1
|
Patterson AS, Dugdale J, Koleilat A, Krauss A, Hernandez-Herrera GA, Wallace JG, Petree C, Varshney GK, Schimmenti LA. Vital Dye Uptake of YO-PRO-1 and DASPEI Depends Upon Mechanoelectrical Transduction Function in Zebrafish Hair Cells. J Assoc Res Otolaryngol 2024:10.1007/s10162-024-00967-w. [PMID: 39433714 DOI: 10.1007/s10162-024-00967-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024] Open
Abstract
PURPOSE Vital dyes allow the visualization of cells in vivo without causing tissue damage, making them a useful tool for studying lateral line and inner ear hair cells in living zebrafish and other vertebrates. FM1-43, YO-PRO-1, and DASPEI are three vital dyes commonly used for hair cell visualization. While it has been established that FM1-43 enters hair cells of zebrafish and other organisms through the mechanoelectrical transduction (MET) channel, the mechanism of entry into hair cells for YO-PRO-1 and DASPEI has not been established despite widespread use. We hypothesize that YO-PRO-1 and DASPEI entry into zebrafish hair cells is MET channel uptake dependent similar to FM1-43. METHODS To test this hypothesis, we used both genetic and pharmacologic means to block MET channel function. Genetic based MET channel assays were conducted with two different mechanotransduction defective zebrafish lines, specifically the myo7aa-/- loss of function mutant tc320b (p.Y846X) and cdh23-/- loss of function mutant (c.570-571del). Pharmacologic assays were performed with Gadolinium(III) Chloride (Gad(III)), a compound that can temporarily block mechanotransduction activity. RESULTS Five-day post fertilization (5dpf) myo7aa-/- and cdh23-/- larvae incubated with FM1-43, YO-PRO-1, and DASPEI all showed nearly absent uptake of each vital dye. Treatment of wildtype zebrafish larvae with Gad(III) significantly reduces uptake of FM1-43, YO-PRO-1, and DASPEI vital dyes. CONCLUSION These results indicate that YO-PRO-1 and DASPEI entry into zebrafish hair cells is MET channel dependent similar to FM1-43. This knowledge expands the repertoire of vital dyes that can be used to assess mechanotransduction and MET channel function in zebrafish and other vertebrate models of hair cell function.
Collapse
Affiliation(s)
- Ashley Scott Patterson
- Initiative for Maximizing Student Development Program, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- University of Wisconsin School of Medicine & Public Health, Medical Scientist Training Program, 2207 Health Sciences Learning Center, 750 Highland Avenue, Madison, WI, 53705, USA
| | - Joseph Dugdale
- Department of Otorhinolaryngology, Head and Neck Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Alaa Koleilat
- Mayo Clinic Graduate School of Biomedical Science, 200 First Street SW, Rochester, MN, 55905, USA
- Knight Molecular Diagnostic Laboratory, Oregon Health Sciences University, 2525 SW Third Avenue, Portland, Oregon, 97201, USA
| | - Anna Krauss
- Initiative for Maximizing Student Development Program, Mayo Clinic, Rochester, MN, USA
- The Learning Center for the Deaf, 848 Central St, Framingham, MA, 01701, USA
| | - Gabriel A Hernandez-Herrera
- Mayo Clinic Graduate School of Biomedical Sciences, 200 First Street SW, Rochester, MN, 55905, USA
- University of Puerto Rico School of Medicine, José Celso Barbosa, 9WWG+H5P, P.º Dr, San Juan, PR, 00921, USA
| | - Jasmine G Wallace
- Summer Research Fellowship Program, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Current Address: Oakwood University, 7000 Adventist Blvd NW, Huntsville, AL, 35896, USA
| | - Cassidy Petree
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, 825 NE 13Th St, Oklahoma City, OK, 73104, USA
| | - Gaurav K Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, 825 NE 13Th St, Oklahoma City, OK, 73104, USA
| | - Lisa A Schimmenti
- Departments of Clinical Genomics, Otorhinolaryngology, Head and Neck Surgery, Ophthalmology, and Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55905, USA.
| |
Collapse
|
2
|
Coffin AB, Dale E, Molano O, Pederson A, Costa EK, Chen J. Age-related changes in the zebrafish and killifish inner ear and lateral line. Sci Rep 2024; 14:6670. [PMID: 38509148 PMCID: PMC10954678 DOI: 10.1038/s41598-024-57182-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/14/2024] [Indexed: 03/22/2024] Open
Abstract
Age-related hearing loss (ARHL) is a debilitating disorder for millions worldwide. While there are multiple underlying causes of ARHL, one common factor is loss of sensory hair cells. In mammals, new hair cells are not produced postnatally and do not regenerate after damage, leading to permanent hearing impairment. By contrast, fish produce hair cells throughout life and robustly regenerate these cells after toxic insult. Despite these regenerative abilities, zebrafish show features of ARHL. Here, we show that aged zebrafish of both sexes exhibited significant hair cell loss and decreased cell proliferation in all inner ear epithelia (saccule, lagena, utricle). Ears from aged zebrafish had increased expression of pro-inflammatory genes and significantly more macrophages than ears from young adult animals. Aged zebrafish also had fewer lateral line hair cells and less cell proliferation than young animals, although lateral line hair cells still robustly regenerated following damage. Unlike zebrafish, African turquoise killifish (an emerging aging model) only showed hair cell loss in the saccule of aged males, but both sexes exhibit age-related changes in the lateral line. Our work demonstrates that zebrafish exhibit key features of auditory aging, including hair cell loss and increased inflammation. Further, our finding that aged zebrafish have fewer lateral line hair cells yet retain regenerative capacity, suggests a decoupling of homeostatic hair cell addition from regeneration following acute trauma. Finally, zebrafish and killifish show species-specific strategies for lateral line homeostasis that may inform further comparative research on aging in mechanosensory systems.
Collapse
Affiliation(s)
- Allison B Coffin
- College of Arts and Sciences, Washington State University Vancouver, Vancouver, WA, 98686, USA.
- Department of Integrative Physiology and Neuroscience, Washington State University Vancouver, Vancouver, WA, 98686, USA.
| | - Emily Dale
- College of Arts and Sciences, Washington State University Vancouver, Vancouver, WA, 98686, USA
- Neuroimmunology Research, Mayo Clinic, Rochester, MN, 55902, USA
| | - Olivia Molano
- College of Arts and Sciences, Washington State University Vancouver, Vancouver, WA, 98686, USA
- Neuroscience Graduate Program, Brown University, Providence, RI, 02912, USA
| | - Alexandra Pederson
- College of Arts and Sciences, Washington State University Vancouver, Vancouver, WA, 98686, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Emma K Costa
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
- Neurosciences Interdepartmental Program, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jingxun Chen
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
3
|
Lau IH, Vasconcelos RO. Noise-induced damage in the zebrafish inner ear endorgans: evidence for higher acoustic sensitivity of saccular and lagenar hair cells. J Exp Biol 2023; 226:jeb245992. [PMID: 37767687 DOI: 10.1242/jeb.245992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
The three otolithic endorgans of the inner ear are known to be involved in sound detection in different teleost fishes, yet their relative roles for auditory-vestibular functions within the same species remain uncertain. In zebrafish (Danio rerio), the saccule and utricle are thought to play key functions in encoding auditory and vestibular information, respectively, but the biological function of the lagena is not clear. We hypothesized that the zebrafish saccule serves as a primary auditory endorgan, making it more vulnerable to noise exposure, and that the lagena might have an auditory function given its connectivity to the saccule and the dominant vestibular function of the utricle. We compared the impact of acoustic trauma (continuous white noise at 168 dB for 24 h) between the sensory epithelia of the three otolithic endorgans. Noise treatment caused hair cell loss in both the saccule and lagena but not in the utricle. This effect was identified immediately after acoustic treatment and did not increase 24 h post-trauma. Furthermore, hair cell loss was accompanied by a reduction in presynaptic activity measured based on ribeye b presence, but mainly in the saccule, supporting its main contribution for noise-induced hearing loss. Our findings support the hypothesis that the saccule plays a major role in sound detection and that the lagena is also acoustically affected, extending the species hearing dynamic range.
Collapse
Affiliation(s)
- Ieng Hou Lau
- Institute of Science and Environment, University of Saint Joseph, Macao, S.A.R., China
| | - Raquel O Vasconcelos
- Institute of Science and Environment, University of Saint Joseph, Macao, S.A.R., China
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
- EPCV-Department of Life Sciences, Lusófona University, 1749-024 Lisbon, Portugal
| |
Collapse
|
4
|
The effect of time regime in noise exposure on the auditory system and behavioural stress in the zebrafish. Sci Rep 2022; 12:15353. [PMID: 36097161 PMCID: PMC9468136 DOI: 10.1038/s41598-022-19573-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022] Open
Abstract
Anthropogenic noise of variable temporal patterns is increasing in aquatic environments, causing physiological stress and sensory impairment. However, scarce information exists on exposure effects to continuous versus intermittent disturbances, which is critical for noise sustainable management. We tested the effects of different noise regimes on the auditory system and behaviour in the zebrafish (Danio rerio). Adult zebrafish were exposed for 24 h to either white noise (150 ± 10 dB re 1 μPa) or silent control. Acoustic playbacks varied in temporal patterns—continuous, fast and slow regular intermittent, and irregular intermittent. Auditory sensitivity was assessed with Auditory Evoked Potential recordings, revealing hearing loss and increased response latency in all noise-treated groups. The highest mean threshold shifts (c. 13 dB) were registered in continuous and fast intermittent treatments, and no differences were found between regular and irregular regimes. Inner ear saccule did not reveal significant hair cell loss but showed a decrease in presynaptic Ribeye b protein especially after continuous exposure. Behavioural assessment using the standardized Novel Tank Diving assay showed that all noise-treated fish spent > 98% time in the bottom within the first minute compared to 82% in control, indicating noise-induced anxiety/stress. We provide first data on how different noise time regimes impact a reference fish model, suggesting that overall acoustic energy is more important than regularity when predicting noise effects.
Collapse
|
5
|
Coffin AB, Dale E, Doppenberg E, Fearington F, Hayward T, Hill J, Molano O. Putative COVID-19 therapies imatinib, lopinavir, ritonavir, and ivermectin cause hair cell damage: A targeted screen in the zebrafish lateral line. Front Cell Neurosci 2022; 16:941031. [PMID: 36090793 PMCID: PMC9448854 DOI: 10.3389/fncel.2022.941031] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
The biomedical community is rapidly developing COVID-19 drugs to bring much-need therapies to market, with over 900 drugs and drug combinations currently in clinical trials. While this pace of drug development is necessary, the risk of producing therapies with significant side-effects is also increased. One likely side-effect of some COVID-19 drugs is hearing loss, yet hearing is not assessed during preclinical development or clinical trials. We used the zebrafish lateral line, an established model for drug-induced sensory hair cell damage, to assess the ototoxic potential of seven drugs in clinical trials for treatment of COVID-19. We found that ivermectin, lopinavir, imatinib, and ritonavir were significantly toxic to lateral line hair cells. By contrast, the approved COVID-19 therapies dexamethasone and remdesivir did not cause damage. We also did not observe damage from the antibiotic azithromycin. Neither lopinavir nor ritonavir altered the number of pre-synaptic ribbons per surviving hair cell, while there was an increase in ribbons following imatinib or ivermectin exposure. Damage from lopinavir, imatinib, and ivermectin was specific to hair cells, with no overall cytotoxicity noted following TUNEL labeling. Ritonavir may be generally cytotoxic, as determined by an increase in the number of TUNEL-positive non-hair cells following ritonavir exposure. Pharmacological inhibition of the mechanotransduction (MET) channel attenuated damage caused by lopinavir and ritonavir but did not alter imatinib or ivermectin toxicity. These results suggest that lopinavir and ritonavir may enter hair cells through the MET channel, similar to known ototoxins such as aminoglycoside antibiotics. Finally, we asked if ivermectin was ototoxic to rats in vivo. While ivermectin is not recommended by the FDA for treating COVID-19, many people have chosen to take ivermectin without a doctor's guidance, often with serious side-effects. Rats received daily subcutaneous injections for 10 days with a clinically relevant ivermectin dose (0.2 mg/kg). In contrast to our zebrafish assays, ivermectin did not cause ototoxicity in rats. Our research suggests that some drugs in clinical trials for COVID-19 may be ototoxic. This work can help identify drugs with the fewest side-effects and determine which therapies warrant audiometric monitoring.
Collapse
Affiliation(s)
- Allison B. Coffin
- Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, United States
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States
| | - Emily Dale
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States
| | - Emilee Doppenberg
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States
| | - Forrest Fearington
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States
| | - Tamasen Hayward
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States
| | - Jordan Hill
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States
| | - Olivia Molano
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States
| |
Collapse
|
6
|
Lara RA, Breitzler L, Lau IH, Gordillo-Martinez F, Chen F, Fonseca PJ, Bass AH, Vasconcelos RO. Noise-induced hearing loss correlates with inner ear hair cell decrease in larval zebrafish. J Exp Biol 2022; 225:274643. [PMID: 35258623 DOI: 10.1242/jeb.243743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/27/2022] [Indexed: 11/20/2022]
Abstract
Anthropogenic noise can be hazardous for the auditory system and wellbeing of animals, including humans. However, very limited information is known on how this global environmental pollutant affects auditory function and inner ear sensory receptors in early ontogeny. The zebrafish (Danio rerio) is a valuable model in hearing research, including to investigate developmental processes of the vertebrate inner ear. We tested the effects of chronic exposure to white noise in larval zebrafish on inner ear saccular sensitivity and morphology at 3 and 5 days post fertilization (dpf), as well as on auditory-evoked swimming responses using the prepulse inhibition paradigm (PPI) at 5 dpf. Noise-exposed larvae showed significant increase in microphonic potential thresholds at low frequencies, 100 and 200 Hz, while PPI revealed a hypersensitisation effect and similar threshold shift at 200 Hz. Auditory sensitivity changes were accompanied by a decrease in saccular hair cell number and epithelium area. In aggregate, the results reveal noise-induced effects on inner ear structure-function in a larval fish paralleled by a decrease in auditory-evoked sensorimotor responses. More broadly, this study highlights the importance of investigating the impact of environmental noise on early development of sensory and behavioural responsiveness to acoustic stimuli.
Collapse
Affiliation(s)
- Rafael A Lara
- Institute of Science and Environment, University of Saint Joseph, Macao S.A.R., China.,Departamento de Biología, Universidad de Sevilla, Spain
| | - Lukas Breitzler
- Institute of Science and Environment, University of Saint Joseph, Macao S.A.R., China
| | - Ieng Hou Lau
- Institute of Science and Environment, University of Saint Joseph, Macao S.A.R., China
| | | | - Fangyi Chen
- Department of Biomedical Engineering, South University of Science and Technology of China, Guangdong, China
| | - Paulo J Fonseca
- Departamento de Biologia Animal and cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, NY, USA
| | - Raquel O Vasconcelos
- Institute of Science and Environment, University of Saint Joseph, Macao S.A.R., China
| |
Collapse
|
7
|
Han E, Lee DH, Park S, Rah YC, Park HC, Choi JW, Choi J. Noise-induced hearing loss in zebrafish model: Characterization of tonotopy and sex-based differences. Hear Res 2022; 418:108485. [DOI: 10.1016/j.heares.2022.108485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 02/14/2022] [Accepted: 03/14/2022] [Indexed: 12/22/2022]
|
8
|
Holmgren M, Ravicz ME, Hancock KE, Strelkova O, Kallogjeri D, Indzhykulian AA, Warchol ME, Sheets L. Mechanical overstimulation causes acute injury and synapse loss followed by fast recovery in lateral-line neuromasts of larval zebrafish. eLife 2021; 10:69264. [PMID: 34665127 PMCID: PMC8555980 DOI: 10.7554/elife.69264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022] Open
Abstract
Excess noise damages sensory hair cells, resulting in loss of synaptic connections with auditory nerves and, in some cases, hair-cell death. The cellular mechanisms underlying mechanically induced hair-cell damage and subsequent repair are not completely understood. Hair cells in neuromasts of larval zebrafish are structurally and functionally comparable to mammalian hair cells but undergo robust regeneration following ototoxic damage. We therefore developed a model for mechanically induced hair-cell damage in this highly tractable system. Free swimming larvae exposed to strong water wave stimulus for 2 hr displayed mechanical injury to neuromasts, including afferent neurite retraction, damaged hair bundles, and reduced mechanotransduction. Synapse loss was observed in apparently intact exposed neuromasts, and this loss was exacerbated by inhibiting glutamate uptake. Mechanical damage also elicited an inflammatory response and macrophage recruitment. Remarkably, neuromast hair-cell morphology and mechanotransduction recovered within hours following exposure, suggesting severely damaged neuromasts undergo repair. Our results indicate functional changes and synapse loss in mechanically damaged lateral-line neuromasts that share key features of damage observed in noise-exposed mammalian ear. Yet, unlike the mammalian ear, mechanical damage to neuromasts is rapidly reversible.
Collapse
Affiliation(s)
- Melanie Holmgren
- Department of Otolaryngology, Washington University School of Medicine, St Louis, United States
| | - Michael E Ravicz
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, United States
| | - Kenneth E Hancock
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, United States
| | - Olga Strelkova
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, United States
| | - Dorina Kallogjeri
- Department of Otolaryngology, Washington University School of Medicine, St Louis, United States
| | - Artur A Indzhykulian
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, United States
| | - Mark E Warchol
- Department of Otolaryngology, Washington University School of Medicine, St Louis, United States.,Department of Neuroscience, Washington University School of Medicine, St Louis, United States
| | - Lavinia Sheets
- Department of Otolaryngology, Washington University School of Medicine, St Louis, United States.,Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States
| |
Collapse
|
9
|
Sheets L, Holmgren M, Kindt KS. How Zebrafish Can Drive the Future of Genetic-based Hearing and Balance Research. J Assoc Res Otolaryngol 2021; 22:215-235. [PMID: 33909162 PMCID: PMC8110678 DOI: 10.1007/s10162-021-00798-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Over the last several decades, studies in humans and animal models have successfully identified numerous molecules required for hearing and balance. Many of these studies relied on unbiased forward genetic screens based on behavior or morphology to identify these molecules. Alongside forward genetic screens, reverse genetics has further driven the exploration of candidate molecules. This review provides an overview of the genetic studies that have established zebrafish as a genetic model for hearing and balance research. Further, we discuss how the unique advantages of zebrafish can be leveraged in future genetic studies. We explore strategies to design novel forward genetic screens based on morphological alterations using transgenic lines or behavioral changes following mechanical or acoustic damage. We also outline how recent advances in CRISPR-Cas9 can be applied to perform reverse genetic screens to validate large sequencing datasets. Overall, this review describes how future genetic studies in zebrafish can continue to advance our understanding of inherited and acquired hearing and balance disorders.
Collapse
Affiliation(s)
- Lavinia Sheets
- Department of Otolaryngology-Head & Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Melanie Holmgren
- Department of Otolaryngology-Head & Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Katie S Kindt
- Section On Sensory Cell Development and Function, National Institutes On Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, USA.
| |
Collapse
|
10
|
Ohnesorge N, Heinl C, Lewejohann L. Current Methods to Investigate Nociception and Pain in Zebrafish. Front Neurosci 2021; 15:632634. [PMID: 33897350 PMCID: PMC8061727 DOI: 10.3389/fnins.2021.632634] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Pain is an unpleasant, negative emotion and its debilitating effects are complex to manage. Mammalian models have long dominated research on nociception and pain, but there is increasing evidence for comparable processes in fish. The need to improve existing pain models for drug research and the obligation for 3R refinement of fish procedures facilitated the development of numerous new assays of nociception and pain in fish. The zebrafish is already a well-established animal model in many other research areas like toxicity testing, as model for diseases or regeneration and has great potential in pain research, too. Methods of electrophysiology, molecular biology, analysis of reflexive or non-reflexive behavior and fluorescent imaging are routinely applied but it is the combination of these tools what makes the zebrafish model so powerful. Simultaneously, observing complex behavior in free-swimming larvae, as well as their neuronal activity at the cellular level, opens new avenues for pain research. This review aims to supply a toolbox for researchers by summarizing current methods to study nociception and pain in zebrafish. We identify treatments with the best algogenic potential, be it chemical, thermal or electric stimuli and discuss options of analgesia to counter effects of nociception and pain by opioids, non-steroidal anti-inflammatory drugs (NSAIDs) or local anesthetics. In addition, we critically evaluate these practices, identify gaps of knowledge and outline potential future developments.
Collapse
Affiliation(s)
- Nils Ohnesorge
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| | - Céline Heinl
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| | - Lars Lewejohann
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
11
|
Lara RA, Vasconcelos RO. Impact of noise on development, physiological stress and behavioural patterns in larval zebrafish. Sci Rep 2021; 11:6615. [PMID: 33758247 PMCID: PMC7988139 DOI: 10.1038/s41598-021-85296-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/26/2021] [Indexed: 01/31/2023] Open
Abstract
Noise pollution is increasingly present in aquatic ecosystems, causing detrimental effects on growth, physiology and behaviour of organisms. However, limited information exists on how this stressor affects animals in early ontogeny, a critical period for development and establishment of phenotypic traits. We tested the effects of chronic noise exposure to increasing levels (130 and 150 dB re 1 μPa, continuous white noise) and different temporal regimes on larval zebrafish (Danio rerio), an important vertebrate model in ecotoxicology. The acoustic treatments did not affect general development or hatching but higher noise levels led to increased mortality. The cardiac rate, yolk sac consumption and cortisol levels increased significantly with increasing noise level at both 3 and 5 dpf (days post fertilization). Variation in noise temporal patterns (different random noise periods to simulate shipping activity) suggested that the time regime is more important than the total duration of noise exposure to down-regulate physiological stress. Moreover, 5 dpf larvae exposed to 150 dB continuous noise displayed increased dark avoidance in anxiety-related dark/light preference test and impaired spontaneous alternation behaviour. We provide first evidence of noise-induced physiological stress and behavioural disturbance in larval zebrafish, showing that both noise amplitude and timing negatively impact key developmental endpoints in early ontogeny.
Collapse
Affiliation(s)
- Rafael A Lara
- Institute of Science and Environment, University of Saint Joseph, Macao S.A.R., China.
- Departamento de Biología, Universidad de Sevilla, Seville, Spain.
| | - Raquel O Vasconcelos
- Institute of Science and Environment, University of Saint Joseph, Macao S.A.R., China.
| |
Collapse
|
12
|
Holmgren M, Sheets L. Using the Zebrafish Lateral Line to Understand the Roles of Mitochondria in Sensorineural Hearing Loss. Front Cell Dev Biol 2021; 8:628712. [PMID: 33614633 PMCID: PMC7892962 DOI: 10.3389/fcell.2020.628712] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/23/2020] [Indexed: 01/05/2023] Open
Abstract
Hair cells are the mechanosensory receptors of the inner ear and can be damaged by noise, aging, and ototoxic drugs. This damage often results in permanent sensorineural hearing loss. Hair cells have high energy demands and rely on mitochondria to produce ATP as well as contribute to intracellular calcium homeostasis. In addition to generating ATP, mitochondria produce reactive oxygen species, which can lead to oxidative stress, and regulate cell death pathways. Zebrafish lateral-line hair cells are structurally and functionally analogous to cochlear hair cells but are optically and pharmacologically accessible within an intact specimen, making the zebrafish a good model in which to study hair-cell mitochondrial activity. Moreover, the ease of genetic manipulation of zebrafish embryos allows for the study of mutations implicated in human deafness, as well as the generation of transgenic models to visualize mitochondrial calcium transients and mitochondrial activity in live organisms. Studies of the zebrafish lateral line have shown that variations in mitochondrial activity can predict hair-cell susceptibility to damage by aminoglycosides or noise exposure. In addition, antioxidants have been shown to protect against noise trauma and ototoxic drug–induced hair-cell death. In this review, we discuss the tools and findings of recent investigations into zebrafish hair-cell mitochondria and their involvement in cellular processes, both under homeostatic conditions and in response to noise or ototoxic drugs. The zebrafish lateral line is a valuable model in which to study the roles of mitochondria in hair-cell pathologies and to develop therapeutic strategies to prevent sensorineural hearing loss in humans.
Collapse
Affiliation(s)
- Melanie Holmgren
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
| | - Lavinia Sheets
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States.,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
13
|
Warchol ME, Schrader A, Sheets L. Macrophages Respond Rapidly to Ototoxic Injury of Lateral Line Hair Cells but Are Not Required for Hair Cell Regeneration. Front Cell Neurosci 2021; 14:613246. [PMID: 33488362 PMCID: PMC7820375 DOI: 10.3389/fncel.2020.613246] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/03/2020] [Indexed: 01/01/2023] Open
Abstract
The sensory organs of the inner ear contain resident populations of macrophages, which are recruited to sites of cellular injury. Such macrophages are known to phagocytose the debris of dying cells but the full role of macrophages in otic pathology is not understood. Lateral line neuromasts of zebrafish contain hair cells that are nearly identical to those in the inner ear, and the optical clarity of larval zebrafish permits direct imaging of cellular interactions. In this study, we used larval zebrafish to characterize the response of macrophages to ototoxic injury of lateral line hair cells. Macrophages migrated into neuromasts within 20 min of exposure to the ototoxic antibiotic neomycin. The number of macrophages in the near vicinity of injured neuromasts was similar to that observed near uninjured neuromasts, suggesting that this early inflammatory response was mediated by "local" macrophages. Upon entering injured neuromasts, macrophages actively phagocytosed hair cell debris. The injury-evoked migration of macrophages was significantly reduced by inhibition of Src-family kinases. Using chemical-genetic ablation of macrophages before the ototoxic injury, we also examined whether macrophages were essential for the initiation of hair cell regeneration. Results revealed only minor differences in hair cell recovery in macrophage-depleted vs. control fish, suggesting that macrophages are not essential for the regeneration of lateral line hair cells.
Collapse
Affiliation(s)
- Mark E. Warchol
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Angela Schrader
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
| | - Lavinia Sheets
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
14
|
Sapozhnikova YP, Koroleva AG, Yakhnenko VM, Tyagun ML, Glyzina OY, Coffin AB, Makarov MM, Shagun AN, Kulikov VA, Gasarov PV, Kirilchik SV, Klimenkov IV, Sudakov NP, Anoshko PN, Kurashova NA, Sukhanova LV. Molecular and cellular responses to long-term sound exposure in peled (Coregonus peled). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:895. [PMID: 32873010 DOI: 10.1121/10.0001674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
This research examined the impacts of acoustic stress in peled (Coregonus peled Gmelin, 1788), a species commonly cultivated in Russia. This study presents a comparative analysis of the macula sacculi and otoliths, as well as primary hematological and secondary telomere stress responses, in control and sound-exposed peled. The authors measured the effects of long-term (up to 18 days) exposure to a 300 Hz tone at mean sound pressure levels of 176-186 dB re 1 μPa (SPLpk-pk); the frequency and intensity were selected to approximate loud acoustic environments associated with cleaning equipment in aquaculture settings. Acoustic exposure resulted in ultrastructure changes to otoliths, morphological damage to sensory hair cells of the macula sacculi, and a gradual decrease in the number of functionally active mitochondria in the red blood cells but no changes to telomeres. Changes were apparent following at least ten days of acoustic exposure. These data suggest that acoustic exposure found in some aquaculture settings could cause stress responses and auditory damage to peled and, potentially, other commercially important species. Reducing sound levels in fish rearing facilities could contribute to the formation of effective aquaculture practices that mitigate noise-induced stress in fishes.
Collapse
Affiliation(s)
- Yulia P Sapozhnikova
- Laboratory of Ichthyology, Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia
| | - Anastasia G Koroleva
- Laboratory of Ichthyology, Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia
| | - Vera M Yakhnenko
- Laboratory of Ichthyology, Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia
| | - Marina L Tyagun
- Laboratory of Ichthyology, Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia
| | - Olga Yu Glyzina
- Experimental Hydrobiology Group, Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia
| | - Allison B Coffin
- Department of Integrative Physiology and Neuroscience, Washington State University Vancouver, 14204 Northeast Salmon Creek Avenue, Vancouver, Washington 98686, USA
| | - Mikhail M Makarov
- Laboratory of Interdisciplinary Environmental and Economic Research and Technology, Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia
| | - Artem N Shagun
- Laboratory of General and Engineering Seismology and Seismogeology, Institute of the Earth's Crust Siberian Branch of the Russian Academy of Sciences, 128 Lermontova Street, Irkutsk 664033, Russia
| | - Viktor A Kulikov
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, 1 Nobel Street, Moscow 143026, Russia
| | - Polikarp V Gasarov
- Department of Plant Physiology, Cell Biology, and Genetics, Irkutsk State University, 1 K. Marksa Street, Irkutsk 664003, Russia
| | - Sergey V Kirilchik
- Laboratory of Ichthyology, Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia
| | - Igor V Klimenkov
- Department of Cell Ultrastructure, Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia
| | - Nikolay P Sudakov
- Department of Cell Ultrastructure, Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia
| | - Pavel N Anoshko
- Laboratory of Interdisciplinary Environmental and Economic Research and Technology, Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia
| | - Nadezhda A Kurashova
- Scientific Center of Family Health Problems and Human Reproduction, Irkutsk 664003, Russia
| | - Lyubov V Sukhanova
- Laboratory of Ichthyology, Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia
| |
Collapse
|
15
|
Expression patterns of activating transcription factor 5 (atf5a and atf5b) in zebrafish. Gene Expr Patterns 2020; 37:119126. [PMID: 32663618 DOI: 10.1016/j.gep.2020.119126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 11/20/2022]
Abstract
The Activating Transcription Factor 5 (ATF5) is a basic leucine-zipper (bZIP) transcription factor (TF) with proposed stress-protective, anti-apoptotic and oncogenic roles which were all established in cell systems. In whole animals, Atf5 function seems highly context dependent. Atf5 is strongly expressed in the rodent nose and mice knockout (KO) pups have defective olfactory sensory neurons (OSNs), smaller olfactory bulbs (OB), while adults are smell deficient. It was therefore proposed that Atf5 plays an important role in maturation and maintenance of OSNs. Atf5 expression was also described in murine liver and bones where it appears to promote differentiation of progenitor cells. By contrast in the rodent brain, Atf5 was first described as uniquely expressed in neuroprogenitors and thus, proposed to drive their proliferation and inhibit their differentiation. However, it was later also found in mature neurons stressing the need for additional work in whole animals. ATF5 is well conserved with two paralogs, atf5a and atf5b in zebrafish. Here, we present the expression patterns for both from 6 h (hpf) to 5day post-fertilization (dpf). We found early expression for both genes, and from 1dpf onwards overlapping expression patterns in the inner ear and the developing liver. In the brain, at 24hpf both atf5a and atf5b were expressed in the forebrain, midbrain, and hindbrain. However, from 2dpf and onwards we only detected atf5a expression namely in the olfactory bulbs, the mesencephalon, and the metencephalon. We further evidenced additional differential expression for atf5a in the sensory neurons of the olfactory organs, and for atf5b in the neuromasts, that form the superficial sensory organ called the lateral line (LL). Our results establish the basis for future functional analyses in this lower vertebrate.
Collapse
|
16
|
|
17
|
Glucococorticoid receptor activation exacerbates aminoglycoside-induced damage to the zebrafish lateral line. Hear Res 2019; 377:12-23. [PMID: 30878773 DOI: 10.1016/j.heares.2019.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/18/2018] [Accepted: 03/04/2019] [Indexed: 01/14/2023]
Abstract
Aminoglycoside antibiotics have potent antibacterial properties but cause hearing loss in up to 25% of patients. These drugs are commonly administered in patients with high glucocorticoid stress hormone levels and can be combined with exogenous glucocorticoid treatment. However, the interaction of stress and aminoglycoside-induced hearing loss has not been fully explored. In this study, we investigated the effect of the glucocorticoid stress hormone cortisol on hair cells in the zebrafish lateral line as an important step toward understanding how physiological stressors modulate hair cell survival. We found that 24-hr cortisol incubation sensitized hair cells to neomycin damage. Pharmacological and genetic manipulation demonstrates that sensitization depended on the action of the glucocorticoid receptor but not the mineralocorticoid receptor. Blocking endogenous cortisol production reduced hair cell susceptibility to neomycin, further evidence that glucocorticoids modulate aminoglycoside ototoxicity. Glucocorticoid transcriptional activity was apparent in lateral line hair cells, suggesting a direct action of cortisol in these aminoglycoside-sensitive cells. Our work shows that the stress hormone cortisol can increase hair cell sensitivity to aminoglycoside damage, which highlights the importance of recognizing stress and the impacts of glucocorticoid signaling in both ototoxicity research and clinical practice.
Collapse
|
18
|
Kindt KS, Sheets L. Transmission Disrupted: Modeling Auditory Synaptopathy in Zebrafish. Front Cell Dev Biol 2018; 6:114. [PMID: 30258843 PMCID: PMC6143809 DOI: 10.3389/fcell.2018.00114] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/23/2018] [Indexed: 01/04/2023] Open
Abstract
Sensorineural hearing loss is the most common form of hearing loss in humans, and results from either dysfunction in hair cells, the sensory receptors of sound, or the neurons that innervate hair cells. A specific type of sensorineural hearing loss, referred to as auditory synaptopathy, occurs when hair cells are able to detect sound but fail to transmit sound stimuli at the hair-cell synapse. Auditory synaptopathy can originate from genetic alterations that specifically disrupt hair-cell synapse function. Additionally, environmental factors such as noise exposure can leave hair cells intact but result in loss of hair-cell synapses, and represent an acquired form of auditory synaptopathy. The zebrafish model has emerged as a valuable system for studies of hair-cell function, and specifically hair-cell synaptopathy. In this review, we describe the experimental tools that have been developed to study hair-cell synapses in zebrafish. We discuss how zebrafish genetics has helped identify and define the roles of hair-cell synaptic proteins crucial for hearing in humans, and highlight how studies in zebrafish have contributed to our understanding of hair-cell synapse formation and function. In addition, we also discuss work that has used noise exposure or pharmacological mimic of noise-induced excitotoxicity in zebrafish to define cellular mechanisms underlying noise-induced hair-cell damage and synapse loss. Lastly, we highlight how future studies in zebrafish could enhance our understanding of the pathological processes underlying synapse loss in both genetic and acquired auditory synaptopathy. This knowledge is critical in order to develop therapies that protect or repair auditory synaptic contacts.
Collapse
Affiliation(s)
- Katie S. Kindt
- Section on Sensory Cell Development and Function, NIDCD/National Institutes of Health, Bethesda, MD, United States
| | - Lavinia Sheets
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|