1
|
Borrus DS, Stettler MK, Grover CJ, Kalajian EJ, Gu J, Conradi Smith GD, Del Negro CA. Inspiratory and sigh breathing rhythms depend on distinct cellular signalling mechanisms in the preBötzinger complex. J Physiol 2024; 602:809-834. [PMID: 38353596 PMCID: PMC10940220 DOI: 10.1113/jp285582] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/21/2023] [Indexed: 02/21/2024] Open
Abstract
Breathing behaviour involves the generation of normal breaths (eupnoea) on a timescale of seconds and sigh breaths on the order of minutes. Both rhythms emerge in tandem from a single brainstem site, but whether and how a single cell population can generate two disparate rhythms remains unclear. We posit that recurrent synaptic excitation in concert with synaptic depression and cellular refractoriness gives rise to the eupnoea rhythm, whereas an intracellular calcium oscillation that is slower by orders of magnitude gives rise to the sigh rhythm. A mathematical model capturing these dynamics simultaneously generates eupnoea and sigh rhythms with disparate frequencies, which can be separately regulated by physiological parameters. We experimentally validated key model predictions regarding intracellular calcium signalling. All vertebrate brains feature a network oscillator that drives the breathing pump for regular respiration. However, in air-breathing mammals with compliant lungs susceptible to collapse, the breathing rhythmogenic network may have refashioned ubiquitous intracellular signalling systems to produce a second slower rhythm (for sighs) that prevents atelectasis without impeding eupnoea. KEY POINTS: A simplified activity-based model of the preBötC generates inspiratory and sigh rhythms from a single neuron population. Inspiration is attributable to a canonical excitatory network oscillator mechanism. Sigh emerges from intracellular calcium signalling. The model predicts that perturbations of calcium uptake and release across the endoplasmic reticulum counterintuitively accelerate and decelerate sigh rhythmicity, respectively, which was experimentally validated. Vertebrate evolution may have adapted existing intracellular signalling mechanisms to produce slow oscillations needed to optimize pulmonary function in mammals.
Collapse
Affiliation(s)
- Daniel S. Borrus
- Applied Science and Neuroscience, William & Mary, Williamsburg, VA 23185
| | - Marco K. Stettler
- Applied Science and Neuroscience, William & Mary, Williamsburg, VA 23185
| | - Cameron J. Grover
- Applied Science and Neuroscience, William & Mary, Williamsburg, VA 23185
| | - Eva J. Kalajian
- Applied Science and Neuroscience, William & Mary, Williamsburg, VA 23185
| | - Jeffrey Gu
- Applied Science and Neuroscience, William & Mary, Williamsburg, VA 23185
| | - Gregory D. Conradi Smith
- Applied Science and Neuroscience, William & Mary, Williamsburg, VA 23185
- Conradi Smith and Del Negro contributed equally
| | - Christopher A. Del Negro
- Applied Science and Neuroscience, William & Mary, Williamsburg, VA 23185
- Conradi Smith and Del Negro contributed equally
| |
Collapse
|
2
|
Missaghi K, Le Gal JP, Mercier J, Grover M, Beauséjour PA, Chartré S, Messihad O, Auclair F, Dubuc R. Revisiting the two rhythm generators for respiration in lampreys. Front Neuroanat 2024; 17:1270535. [PMID: 38250023 PMCID: PMC10796688 DOI: 10.3389/fnana.2023.1270535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/17/2023] [Indexed: 01/23/2024] Open
Abstract
In lampreys, respiration consists of a fast and a slow rhythm. This study was aimed at characterizing both anatomically and physiologically the brainstem regions involved in generating the two rhythms. The fast rhythm generator has been located by us and others in the rostral hindbrain, rostro-lateral to the trigeminal motor nucleus. More recently, this was challenged by researchers reporting that the fast rhythm generator was located more rostrally and dorsomedially, in a region corresponding to the mesencephalic locomotor region. These contradictory observations made us re-examine the location of the fast rhythm generator using anatomical lesions and physiological recordings. We now confirm that the fast respiratory rhythm generator is in the rostro-lateral hindbrain as originally described. The slow rhythm generator has received less attention. Previous studies suggested that it was composed of bilateral, interconnected rhythm generating regions located in the caudal hindbrain, with ascending projections to the fast rhythm generator. We used anatomical and physiological approaches to locate neurons that could be part of this slow rhythm generator. Combinations of unilateral injections of anatomical tracers, one in the fast rhythm generator area and another in the lateral tegmentum of the caudal hindbrain, were performed to label candidate neurons on the non-injected side of the lateral tegmentum. We found a population of neurons extending from the facial to the caudal vagal motor nuclei, with no clear clustering in the cell distribution. We examined the effects of stimulating different portions of the labeled population on the respiratory activity. The rostro-caudal extent of the population was arbitrarily divided in three portions that were each stimulated electrically or chemically. Stimulation of either of the three sites triggered bursts of discharge characteristic of the slow rhythm, whereas inactivating any of them stopped the slow rhythm. Substance P injected locally in the lateral tegmentum accelerated the slow respiratory rhythm in a caudal hindbrain preparation. Our results show that the fast respiratory rhythm generator consists mostly of a population of neurons rostro-lateral to the trigeminal motor nucleus, whereas the slow rhythm generator is distributed in the lateral tegmentum of the caudal hindbrain.
Collapse
Affiliation(s)
- Kianoush Missaghi
- Département de Neurosciences, Université de Montréal, Montréal, QC, Canada
| | | | - Julien Mercier
- Département de Neurosciences, Université de Montréal, Montréal, QC, Canada
- Groupe de Recherche en Activité Physique Adaptée (GRAPA), Département des Sciences de l’Activité Physique, Université du Québec à Montréal, Montréal, QC, Canada
| | - Martin Grover
- Groupe de Recherche en Activité Physique Adaptée (GRAPA), Département des Sciences de l’Activité Physique, Université du Québec à Montréal, Montréal, QC, Canada
| | | | - Shannon Chartré
- Groupe de Recherche en Activité Physique Adaptée (GRAPA), Département des Sciences de l’Activité Physique, Université du Québec à Montréal, Montréal, QC, Canada
| | - Omima Messihad
- Département de Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - François Auclair
- Département de Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Réjean Dubuc
- Département de Neurosciences, Université de Montréal, Montréal, QC, Canada
- Groupe de Recherche en Activité Physique Adaptée (GRAPA), Département des Sciences de l’Activité Physique, Université du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
3
|
Severs LJ, Bush NE, Quina LA, Hidalgo-Andrade S, Burgraff NJ, Dashevskiy T, Shih AY, Baertsch NA, Ramirez JM. Purinergic signaling mediates neuroglial interactions to modulate sighs. Nat Commun 2023; 14:5300. [PMID: 37652903 PMCID: PMC10471608 DOI: 10.1038/s41467-023-40812-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 08/10/2023] [Indexed: 09/02/2023] Open
Abstract
Sighs prevent the collapse of alveoli in the lungs, initiate arousal under hypoxic conditions, and are an expression of sadness and relief. Sighs are periodically superimposed on normal breaths, known as eupnea. Implicated in the generation of these rhythmic behaviors is the preBötzinger complex (preBötC). Our experimental evidence suggests that purinergic signaling is necessary to generate spontaneous and hypoxia-induced sighs in a mouse model. Our results demonstrate that driving calcium increases in astrocytes through pharmacological methods robustly increases sigh, but not eupnea, frequency. Calcium imaging of preBötC slices corroborates this finding with an increase in astrocytic calcium upon application of sigh modulators, increasing intracellular calcium through g-protein signaling. Moreover, photo-activation of preBötC astrocytes is sufficient to elicit sigh activity, and this response is blocked with purinergic antagonists. We conclude that sighs are modulated through neuron-glia coupling in the preBötC network, where the distinct modulatory responses of neurons and glia allow for both rhythms to be independently regulated.
Collapse
Affiliation(s)
- Liza J Severs
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA.
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA.
| | - Nicholas E Bush
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Lely A Quina
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Skyler Hidalgo-Andrade
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Nicholas J Burgraff
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Tatiana Dashevskiy
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Andy Y Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, 98101, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Nathan A Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA.
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA.
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, 98195, USA.
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, 98195, USA.
| |
Collapse
|
4
|
Morgado-Valle C, Smith JC, Fernandez-Ruiz J, Lopez-Meraz L, Beltran-Parrazal L. Modulation of inspiratory burst duration and frequency by bombesin in vitro. Pflugers Arch 2023; 475:101-117. [PMID: 35066612 DOI: 10.1007/s00424-022-02663-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/19/2021] [Accepted: 01/04/2022] [Indexed: 01/31/2023]
Abstract
Mammalian respiratory rhythm-generating circuits in the brainstem are subject to neuromodulation by multiple peptidergic afferent inputs controlling circuit behavior and outputs. Although functionally important, actions of neuropeptide modulators have not been fully characterized. We analyzed at cellular and circuit levels two inspiratory patterns intrinsically generated by the preBötzinger complex (preBötC) and their modulation by the neuropeptides bombesin and substance P (SP) in neonatal rat medullary slices in vitro. We found that, in recordings of hypoglossal nerve and preBötC neuron inspiratory activity, some inspiratory bursts occurring spontaneously under basal conditions have a biphasic shape with longer duration than normal inspiratory bursts and occur at a lower frequency. This biphasic burst pattern has been proposed to represent inspiratory activity underling periodic sighs. Bath-applied bombesin or SP decreased the period and increased the duration of both normal inspiratory and biphasic bursts and their underlying synaptic drives. The ratio of the biphasic long-duration burst period to the normal inspiratory burst period and the ratio of their burst durations remained the same before and after peptidergic modulation. Bombesin increased the frequency of the inspiratory rhythm in a Ca2+-independent manner and the frequency of long-duration bursts in a Ca2+-dependent manner. This finding suggests that period and burst duration coupling are due to intrinsic mechanisms controlling simultaneously timing and burst termination within the inspiratory rhythm-generating network. We propose a model in which signaling cascades activated by bombesin and SP modulate mechanisms controlling inspiratory burst frequency and duration to coordinate preBötC circuit behavioral outputs.
Collapse
Affiliation(s)
- Consuelo Morgado-Valle
- Instituto de Investigaciones Cerebrales, Dirección General de Investigaciones, Universidad Veracruzana, Xalapa Veracruz, México, 91190. .,Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke (NINDS). National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| | - Jeffrey C Smith
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke (NINDS). National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Juan Fernandez-Ruiz
- Facultad de Medicina, Universidad Nacional Autónoma de México. Ciudad de México, México City, 04510, México
| | - Leonor Lopez-Meraz
- Instituto de Investigaciones Cerebrales, Dirección General de Investigaciones, Universidad Veracruzana, Xalapa Veracruz, México, 91190
| | - Luis Beltran-Parrazal
- Instituto de Investigaciones Cerebrales, Dirección General de Investigaciones, Universidad Veracruzana, Xalapa Veracruz, México, 91190.
| |
Collapse
|
5
|
Phillips RS, Rubin JE. Putting the theory into 'burstlet theory' with a biophysical model of burstlets and bursts in the respiratory preBötzinger complex. eLife 2022; 11:e75713. [PMID: 35380537 PMCID: PMC9023056 DOI: 10.7554/elife.75713] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 04/04/2022] [Indexed: 11/17/2022] Open
Abstract
Inspiratory breathing rhythms arise from synchronized neuronal activity in a bilaterally distributed brainstem structure known as the preBötzinger complex (preBötC). In in vitro slice preparations containing the preBötC, extracellular potassium must be elevated above physiological levels (to 7-9 mM) to observe regular rhythmic respiratory motor output in the hypoglossal nerve to which the preBötC projects. Reexamination of how extracellular K+ affects preBötC neuronal activity has revealed that low-amplitude oscillations persist at physiological levels. These oscillatory events are subthreshold from the standpoint of transmission to motor output and are dubbed burstlets. Burstlets arise from synchronized neural activity in a rhythmogenic neuronal subpopulation within the preBötC that in some instances may fail to recruit the larger network events, or bursts, required to generate motor output. The fraction of subthreshold preBötC oscillatory events (burstlet fraction) decreases sigmoidally with increasing extracellular potassium. These observations underlie the burstlet theory of respiratory rhythm generation. Experimental and computational studies have suggested that recruitment of the non-rhythmogenic component of the preBötC population requires intracellular Ca2+ dynamics and activation of a calcium-activated nonselective cationic current. In this computational study, we show how intracellular calcium dynamics driven by synaptically triggered Ca2+ influx as well as Ca2+ release/uptake by the endoplasmic reticulum in conjunction with a calcium-activated nonselective cationic current can reproduce and offer an explanation for many of the key properties associated with the burstlet theory of respiratory rhythm generation. Altogether, our modeling work provides a mechanistic basis that can unify a wide range of experimental findings on rhythm generation and motor output recruitment in the preBötC.
Collapse
Affiliation(s)
- Ryan S Phillips
- Department of Mathematics and Center for the Neural Basis of Cognition, University of PittsburghPittsburghUnited States
| | - Jonathan E Rubin
- Department of Mathematics and Center for the Neural Basis of Cognition, University of PittsburghPittsburghUnited States
| |
Collapse
|
6
|
Severs L, Vlemincx E, Ramirez JM. The psychophysiology of the sigh: I: The sigh from the physiological perspective. Biol Psychol 2022; 170:108313. [DOI: 10.1016/j.biopsycho.2022.108313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/30/2022]
|
7
|
Bishop M, Weinhold M, Turk AZ, Adeck A, SheikhBahaei S. An open-source tool for automated analysis of breathing behaviors in common marmosets and rodents. eLife 2022; 11:e71647. [PMID: 35049499 PMCID: PMC8856653 DOI: 10.7554/elife.71647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
The respiratory system maintains homeostatic levels of oxygen (O2) and carbon dioxide (CO2) in the body through rapid and efficient regulation of breathing frequency and depth (tidal volume). The commonly used methods of analyzing breathing data in behaving experimental animals are usually subjective, laborious, and time-consuming. To overcome these hurdles, we optimized an analysis toolkit for the unsupervised study of respiratory activities in animal subjects. Using this tool, we analyzed breathing behaviors of the common marmoset (Callithrix jacchus), a New World non-human primate model. Using whole-body plethysmography in room air as well as acute hypoxic (10% O2) and hypercapnic (6% CO2) conditions, we describe breathing behaviors in awake, freely behaving marmosets. Our data indicate that marmosets' exposure to acute hypoxia decreased metabolic rate and increased sigh rate. However, the hypoxic condition did not augment ventilation. Hypercapnia, on the other hand, increased both the frequency and depth (i.e., tidal volume) of breathing.
Collapse
Affiliation(s)
- Mitchell Bishop
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, United States
| | - Maximilian Weinhold
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, United States
| | - Ariana Z Turk
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, United States
| | - Afuh Adeck
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, United States
| | - Shahriar SheikhBahaei
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, United States
| |
Collapse
|
8
|
Abstract
Breathing is a critical, complex, and highly integrated behavior. Normal rhythmic breathing, also referred to as eupnea, is interspersed with different breathing related behaviors. Sighing is one of such behaviors, essential for maintaining effective gas exchange by preventing the gradual collapse of alveoli in the lungs, known as atelectasis. Critical for the generation of both sighing and eupneic breathing is a region of the medulla known as the preBötzinger Complex (preBötC). Efforts are underway to identify the cellular pathways that link sighing as well as sneezing, yawning, and hiccupping with other brain regions to better understand how they are integrated and regulated in the context of other behaviors including chemosensation, olfaction, and cognition. Unraveling these interactions may provide important insights into the diverse roles of these behaviors in the initiation of arousal, stimulation of vigilance, and the relay of certain behavioral states. This chapter focuses primarily on the function of the sigh, how it is locally generated within the preBötC, and what the functional implications are for a potential link between sighing and cognitive regulation. Furthermore, we discuss recent insights gained into the pathways and mechanisms that control yawning, sneezing, and hiccupping.
Collapse
|
9
|
Dynamics of ramping bursts in a respiratory neuron model. J Comput Neurosci 2021; 50:161-180. [PMID: 34704174 DOI: 10.1007/s10827-021-00800-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
Intensive computational and theoretical work has led to the development of multiple mathematical models for bursting in respiratory neurons in the pre-Bötzinger Complex (pre-BötC) of the mammalian brainstem. Nonetheless, these previous models have not captured the pre-inspiratory ramping aspects of these neurons' activity patterns, in which relatively slow tonic spiking gradually progresses to faster spiking and a full-blown burst, with a corresponding gradual development of an underlying plateau potential. In this work, we show that the incorporation of the dynamics of the extracellular potassium ion concentration into an existing model for pre-BötC neuron bursting, along with some parameter adjustments, suffices to induce this ramping behavior. Using fast-slow decomposition, we show that this activity can be considered as a form of parabolic bursting, but with burst termination at a homoclinic bifurcation rather than as a SNIC bifurcation. We also investigate the parameter-dependence of these solutions and show that the proposed model yields a greater dynamic range of burst frequencies, durations, and duty cycles than those produced by other models in the literature.
Collapse
|
10
|
Borrus DS, Grover CJ, Conradi Smith GD, Del Negro CA. Role of Synaptic Inhibition in the Coupling of the Respiratory Rhythms that Underlie Eupnea and Sigh Behaviors. eNeuro 2020; 7:ENEURO.0302-19.2020. [PMID: 32393585 PMCID: PMC7363481 DOI: 10.1523/eneuro.0302-19.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 04/14/2020] [Accepted: 05/01/2020] [Indexed: 11/21/2022] Open
Abstract
The preBötzinger complex (preBötC) gives rise to two types of breathing behavior under normal physiological conditions: eupnea and sighing. Here, we examine the neural mechanisms that couple their underlying rhythms. We measured breathing in awake intact adult mice and recorded inspiratory rhythms from the preBötC in neonatal mouse brainstem slice preparations. We show previously undocumented variability in the temporal relationship between sigh breaths or bursts and their preceding eupneic breaths or inspiratory bursts. Investigating the synaptic mechanisms for this variability in vitro, we further show that pharmacological blockade of chloride-mediated synaptic inhibition strengthens inspiratory-to-sigh temporal coupling. These findings contrast with previous literature, which suggested glycinergic inhibition linked sigh bursts to their preceding inspiratory bursts with minimal time intervals. Furthermore, we verify that pharmacological disinhibition did not alter the duration of the prolonged interval that follows a sigh burst before resumption of the inspiratory rhythm. These results demonstrate that synaptic inhibition does not enhance coupling between sighs and preceding inspiratory events or contribute to post-sigh apneas. Instead, we conclude that excitatory synaptic mechanisms coordinate inspiratory (eupnea) and sigh rhythms.
Collapse
Affiliation(s)
- Daniel S Borrus
- Department of Applied Science, Integrated Science Center, William & Mary, Williamsburg, VA 23185
| | - Cameron J Grover
- Department of Applied Science, Integrated Science Center, William & Mary, Williamsburg, VA 23185
| | - Gregory D Conradi Smith
- Department of Applied Science, Integrated Science Center, William & Mary, Williamsburg, VA 23185
| | - Christopher A Del Negro
- Department of Applied Science, Integrated Science Center, William & Mary, Williamsburg, VA 23185
| |
Collapse
|
11
|
Wang Y, Rubin JE. Complex bursting dynamics in an embryonic respiratory neuron model. CHAOS (WOODBURY, N.Y.) 2020; 30:043127. [PMID: 32357647 DOI: 10.1063/1.5138993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Pre-Bötzinger complex (pre-BötC) network activity within the mammalian brainstem controls the inspiratory phase of the respiratory rhythm. While bursting in pre-BötC neurons during the postnatal period has been extensively studied, less is known regarding inspiratory pacemaker neuron behavior at embryonic stages. Recent data in mouse embryo brainstem slices have revealed the existence of a variety of bursting activity patterns depending on distinct combinations of burst-generating INaP and ICAN conductances. In this work, we consider a model of an isolated embryonic pre-BötC neuron featuring two distinct bursting mechanisms. We use methods of dynamical systems theory, such as phase plane analysis, fast-slow decomposition, and bifurcation analysis, to uncover mechanisms underlying several different types of intrinsic bursting dynamics observed experimentally including several forms of plateau bursts, bursts involving depolarization block, and various combinations of these patterns. Our analysis also yields predictions about how changes in the balance of the two bursting mechanisms contribute to alterations in an inspiratory pacemaker neuron activity during prenatal development.
Collapse
Affiliation(s)
- Yangyang Wang
- Department of Mathematics, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Jonathan E Rubin
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
12
|
Riede T, Schaefer C, Stein A. Role of deep breaths in ultrasonic vocal production of Sprague-Dawley rats. J Neurophysiol 2020; 123:966-979. [PMID: 31967929 DOI: 10.1152/jn.00590.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Deep breaths are one of three breathing patterns in rodents characterized by an increased tidal volume. While humans incorporate deep breaths into vocal behavior, it was unknown whether nonhuman mammals use deep breaths for vocal production. We have utilized subglottal pressure recordings in awake, spontaneously behaving male Sprague-Dawley rats in five contexts: sleep, rest, noxious stimulation, exposure to a female in estrus, and exposure to an unknown male. Deep breaths were produced at rates ranging between 17.5 and 90.3 deep breaths per hour. While overall breathing and vocal rates were higher in social and noxious contexts, the rate of deep breaths was only increased during the male's interaction with a female. Results also inform our understanding of vocal-respiratory integration in rats. The rate of deep breaths that were associated with a vocalization during the exhalation phase increased with vocal activity. The proportion of deep breaths that were associated with a vocalization (on average 22%) was similar to the proportion of sniffing or eupnea breaths that contain a vocalization. Therefore, vocal motor patterns appear to be entrained to the prevailing breathing rhythm, i.e., vocalization uses the available breathing pattern rather than recruiting a specific breathing pattern. Furthermore, the pattern of a deep breath was different when it was associated with a vocalization, suggesting that motor planning occurs. Finally, deep breaths are a source for acoustic variation; for example, call duration and fundamental frequency modulation were both larger in 22-kHz calls produced following a deep inhalation.NEW & NOTEWORTHY The emission of a long, deep, audible breath can express various emotions. The investigation of deep breaths, also known as sighing, in a nonhuman mammal demonstrated the occasional use of deep breaths for vocal production. Similar to the human equivalent, acoustic features of a deep breath vocalization are characteristic.
Collapse
Affiliation(s)
- Tobias Riede
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, Arizona
| | - Charles Schaefer
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, Arizona
| | - Amy Stein
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, Arizona
| |
Collapse
|
13
|
Phillips RS, John TT, Koizumi H, Molkov YI, Smith JC. Biophysical mechanisms in the mammalian respiratory oscillator re-examined with a new data-driven computational model. eLife 2019; 8:41555. [PMID: 30907727 PMCID: PMC6433470 DOI: 10.7554/elife.41555] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/07/2019] [Indexed: 12/11/2022] Open
Abstract
An autorhythmic population of excitatory neurons in the brainstem pre-Bötzinger complex is a critical component of the mammalian respiratory oscillator. Two intrinsic neuronal biophysical mechanisms—a persistent sodium current (INaP) and a calcium-activated non-selective cationic current (ICAN)—were proposed to individually or in combination generate cellular- and circuit-level oscillations, but their roles are debated without resolution. We re-examined these roles in a model of a synaptically connected population of excitatory neurons with ICAN and INaP. This model robustly reproduces experimental data showing that rhythm generation can be independent of ICAN activation, which determines population activity amplitude. This occurs when ICAN is primarily activated by neuronal calcium fluxes driven by synaptic mechanisms. Rhythm depends critically on INaP in a subpopulation forming the rhythmogenic kernel. The model explains how the rhythm and amplitude of respiratory oscillations involve distinct biophysical mechanisms.
Collapse
Affiliation(s)
- Ryan S Phillips
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States.,Department of Physics, University of New Hampshire, Durham, United States
| | - Tibin T John
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Hidehiko Koizumi
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Yaroslav I Molkov
- Department of Mathematics and Statistics, Georgia State University, Atlanta, United States.,Neuroscience Institute, Georgia State University, Atlanta, United States
| | - Jeffrey C Smith
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| |
Collapse
|
14
|
Thoby-Brisson M. Neural mechanisms for sigh generation during prenatal development. J Neurophysiol 2018; 120:1162-1172. [PMID: 29897860 DOI: 10.1152/jn.00314.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The respiratory network of the preBötzinger complex (preBötC), which controls inspiratory behavior, can in normal conditions simultaneously produce two types of inspiration-related rhythmic activities: the eupneic rhythm composed of monophasic, low-amplitude, and relatively high-frequency bursts, interspersed with sigh rhythmic activity, composed of biphasic, high-amplitude, and lower frequency bursts. By combining electrophysiological recordings from transverse brainstem slices with computational modeling, new advances in the mechanisms underlying sigh production have been obtained during prenatal development. The present review summarizes recent findings that establish when sigh rhythmogenesis starts to be produced during embryonic development as well as the cellular, membrane, and synaptic properties required for its expression. Together, the results demonstrate that although generated by the same network, the eupnea and sigh rhythms have different developmental onset times and rely on distinct network properties. Because sighs (also known as augmented breaths) are important in maintaining lung function (by reopening collapsed alveoli), gaining insight into their underlying neural mechanisms at early developmental stages is likely to help in the treatment of prematurely born babies often suffering from breathing deficiencies.
Collapse
Affiliation(s)
- Muriel Thoby-Brisson
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Université de Bordeaux , Bordeaux , France
| |
Collapse
|
15
|
Bezdudnaya T, Hormigo KM, Marchenko V, Lane MA. Spontaneous respiratory plasticity following unilateral high cervical spinal cord injury in behaving rats. Exp Neurol 2018; 305:56-65. [PMID: 29596845 DOI: 10.1016/j.expneurol.2018.03.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/23/2018] [Accepted: 03/23/2018] [Indexed: 01/25/2023]
Abstract
Unilateral cervical C2 hemisection (C2Hx) is a classic model of spinal cord injury (SCI) for studying respiratory dysfunction and plasticity. However, most previous studies were performed under anesthesia, which significantly alters respiratory network. Therefore, the goal of this work was to assess spontaneous diaphragm recovery post-C2Hx in awake, freely behaving animals. Adult rats were chronically implanted with diaphragm EMG electrodes and recorded during 8 weeks post-C2Hx. Our results reveal that ipsilateral diaphragm activity partially recovers within days post-injury and reaches pre-injury amplitude in a few weeks. However, the full extent of spontaneous ipsilateral recovery is significantly attenuated by anesthesia (ketamine/xylazine, isoflurane, and urethane). This suggests that the observed recovery may be attributed in part to activation of NMDA receptors which are suppressed by anesthesia. Despite spontaneous recovery in awake animals, ipsilateral hemidiaphragm dysfunction still persists: i) Inspiratory bursts during basal (slow) breathing exhibit an altered pattern, ii) the amplitude of sighs - or augmented breaths - is significantly decreased, and iii) the injured hemidiaphragm exhibits spontaneous events of hyperexcitation. The results from this study offer an under-appreciated insight into spontaneous diaphragm activity and recovery following high cervical spinal cord injury in awake animals.
Collapse
Affiliation(s)
- Tatiana Bezdudnaya
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, 2900 W Queen Lane, Philadelphia, PA 19129, USA.
| | - Kristiina M Hormigo
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, 2900 W Queen Lane, Philadelphia, PA 19129, USA
| | - Vitaliy Marchenko
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, 2900 W Queen Lane, Philadelphia, PA 19129, USA
| | - Michael A Lane
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, 2900 W Queen Lane, Philadelphia, PA 19129, USA
| |
Collapse
|
16
|
Wang Y, Rubin JE. Timescales and Mechanisms of Sigh-Like Bursting and Spiking in Models of Rhythmic Respiratory Neurons. JOURNAL OF MATHEMATICAL NEUROSCIENCE 2017; 7:3. [PMID: 28589465 PMCID: PMC5461246 DOI: 10.1186/s13408-017-0045-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/21/2017] [Indexed: 05/26/2023]
Abstract
Neural networks generate a variety of rhythmic activity patterns, often involving different timescales. One example arises in the respiratory network in the pre-Bötzinger complex of the mammalian brainstem, which can generate the eupneic rhythm associated with normal respiration as well as recurrent low-frequency, large-amplitude bursts associated with sighing. Two competing hypotheses have been proposed to explain sigh generation: the recruitment of a neuronal population distinct from the eupneic rhythm-generating subpopulation or the reconfiguration of activity within a single population. Here, we consider two recent computational models, one of which represents each of the hypotheses. We use methods of dynamical systems theory, such as fast-slow decomposition, averaging, and bifurcation analysis, to understand the multiple-timescale mechanisms underlying sigh generation in each model. In the course of our analysis, we discover that a third timescale is required to generate sighs in both models. Furthermore, we identify the similarities of the underlying mechanisms in the two models and the aspects in which they differ.
Collapse
Affiliation(s)
- Yangyang Wang
- Mathematical Biosciences Institute, Ohio State University, Jennings Hall 3rd Floor, 1735 Neil Ave., Columbus, 43210 USA
| | - Jonathan E. Rubin
- Department of Mathematics, University of Pittsburgh, 301 Thackeray Hall, Pittsburgh, 15260 USA
| |
Collapse
|
17
|
Chevalier M, Toporikova N, Simmers J, Thoby-Brisson M. Development of pacemaker properties and rhythmogenic mechanisms in the mouse embryonic respiratory network. eLife 2016; 5:e16125. [PMID: 27434668 PMCID: PMC4990420 DOI: 10.7554/elife.16125] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/18/2016] [Indexed: 11/13/2022] Open
Abstract
Breathing is a vital rhythmic behavior generated by hindbrain neuronal circuitry, including the preBötzinger complex network (preBötC) that controls inspiration. The emergence of preBötC network activity during prenatal development has been described, but little is known regarding inspiratory neurons expressing pacemaker properties at embryonic stages. Here, we combined calcium imaging and electrophysiological recordings in mouse embryo brainstem slices together with computational modeling to reveal the existence of heterogeneous pacemaker oscillatory properties relying on distinct combinations of burst-generating INaP and ICAN conductances. The respective proportion of the different inspiratory pacemaker subtypes changes during prenatal development. Concomitantly, network rhythmogenesis switches from a purely INaP/ICAN-dependent mechanism at E16.5 to a combined pacemaker/network-driven process at E18.5. Our results provide the first description of pacemaker bursting properties in embryonic preBötC neurons and indicate that network rhythmogenesis undergoes important changes during prenatal development through alterations in both circuit properties and the biophysical characteristics of pacemaker neurons.
Collapse
Affiliation(s)
- Marc Chevalier
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Université de Bordeaux, Bordeaux, France
| | - Natalia Toporikova
- Department of Biology, Washington and Lee University, Lexington, United States
| | - John Simmers
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Université de Bordeaux, Bordeaux, France
| | - Muriel Thoby-Brisson
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
18
|
Bertram R, Rubin JE. Multi-timescale systems and fast-slow analysis. Math Biosci 2016; 287:105-121. [PMID: 27424950 DOI: 10.1016/j.mbs.2016.07.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/01/2016] [Accepted: 07/10/2016] [Indexed: 11/28/2022]
Abstract
Mathematical models of biological systems often have components that vary on different timescales. This multi-timescale character can lead to problems when doing computer simulations, which can require a great deal of computer time so that the components that change on the fastest time scale can be resolved. Mathematical analysis of these multi-timescale systems can be greatly simplified by partitioning them into subsystems that evolve on different time scales. The subsystems are then analyzed semi-independently, using a technique called fast-slow analysis. In this review we describe the fast-slow analysis technique and apply it to relaxation oscillations, neuronal bursting oscillations, canard oscillations, and mixed-mode oscillations. Although these examples all involve neural systems, the technique can and has been applied to other biological, chemical, and physical systems. It is a powerful analysis method that will become even more useful in the future as new experimental techniques push forward the complexity of biological models.
Collapse
Affiliation(s)
- Richard Bertram
- Department of Mathematics and Programs in Neuroscience and Molecular Biophysics Florida State University, Florida State University, Tallahassee, FL, United States.
| | - Jonathan E Rubin
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
19
|
Forsberg D, Horn Z, Tserga E, Smedler E, Silberberg G, Shvarev Y, Kaila K, Uhlén P, Herlenius E. CO2-evoked release of PGE2 modulates sighs and inspiration as demonstrated in brainstem organotypic culture. eLife 2016; 5. [PMID: 27377173 PMCID: PMC4974055 DOI: 10.7554/elife.14170] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 06/21/2016] [Indexed: 12/20/2022] Open
Abstract
Inflammation-induced release of prostaglandin E2 (PGE2) changes breathing patterns and the response to CO2 levels. This may have fatal consequences in newborn babies and result in sudden infant death. To elucidate the underlying mechanisms, we present a novel breathing brainstem organotypic culture that generates rhythmic neural network and motor activity for 3 weeks. We show that increased CO2 elicits a gap junction-dependent release of PGE2. This alters neural network activity in the preBötzinger rhythm-generating complex and in the chemosensitive brainstem respiratory regions, thereby increasing sigh frequency and the depth of inspiration. We used mice lacking eicosanoid prostanoid 3 receptors (EP3R), breathing brainstem organotypic slices and optogenetic inhibition of EP3R+/+ cells to demonstrate that the EP3R is important for the ventilatory response to hypercapnia. Our study identifies a novel pathway linking the inflammatory and respiratory systems, with implications for inspiration and sighs throughout life, and the ability to autoresuscitate when breathing fails. DOI:http://dx.doi.org/10.7554/eLife.14170.001 Humans and other mammals breathe air to absorb oxygen into the body and to remove carbon dioxide. We know that in a part of the brain called the brainstem, several regions work together to create breaths, but it is not clear precisely how this works. These regions adjust our breathing to the demands placed on the body by different activities, such as sleeping or exercising. Sometimes, especially in newborn babies, the brainstem’s monitoring of oxygen and carbon dioxide does not work properly, which can lead to abnormal breathing and possibly death. In the brain, cells called neurons form networks that can rapidly transfer information via electrical signals. Here, Forsberg et al. investigated the neural networks in the brainstem that generate and control breathing in mice. They used slices of mouse brainstem that had been kept alive in a dish in the laboratory. The slice contained an arrangement of neurons and supporting cells that allowed it to continue to produce patterns of electrical activity that are associated with breathing. Over a three-week period, Forsberg et al. monitored the activity of the cells and calculated how they were connected to each other. The experiments show that the neurons responsible for breathing were organized in a “small-world” network, in which the neurons are connected to each other directly or via small numbers of other neurons. Further experiments tested how various factors affect the behavior of the network. For example, carbon dioxide triggered the release of a small molecule called prostaglandin E2 from cells. This molecule is known to play a role in inflammation and fever. However, in the carbon dioxide sensing region of the brainstem it acted as a signaling molecule that increased activity. Therefore, inflammation could interfere with the body’s normal response to carbon dioxide and lead to potentially life-threatening breathing problems. Furthermore, prostaglandin E2 induced deeper breaths known as sighs, which may be vital for newborn babies to be able to take their first deep breaths of life. Future challenges include understanding how the brainstem neural networks generate breathing and translate this knowledge to improve the treatment of breathing difficulties in babies. DOI:http://dx.doi.org/10.7554/eLife.14170.002
Collapse
Affiliation(s)
- David Forsberg
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Karolinska University Hospital, Stockholm, Sweden
| | - Zachi Horn
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Karolinska University Hospital, Stockholm, Sweden
| | - Evangelia Tserga
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Karolinska University Hospital, Stockholm, Sweden
| | - Erik Smedler
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Gilad Silberberg
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Yuri Shvarev
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Karolinska University Hospital, Stockholm, Sweden
| | - Kai Kaila
- Department of Biosciences and Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Per Uhlén
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Eric Herlenius
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
20
|
Zbrzeski A, Bornat Y, Hillen B, Siu R, Abbas J, Jung R, Renaud S. Bio-Inspired Controller on an FPGA Applied to Closed-Loop Diaphragmatic Stimulation. Front Neurosci 2016; 10:275. [PMID: 27378844 PMCID: PMC4909776 DOI: 10.3389/fnins.2016.00275] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/01/2016] [Indexed: 12/02/2022] Open
Abstract
Cervical spinal cord injury can disrupt connections between the brain respiratory network and the respiratory muscles which can lead to partial or complete loss of ventilatory control and require ventilatory assistance. Unlike current open-loop technology, a closed-loop diaphragmatic pacing system could overcome the drawbacks of manual titration as well as respond to changing ventilation requirements. We present an original bio-inspired assistive technology for real-time ventilation assistance, implemented in a digital configurable Field Programmable Gate Array (FPGA). The bio-inspired controller, which is a spiking neural network (SNN) inspired by the medullary respiratory network, is as robust as a classic controller while having a flexible, low-power and low-cost hardware design. The system was simulated in MATLAB with FPGA-specific constraints and tested with a computational model of rat breathing; the model reproduced experimentally collected respiratory data in eupneic animals. The open-loop version of the bio-inspired controller was implemented on the FPGA. Electrical test bench characterizations confirmed the system functionality. Open and closed-loop paradigm simulations were simulated to test the FPGA system real-time behavior using the rat computational model. The closed-loop system monitors breathing and changes in respiratory demands to drive diaphragmatic stimulation. The simulated results inform future acute animal experiments and constitute the first step toward the development of a neuromorphic, adaptive, compact, low-power, implantable device. The bio-inspired hardware design optimizes the FPGA resource and time costs while harnessing the computational power of spike-based neuromorphic hardware. Its real-time feature makes it suitable for in vivo applications.
Collapse
Affiliation(s)
- Adeline Zbrzeski
- Bordeaux INP, IMS, UMR 5218Talence, France; Univ. Bordeaux, IMS, UMR 5218Talence, France
| | - Yannick Bornat
- Bordeaux INP, IMS, UMR 5218Talence, France; Univ. Bordeaux, IMS, UMR 5218Talence, France
| | - Brian Hillen
- Department of Biomedical Engineering, Florida International University Miami, FL, USA
| | - Ricardo Siu
- Department of Biomedical Engineering, Florida International University Miami, FL, USA
| | - James Abbas
- School of Biological and Health Systems Engineering, Arizona State University Tempe, AZ, USA
| | - Ranu Jung
- Department of Biomedical Engineering, Florida International University Miami, FL, USA
| | - Sylvie Renaud
- Bordeaux INP, IMS, UMR 5218Talence, France; Univ. Bordeaux, IMS, UMR 5218Talence, France
| |
Collapse
|