1
|
Knoll G, Lindner B. Information transmission in recurrent networks: Consequences of network noise for synchronous and asynchronous signal encoding. Phys Rev E 2022; 105:044411. [PMID: 35590546 DOI: 10.1103/physreve.105.044411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/04/2022] [Indexed: 06/15/2023]
Abstract
Information about natural time-dependent stimuli encoded by the sensory periphery or communication between cortical networks may span a large frequency range or be localized to a smaller frequency band. Biological systems have been shown to multiplex such disparate broadband and narrow-band signals and then discriminate them in later populations by employing either an integration (low-pass) or coincidence detection (bandpass) encoding strategy. Analytical expressions have been developed for both encoding methods in feedforward populations of uncoupled neurons and confirm that the integration of a population's output low-pass filters the information, whereas synchronous output encodes less information overall and retains signal information in a selected frequency band. The present study extends the theory to recurrent networks and shows that recurrence may sharpen the synchronous bandpass filter. The frequency of the pass band is significantly influenced by the synaptic strengths, especially for inhibition-dominated networks. Synchronous information transfer is also increased when network models take into account heterogeneity that arises from the stochastic distribution of the synaptic weights.
Collapse
Affiliation(s)
- Gregory Knoll
- Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, Haus 2, 10115 Berlin, Germany and Physics Department of Humboldt University Berlin, Newtonstr. 15, 12489 Berlin, Germany
| | - Benjamin Lindner
- Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, Haus 2, 10115 Berlin, Germany and Physics Department of Humboldt University Berlin, Newtonstr. 15, 12489 Berlin, Germany
| |
Collapse
|
2
|
Kullmann R, Knoll G, Bernardi D, Lindner B. Critical current for giant Fano factor in neural models with bistable firing dynamics and implications for signal transmission. Phys Rev E 2022; 105:014416. [PMID: 35193262 DOI: 10.1103/physreve.105.014416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Bistability in the firing rate is a prominent feature in different types of neurons as well as in neural networks. We show that for a constant input below a critical value, such bistability can lead to a giant spike-count diffusion. We study the transmission of a periodic signal and demonstrate that close to the critical bias current, the signal-to-noise ratio suffers a sharp increase, an effect that can be traced back to the giant diffusion and large Fano factor.
Collapse
Affiliation(s)
- Richard Kullmann
- Bernstein Center for Computational Neuroscience Berlin, Philippstrasse 13, Haus 2, 10115 Berlin, Germany
- Physics Department of Humboldt University Berlin, Newtonstrasse 15, 12489 Berlin, Germany
| | - Gregory Knoll
- Bernstein Center for Computational Neuroscience Berlin, Philippstrasse 13, Haus 2, 10115 Berlin, Germany
- Physics Department of Humboldt University Berlin, Newtonstrasse 15, 12489 Berlin, Germany
| | - Davide Bernardi
- Center for Translational Neurophysiology of Speech and Communication, Fondazione Istituto Italiano di Tecnologia, via Fossato di Mortara 19, 44121 Ferrara, Italy
| | - Benjamin Lindner
- Bernstein Center for Computational Neuroscience Berlin, Philippstrasse 13, Haus 2, 10115 Berlin, Germany
- Physics Department of Humboldt University Berlin, Newtonstrasse 15, 12489 Berlin, Germany
| |
Collapse
|
3
|
Rooy M, Lazarevich I, Koukouli F, Maskos U, Gutkin B. Cholinergic modulation of hierarchical inhibitory control over cortical resting state dynamics: Local circuit modeling of schizophrenia-related hypofrontality. CURRENT RESEARCH IN NEUROBIOLOGY 2021; 2:100018. [PMID: 34820636 PMCID: PMC8591733 DOI: 10.1016/j.crneur.2021.100018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 06/24/2021] [Accepted: 07/05/2021] [Indexed: 12/02/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) modulate the cholinergic drive to a hierarchy of inhibitory neurons in the superficial layers of the PFC, critical to cognitive processes. It has been shown that genetic deletions of the various types of nAChRs impact the properties of ultra-slow transitions between high and low PFC activity states in mice during quiet wakefulness. The impact characteristics depend on specific interneuron populations expressing the manipulated receptor subtype. In addition, recent data indicate that a genetic mutation of the α5 nAChR subunit, located on vasoactive intestinal polypeptide (VIP) inhibitory neurons, the rs16969968 single nucleotide polymorphism (α5 SNP), plays a key role in the hypofrontality observed in schizophrenia patients carrying the SNP. Data also indicate that chronic nicotine application to α5 SNP mice relieves the hypofrontality. We developed a computational model to show that the activity patterns recorded in the genetically modified mice can be explained by changes in the dynamics of the local PFC circuit. Notably, our model shows that these altered PFC circuit dynamics are due to changes in the stability structure of the activity states. We identify how this stability structure is differentially modulated by cholinergic inputs to the parvalbumin (PV), somatostatin (SOM) or the VIP inhibitory populations. Our model uncovers that a change in amplitude, but not duration of the high activity states can account for the lowered pyramidal (PYR) population firing rates recorded in α5 SNP mice. We demonstrate how nicotine-induced desensitization and upregulation of the β2 nAChRs located on SOM interneurons, as opposed to the activation of α5 nAChRs located on VIP interneurons, is sufficient to explain the nicotine-induced activity normalization in α5 SNP mice. The model further implies that subsequent nicotine withdrawal may exacerbate the hypofrontality over and beyond one caused by the SNP mutation. Prefrontal cortex shows ultra-slow alterations between low and high activity states at rest. This activity is characteristically decreased in schizophrenia patients. Model identifies local circuit origin of hypofrontality associated with schizophrenia and a5 nicotinic receptor malfunction. Decrease in PFC VIP-interneuron excitability drives decrease in high-activity-state stability and overall hypofrontality. Model shows desensitization/upregulation of SOM-expressed β2-NAChRs drive nicotine-induced renormalization of PFC activity.
Collapse
Affiliation(s)
- Marie Rooy
- Ecole Normale Sup'erieure PSL Univeristy, Laboratoire de Neurosciences Cognitives INSERM U960, Group for Neural Theory, Paris, France.,Center for Cognition and Decision Making, Institute of Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| | - Ivan Lazarevich
- Ecole Normale Sup'erieure PSL Univeristy, Laboratoire de Neurosciences Cognitives INSERM U960, Group for Neural Theory, Paris, France.,Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Fani Koukouli
- Institut Pasteur, Neurobiologie integrative des systemes cholinergiques, Paris, France.,CNRS UMR 3571, Paris, France
| | - Uwe Maskos
- Institut Pasteur, Neurobiologie integrative des systemes cholinergiques, Paris, France.,CNRS UMR 3571, Paris, France
| | - Boris Gutkin
- Ecole Normale Sup'erieure PSL Univeristy, Laboratoire de Neurosciences Cognitives INSERM U960, Group for Neural Theory, Paris, France.,Center for Cognition and Decision Making, Institute of Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| |
Collapse
|
4
|
Knoll G, Lindner B. Recurrence-mediated suprathreshold stochastic resonance. J Comput Neurosci 2021; 49:407-418. [PMID: 34003421 PMCID: PMC8556192 DOI: 10.1007/s10827-021-00788-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 11/29/2022]
Abstract
It has previously been shown that the encoding of time-dependent signals by feedforward networks (FFNs) of processing units exhibits suprathreshold stochastic resonance (SSR), which is an optimal signal transmission for a finite level of independent, individual stochasticity in the single units. In this study, a recurrent spiking network is simulated to demonstrate that SSR can be also caused by network noise in place of intrinsic noise. The level of autonomously generated fluctuations in the network can be controlled by the strength of synapses, and hence the coding fraction (our measure of information transmission) exhibits a maximum as a function of the synaptic coupling strength. The presence of a coding peak at an optimal coupling strength is robust over a wide range of individual, network, and signal parameters, although the optimal strength and peak magnitude depend on the parameter being varied. We also perform control experiments with an FFN illustrating that the optimized coding fraction is due to the change in noise level and not from other effects entailed when changing the coupling strength. These results also indicate that the non-white (temporally correlated) network noise in general provides an extra boost to encoding performance compared to the FFN driven by intrinsic white noise fluctuations.
Collapse
Affiliation(s)
- Gregory Knoll
- Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, Haus 2, Berlin, 10115, Germany. .,Physics Department of Humboldt University Berlin, Newtonstr. 15, 12489, Berlin, Germany.
| | - Benjamin Lindner
- Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, Haus 2, Berlin, 10115, Germany.,Physics Department of Humboldt University Berlin, Newtonstr. 15, 12489, Berlin, Germany
| |
Collapse
|
5
|
Bostner Ž, Knoll G, Lindner B. Information filtering by coincidence detection of synchronous population output: analytical approaches to the coherence function of a two-stage neural system. BIOLOGICAL CYBERNETICS 2020; 114:403-418. [PMID: 32583370 PMCID: PMC7326833 DOI: 10.1007/s00422-020-00838-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Information about time-dependent sensory stimuli is encoded in the activity of neural populations; distinct aspects of the stimulus are read out by different types of neurons: while overall information is perceived by integrator cells, so-called coincidence detector cells are driven mainly by the synchronous activity in the population that encodes predominantly high-frequency content of the input signal (high-pass information filtering). Previously, an analytically accessible statistic called the partial synchronous output was introduced as a proxy for the coincidence detector cell's output in order to approximate its information transmission. In the first part of the current paper, we compare the information filtering properties (specifically, the coherence function) of this proxy to those of a simple coincidence detector neuron. We show that the latter's coherence function can indeed be well-approximated by the partial synchronous output with a time scale and threshold criterion that are related approximately linearly to the membrane time constant and firing threshold of the coincidence detector cell. In the second part of the paper, we propose an alternative theory for the spectral measures (including the coherence) of the coincidence detector cell that combines linear-response theory for shot-noise driven integrate-and-fire neurons with a novel perturbation ansatz for the spectra of spike-trains driven by colored noise. We demonstrate how the variability of the synaptic weights for connections from the population to the coincidence detector can shape the information transmission of the entire two-stage system.
Collapse
Affiliation(s)
- Žiga Bostner
- Physics Department, Humboldt University Berlin, Newtonstr. 15, 12489 Berlin, Germany
| | - Gregory Knoll
- Physics Department, Humboldt University Berlin, Newtonstr. 15, 12489 Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, Haus 2, 10115 Berlin, Germany
| | - Benjamin Lindner
- Physics Department, Humboldt University Berlin, Newtonstr. 15, 12489 Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, Haus 2, 10115 Berlin, Germany
| |
Collapse
|