. Individual differences affecting the macronutrient-cognition relationship are age, physical activity, and glucose metabolism. Neural correlates reflect findings on cognitive functions: cortical thickness and cerebral amyloid burden correlate with sugar intake, inflammatory status and cerebral glucose metabolism correlate with fatty acid intake. Key mechanisms by which dietary macronutrients affect the brain and cognition include glucose and insulin metabolism, neurotransmitter actions, and cerebral oxidation and inflammation. In conclusion, macronutrient intake affects cognitive function both acutely and in the long-term, involving peripheral and central mechanisms. A healthy diet supports brain integrity and functionality, whereas inadequate nutrition compromises it. Studying diet can be key to nutritional recommendations, thereby improving the landscape of mental health and healthy brain aging.
Collapse
Affiliation(s)
- Anne-Katrin Muth
- Department of Decision Neuroscience and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam-Rehbrücke, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Neuroscience Research Center, 10117, Berlin, Germany.
| | - Soyoung Q Park
- Department of Decision Neuroscience and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam-Rehbrücke, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Neuroscience Research Center, 10117, Berlin, Germany; Deutsches Zentrum für Diabetes, Neuherberg, Germany.
| |
Collapse
|
22
|
Froböse MI, Westbrook A, Bloemendaal M, Aarts E, Cools R. Catecholaminergic modulation of the cost of cognitive control in healthy older adults. PLoS One 2020; 15:e0229294. [PMID: 32084218 PMCID: PMC7034873 DOI: 10.1371/journal.pone.0229294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/03/2020] [Indexed: 11/19/2022] Open
Abstract
Catecholamines have long been associated with cognitive control and value-based decision-making. More recently, we have shown that catecholamines also modulate value-based decision-making about whether or not to engage in cognitive control. Yet it is unclear whether catecholamines influence these decisions by altering the subjective value of control. Thus, we tested whether tyrosine, a catecholamine precursor altered the subjective value of performing a demanding working memory task among healthy older adults (60-75 years). Contrary to our prediction, tyrosine administration did not significantly increase the subjective value of conducting an N-back task for reward, as a main effect. Instead, in line with our previous study, exploratory analyses indicated that drug effects varied as a function of participants' trait impulsivity scores. Specifically, tyrosine increased the subjective value of conducting an N-back task in low impulsive participants, while reducing its value in more impulsive participants. One implication of these findings is that the over-the-counter tyrosine supplements may be accompanied by an undermining effect on the motivation to perform demanding cognitive tasks, at least in certain older adults. Taken together, these findings indicate that catecholamines can alter cognitive control by modulating motivation (rather than just the ability) to exert cognitive control.
Collapse
Affiliation(s)
- Monja I. Froböse
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Institute of Experimental Psychology, Heinrich-Heine University, Düsseldorf, Germany
| | - Andrew Westbrook
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, United States of America
| | - Mirjam Bloemendaal
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Esther Aarts
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Roshan Cools
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Dept Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
23
|
Vellage AK, Müller P, Graf A, Bunzeck N, Müller NG. Increasing Dopamine and Acetylcholine Levels during Encoding Does Not Modulate Remember or Know Responses during Memory Retrieval in Healthy Aging—a Randomized Controlled Feasibility Study. JOURNAL OF COGNITIVE ENHANCEMENT 2019. [DOI: 10.1007/s41465-019-00122-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|