1
|
Preston KJ, Kawai T, Torimoto K, Kuroda R, Nakayama Y, Akiyama T, Kimura Y, Scalia R, Autieri MV, Rizzo V, Hashimoto T, Osei-Owusu P, Eguchi S. Mitochondrial fission inhibition protects against hypertension induced by angiotensin II. Hypertens Res 2024; 47:1338-1349. [PMID: 38383894 DOI: 10.1038/s41440-024-01610-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/14/2023] [Accepted: 01/27/2024] [Indexed: 02/23/2024]
Abstract
Mitochondrial dysfunction has been implicated in various types of cardiovascular disease including hypertension. Mitochondrial fission fusion balance is critical to mitochondrial quality control, whereas enhanced fission has been reported in several models of cardiovascular disease. However, limited information is available regarding the contribution of mitochondrial fission in hypertension. Here, we have tested the hypothesis that inhibition of mitochondrial fission attenuates the development of hypertension and associated vascular remodeling. In C57BL6 mice infused with angiotensin II for 2 weeks, co-treatment of mitochondrial fission inhibitor, mdivi1, significantly inhibited angiotensin II-induced development of hypertension assessed by radiotelemetry. Histological assessment of hearts and aortas showed that mdivi1 inhibited vessel fibrosis and hypertrophy induced by angiotensin II. This was associated with attenuation of angiotensin II-induced decline in mitochondrial aspect ratio seen in both the endothelial and medial layers of aortas. Mdivi1 also mitigated angiotensin II-induced cardiac hypertrophy assessed by heart weight-to-body weight ratio as well as by echocardiography. In ex vivo experiments, mdivi1 inhibited vasoconstriction and abolished the enhanced vascular reactivity by angiotensin II in small mesenteric arteries. Proteomic analysis on endothelial cell culture media with angiotensin II and/or mdivi1 treatment revealed that mdivi1 inhibited endothelial cell hypersecretory phenotype induced by angiotensin II. In addition, mdivi1 attenuated angiotensin II-induced protein induction of periostin, a myofibroblast marker in cultured vascular fibroblasts. In conclusion, these data suggest that mdivi1 prevented angiotensin II-induced hypertension and cardiovascular remodeling via multicellular mechanisms in the vasculature.
Collapse
Affiliation(s)
- Kyle J Preston
- Department of Cardiovascular Science and Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Tatsuo Kawai
- Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Keiichi Torimoto
- Department of Cardiovascular Science and Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Ryohei Kuroda
- Department of Cardiovascular Science and Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Yuki Nakayama
- Department of Cardiovascular Science and Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Tomoko Akiyama
- Advanced Medical Research Center, Yokohama City University, Yokohama, 236-0004, Japan
| | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City University, Yokohama, 236-0004, Japan
| | - Rosario Scalia
- Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Michael V Autieri
- Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Victor Rizzo
- Department of Cardiovascular Science and Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Tomoki Hashimoto
- Barrow Aneurysm and AVM Research Center, Departments of Neurosurgery and Neurobiology Barrow Neurological Institute Phoenix AZ, Phoenix, AZ, USA
| | - Patrick Osei-Owusu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Satoru Eguchi
- Department of Cardiovascular Science and Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
2
|
Ravindran E, Arashiki N, Becker LL, Takizawa K, Lévy J, Rambaud T, Makridis KL, Goshima Y, Li N, Vreeburg M, Demeer B, Dickmanns A, Stegmann APA, Hu H, Nakamura F, Kaindl AM. Monoallelic CRMP1 gene variants cause neurodevelopmental disorder. eLife 2022; 11:80793. [PMID: 36511780 PMCID: PMC9803352 DOI: 10.7554/elife.80793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Collapsin response mediator proteins (CRMPs) are key for brain development and function. Here, we link CRMP1 to a neurodevelopmental disorder. We report heterozygous de novo variants in the CRMP1 gene in three unrelated individuals with muscular hypotonia, intellectual disability, and/or autism spectrum disorder. Based on in silico analysis these variants are predicted to affect the CRMP1 structure. We further analyzed the effect of the variants on the protein structure/levels and cellular processes. We showed that the human CRMP1 variants impact the oligomerization of CRMP1 proteins. Moreover, overexpression of the CRMP1 variants affect neurite outgrowth of murine cortical neurons. While altered CRMP1 levels have been reported in psychiatric diseases, genetic variants in CRMP1 gene have never been linked to human disease. We report for the first-time variants in the CRMP1 gene and emphasize its key role in brain development and function by linking directly to a human neurodevelopmental disease.
Collapse
Affiliation(s)
- Ethiraj Ravindran
- Department of Pediatric Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Chronically Sick Children, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Institute for Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nobuto Arashiki
- Department of Biochemistry, Tokyo Women's Medical University, Tokyo, Japan
| | - Lena-Luise Becker
- Department of Pediatric Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Chronically Sick Children, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Institute for Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kohtaro Takizawa
- Department of Biochemistry, Tokyo Women's Medical University, Tokyo, Japan
| | - Jonathan Lévy
- Department of Genetics, Robert Debré University Hospital, Paris, France.,Laboratoire de biologie médicale multisites Seqoia, Paris, France
| | - Thomas Rambaud
- Laboratoire de biologie médicale multisites Seqoia, Paris, France
| | - Konstantin L Makridis
- Department of Pediatric Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Chronically Sick Children, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Institute for Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Na Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Maaike Vreeburg
- Clinical Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Bénédicte Demeer
- Center for Human Genetics, CLAD Nord de France, CHU Amiens-Picardie, Amiens, France.,CHIMERE EA 7516, University Picardie Jules Verne, Amiens, France
| | - Achim Dickmanns
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | | | - Hao Hu
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fumio Nakamura
- Department of Biochemistry, Tokyo Women's Medical University, Tokyo, Japan
| | - Angela M Kaindl
- Department of Pediatric Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Chronically Sick Children, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Institute for Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
3
|
Kawamoto Y, Tada M, Asano T, Nakamura H, Jitsuki-Takahashi A, Makihara H, Kubota S, Hashiguchi S, Kunii M, Ohshima T, Goshima Y, Takeuchi H, Doi H, Nakamura F, Tanaka F. Phosphorylated CRMP1, axon guidance protein, is a component of spheroids and is involved in axonal pathology in amyotrophic lateral sclerosis. Front Neurol 2022; 13:994676. [PMID: 36237616 PMCID: PMC9552802 DOI: 10.3389/fneur.2022.994676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/06/2022] [Indexed: 11/19/2022] Open
Abstract
In amyotrophic lateral sclerosis (ALS), neurodegeneration is characterized by distal axonopathy that begins at the distal axons, including the neuromuscular junctions, and progresses proximally in a “dying back” manner prior to the degeneration of cell bodies. However, the molecular mechanism for distal axonopathy in ALS has not been fully addressed. Semaphorin 3A (Sema3A), a repulsive axon guidance molecule that phosphorylates collapsin response mediator proteins (CRMPs), is known to be highly expressed in Schwann cells near distal axons in a mouse model of ALS. To clarify the involvement of Sema3A–CRMP signaling in the axonal pathogenesis of ALS, we investigated the expression of phosphorylated CRMP1 (pCRMP1) in the spinal cords of 35 patients with sporadic ALS and seven disease controls. In ALS patients, we found that pCRMP1 accumulated in the proximal axons and co-localized with phosphorylated neurofilaments (pNFs), which are a major protein constituent of spheroids. Interestingly, the pCRMP1:pNF ratio of the fluorescence signal in spheroid immunostaining was inversely correlated with disease duration in 18 evaluable ALS patients, indicating that the accumulation of pCRMP1 may precede that of pNFs in spheroids or promote ALS progression. In addition, overexpression of a phospho-mimicking CRMP1 mutant inhibited axonal outgrowth in Neuro2A cells. Taken together, these results indicate that pCRMP1 may be involved in the pathogenesis of axonopathy in ALS, leading to spheroid formation through the proximal progression of axonopathy.
Collapse
Affiliation(s)
- Yuko Kawamoto
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mikiko Tada
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tetsuya Asano
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Haruko Nakamura
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Aoi Jitsuki-Takahashi
- Department of Biochemistry, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroko Makihara
- Department of Nursing Course Biological Science and Nursing, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shun Kubota
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shunta Hashiguchi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Misako Kunii
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hideyuki Takeuchi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Fumio Nakamura
- Department of Biochemistry, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- *Correspondence: Fumiaki Tanaka
| |
Collapse
|