1
|
Forrester M, Petros S, Cattell O, Lai YM, O'Dea RD, Sotiropoulos S, Coombes S. Whole brain functional connectivity: Insights from next generation neural mass modelling incorporating electrical synapses. PLoS Comput Biol 2024; 20:e1012647. [PMID: 39637233 DOI: 10.1371/journal.pcbi.1012647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 12/17/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
The ready availability of brain connectome data has both inspired and facilitated the modelling of whole brain activity using networks of phenomenological neural mass models that can incorporate both interaction strength and tract length between brain regions. Recently, a new class of neural mass model has been developed from an exact mean field reduction of a network of spiking cortical cell models with a biophysically realistic model of the chemical synapse. Moreover, this new population dynamics model can naturally incorporate electrical synapses. Here we demonstrate the ability of this new modelling framework, when combined with data from the Human Connectome Project, to generate patterns of functional connectivity (FC) of the type observed in both magnetoencephalography and functional magnetic resonance neuroimaging. Some limited explanatory power is obtained via an eigenmode description of frequency-specific FC patterns, obtained via a linear stability analysis of the network steady state in the neigbourhood of a Hopf bifurcation. However, direct numerical simulations show that empirical data is more faithfully recapitulated in the nonlinear regime, and exposes a key role of gap junction coupling strength in generating empirically-observed neural activity, and associated FC patterns and their evolution. Thereby, we emphasise the importance of maintaining known links with biological reality when developing multi-scale models of brain dynamics. As a tool for the study of dynamic whole brain models of the type presented here we further provide a suite of C++ codes for the efficient, and user friendly, simulation of neural mass networks with multiple delayed interactions.
Collapse
Affiliation(s)
- Michael Forrester
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Sammy Petros
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Oliver Cattell
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Yi Ming Lai
- Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Reuben D O'Dea
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Stamatios Sotiropoulos
- Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Stephen Coombes
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
2
|
Benozzo D, Baggio G, Baron G, Chiuso A, Zampieri S, Bertoldo A. Analyzing asymmetry in brain hierarchies with a linear state-space model of resting-state fMRI data. Netw Neurosci 2024; 8:965-988. [PMID: 39355437 PMCID: PMC11424037 DOI: 10.1162/netn_a_00381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/02/2024] [Indexed: 10/03/2024] Open
Abstract
This study challenges the traditional focus on zero-lag statistics in resting-state functional magnetic resonance imaging (rsfMRI) research. Instead, it advocates for considering time-lag interactions to unveil the directionality and asymmetries of the brain hierarchy. Effective connectivity (EC), the state matrix in dynamical causal modeling (DCM), is a commonly used metric for studying dynamical properties and causal interactions within a linear state-space system description. Here, we focused on how time-lag statistics are incorporated within the framework of DCM resulting in an asymmetric EC matrix. Our approach involves decomposing the EC matrix, revealing a steady-state differential cross-covariance matrix that is responsible for modeling information flow and introducing time-irreversibility. Specifically, the system's dynamics, influenced by the off-diagonal part of the differential covariance, exhibit a curl steady-state flow component that breaks detailed balance and diverges the dynamics from equilibrium. Our empirical findings indicate that the EC matrix's outgoing strengths correlate with the flow described by the differential cross covariance, while incoming strengths are primarily driven by zero-lag covariance, emphasizing conditional independence over directionality.
Collapse
Affiliation(s)
- Danilo Benozzo
- Information Engineering Department, University of Padova, Padova, Italy
| | - Giacomo Baggio
- Information Engineering Department, University of Padova, Padova, Italy
| | - Giorgia Baron
- Information Engineering Department, University of Padova, Padova, Italy
| | - Alessandro Chiuso
- Information Engineering Department, University of Padova, Padova, Italy
| | - Sandro Zampieri
- Information Engineering Department, University of Padova, Padova, Italy
| | - Alessandra Bertoldo
- Information Engineering Department, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
3
|
Cipriano L, Minino R, Liparoti M, Polverino A, Romano A, Bonavita S, Pirozzi MA, Quarantelli M, Jirsa V, Sorrentino G, Sorrentino P, Troisi Lopez E. Flexibility of brain dynamics is increased and predicts clinical impairment in relapsing-remitting but not in secondary progressive multiple sclerosis. Brain Commun 2024; 6:fcae112. [PMID: 38585670 PMCID: PMC10998461 DOI: 10.1093/braincomms/fcae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/15/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024] Open
Abstract
Large-scale brain activity has long been investigated under the erroneous assumption of stationarity. Nowadays, we know that resting-state functional connectivity is characterized by aperiodic, scale-free bursts of activity (i.e. neuronal avalanches) that intermittently recruit different brain regions. These different patterns of activity represent a measure of brain flexibility, whose reduction has been found to predict clinical impairment in multiple neurodegenerative diseases such as Parkinson's disease, amyotrophic lateral sclerosis and Alzheimer's disease. Brain flexibility has been recently found increased in multiple sclerosis, but its relationship with clinical disability remains elusive. Also, potential differences in brain dynamics according to the multiple sclerosis clinical phenotypes remain unexplored so far. We performed a brain dynamics study quantifying brain flexibility utilizing the 'functional repertoire' (i.e. the number of configurations of active brain areas) through source reconstruction of magnetoencephalography signals in a cohort of 25 multiple sclerosis patients (10 relapsing-remitting multiple sclerosis and 15 secondary progressive multiple sclerosis) and 25 healthy controls. Multiple sclerosis patients showed a greater number of unique reconfigurations at fast time scales as compared with healthy controls. This difference was mainly driven by the relapsing-remitting multiple sclerosis phenotype, whereas no significant differences in brain dynamics were found between secondary progressive multiple sclerosis and healthy controls. Brain flexibility also showed a different predictive power on clinical disability according to the multiple sclerosis type. For the first time, we investigated brain dynamics in multiple sclerosis patients through high temporal resolution techniques, unveiling differences in brain flexibility according to the multiple sclerosis phenotype and its relationship with clinical disability.
Collapse
Affiliation(s)
- Lorenzo Cipriano
- Department of Medical, Motor and Wellness Sciences, University of Naples ‘Parthenope’, 80133 Naples, Italy
| | - Roberta Minino
- Department of Medical, Motor and Wellness Sciences, University of Naples ‘Parthenope’, 80133 Naples, Italy
| | - Marianna Liparoti
- Department of Philosophical, Pedagogical and Quantitative-Economic Sciences, University of Chieti-Pescara ‘G. d’Annunzio’, 66100 Chieti, Italy
| | - Arianna Polverino
- Institute of Diagnosis and Therapy Hermitage Capodimonte, 80145 Naples, Italy
| | - Antonella Romano
- Department of Medical, Motor and Wellness Sciences, University of Naples ‘Parthenope’, 80133 Naples, Italy
| | - Simona Bonavita
- Department of Advanced Medical and Surgical Sciences, University of Campania ‘L. Vanvitelli’, 81100 Naples, Italy
| | - Maria Agnese Pirozzi
- Department of Advanced Medical and Surgical Sciences, University of Campania ‘L. Vanvitelli’, 81100 Naples, Italy
| | | | - Viktor Jirsa
- Institut de Neurosciences des Systèmes, Inserm, INS, Aix-Marseille University, 13005 Marseille, France
| | - Giuseppe Sorrentino
- Department of Medical, Motor and Wellness Sciences, University of Naples ‘Parthenope’, 80133 Naples, Italy
- Institute of Diagnosis and Therapy Hermitage Capodimonte, 80145 Naples, Italy
- Institute of Applied Sciences and Intelligent Systems, National Research Council, 80078 Pozzuoli, Italy
| | - Pierpaolo Sorrentino
- Institut de Neurosciences des Systèmes, Inserm, INS, Aix-Marseille University, 13005 Marseille, France
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Emahnuel Troisi Lopez
- Institute of Applied Sciences and Intelligent Systems, National Research Council, 80078 Pozzuoli, Italy
| |
Collapse
|
4
|
Ross LN, Bassett DS. Causation in neuroscience: keeping mechanism meaningful. Nat Rev Neurosci 2024; 25:81-90. [PMID: 38212413 DOI: 10.1038/s41583-023-00778-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 01/13/2024]
Abstract
A fundamental goal of research in neuroscience is to uncover the causal structure of the brain. This focus on causation makes sense, because causal information can provide explanations of brain function and identify reliable targets with which to understand cognitive function and prevent or change neurological conditions and psychiatric disorders. In this research, one of the most frequently used causal concepts is 'mechanism' - this is seen in the literature and language of the field, in grant and funding inquiries that specify what research is supported, and in journal guidelines on which contributions are considered for publication. In these contexts, mechanisms are commonly tied to expressions of the main aims of the field and cited as the 'fundamental', 'foundational' and/or 'basic' unit for understanding the brain. Despite its common usage and perceived importance, mechanism is used in different ways that are rarely distinguished. Given that this concept is defined in different ways throughout the field - and that there is often no clarification of which definition is intended - there remains a marked ambiguity about the fundamental goals, orientation and principles of the field. Here we provide an overview of causation and mechanism from the perspectives of neuroscience and philosophy of science, in order to address these challenges.
Collapse
Affiliation(s)
- Lauren N Ross
- Department of Logic and Philosophy of Science, University of California, Irvine, Irvine, CA, USA.
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
5
|
Ragone E, Tanner J, Jo Y, Zamani Esfahlani F, Faskowitz J, Pope M, Coletta L, Gozzi A, Betzel R. Modular subgraphs in large-scale connectomes underpin spontaneous co-fluctuation events in mouse and human brains. Commun Biol 2024; 7:126. [PMID: 38267534 PMCID: PMC10810083 DOI: 10.1038/s42003-024-05766-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024] Open
Abstract
Previous studies have adopted an edge-centric framework to study fine-scale network dynamics in human fMRI. To date, however, no studies have applied this framework to data collected from model organisms. Here, we analyze structural and functional imaging data from lightly anesthetized mice through an edge-centric lens. We find evidence of "bursty" dynamics and events - brief periods of high-amplitude network connectivity. Further, we show that on a per-frame basis events best explain static FC and can be divided into a series of hierarchically-related clusters. The co-fluctuation patterns associated with each cluster centroid link distinct anatomical areas and largely adhere to the boundaries of algorithmically detected functional brain systems. We then investigate the anatomical connectivity undergirding high-amplitude co-fluctuation patterns. We find that events induce modular bipartitions of the anatomical network of inter-areal axonal projections. Finally, we replicate these same findings in a human imaging dataset. In summary, this report recapitulates in a model organism many of the same phenomena observed in previously edge-centric analyses of human imaging data. However, unlike human subjects, the murine nervous system is amenable to invasive experimental perturbations. Thus, this study sets the stage for future investigation into the causal origins of fine-scale brain dynamics and high-amplitude co-fluctuations. Moreover, the cross-species consistency of the reported findings enhances the likelihood of future translation.
Collapse
Affiliation(s)
| | - Jacob Tanner
- Cognitive Science Program, Indiana University, Bloomington, IN, 47401, USA
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, 47401, USA
| | - Youngheun Jo
- Department of Psychological and Brain Sciences and Cognitive Science Program, Indiana University, Bloomington, IN, 47401, USA
| | - Farnaz Zamani Esfahlani
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, OK, 73019, USA
| | - Joshua Faskowitz
- Department of Psychological and Brain Sciences and Cognitive Science Program, Indiana University, Bloomington, IN, 47401, USA
| | - Maria Pope
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, 47401, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47401, USA
| | | | - Alessandro Gozzi
- Functional Neuroimaging Lab, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, Rovereto, Italy
| | - Richard Betzel
- Cognitive Science Program, Indiana University, Bloomington, IN, 47401, USA.
- Department of Psychological and Brain Sciences and Cognitive Science Program, Indiana University, Bloomington, IN, 47401, USA.
- Program in Neuroscience, Indiana University, Bloomington, IN, 47401, USA.
| |
Collapse
|
6
|
Corsi MC, Sorrentino P, Schwartz D, George N, Gollo LL, Chevallier S, Hugueville L, Kahn AE, Dupont S, Bassett DS, Jirsa V, De Vico Fallani F. Measuring neuronal avalanches to inform brain-computer interfaces. iScience 2024; 27:108734. [PMID: 38226174 PMCID: PMC10788504 DOI: 10.1016/j.isci.2023.108734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/18/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024] Open
Abstract
Large-scale interactions among multiple brain regions manifest as bursts of activations called neuronal avalanches, which reconfigure according to the task at hand and, hence, might constitute natural candidates to design brain-computer interfaces (BCIs). To test this hypothesis, we used source-reconstructed magneto/electroencephalography during resting state and a motor imagery task performed within a BCI protocol. To track the probability that an avalanche would spread across any two regions, we built an avalanche transition matrix (ATM) and demonstrated that the edges whose transition probabilities significantly differed between conditions hinged selectively on premotor regions in all subjects. Furthermore, we showed that the topology of the ATMs allows task-decoding above the current gold standard. Hence, our results suggest that neuronal avalanches might capture interpretable differences between tasks that can be used to inform brain-computer interfaces.
Collapse
Affiliation(s)
- Marie-Constance Corsi
- Sorbonne Université, Institut du cerveau - Paris Brain Institute - ICM, CNRS, Inserm, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
- Inria, Aramis Team, Paris, France
| | - Pierpaolo Sorrentino
- Institut de Neuroscience des Systèmes, Aix-Marseille University, Inserm, Marseille, France
| | - Denis Schwartz
- Institut du Cerveau - Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, CENIR, Centre MEG-EEG, Paris, France
| | - Nathalie George
- Sorbonne Université, Institut du cerveau - Paris Brain Institute - ICM, CNRS, Inserm, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
- Institut du Cerveau - Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, CENIR, Centre MEG-EEG, Paris, France
| | - Leonardo L. Gollo
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Victoria 3168, Australia
| | | | - Laurent Hugueville
- Institut de Neuroscience des Systèmes, Aix-Marseille University, Inserm, Marseille, France
| | - Ari E. Kahn
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| | - Sophie Dupont
- Sorbonne Université, Institut du cerveau - Paris Brain Institute - ICM, CNRS, Inserm, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | | | - Viktor Jirsa
- Institut de Neuroscience des Systèmes, Aix-Marseille University, Inserm, Marseille, France
| | - Fabrizio De Vico Fallani
- Sorbonne Université, Institut du cerveau - Paris Brain Institute - ICM, CNRS, Inserm, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
- Inria, Aramis Team, Paris, France
| |
Collapse
|
7
|
Manos T, Diaz-Pier S, Fortel I, Driscoll I, Zhan L, Leow A. Enhanced simulations of whole-brain dynamics using hybrid resting-state structural connectomes. Front Comput Neurosci 2023; 17:1295395. [PMID: 38188355 PMCID: PMC10770256 DOI: 10.3389/fncom.2023.1295395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
The human brain, composed of billions of neurons and synaptic connections, is an intricate network coordinating a sophisticated balance of excitatory and inhibitory activities between brain regions. The dynamical balance between excitation and inhibition is vital for adjusting neural input/output relationships in cortical networks and regulating the dynamic range of their responses to stimuli. To infer this balance using connectomics, we recently introduced a computational framework based on the Ising model, which was first developed to explain phase transitions in ferromagnets, and proposed a novel hybrid resting-state structural connectome (rsSC). Here, we show that a generative model based on the Kuramoto phase oscillator can be used to simulate static and dynamic functional connectomes (FC) with rsSC as the coupling weight coefficients, such that the simulated FC aligns well with the observed FC when compared with that simulated traditional structural connectome.
Collapse
Affiliation(s)
- Thanos Manos
- ETIS, ENSEA, CNRS, UMR8051, CY Cergy-Paris University, Cergy, France
- Laboratoire de Physique Théorique et Modélisation, UMR 8089, CNRS, Cergy-Pontoise, CY Cergy Paris Université, Cergy, France
| | - Sandra Diaz-Pier
- Simulation and Data Lab Neuroscience, Institute for Advanced Simulation, Jülich Supercomputing Centre (JSC), JARA, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Igor Fortel
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Ira Driscoll
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alex Leow
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
8
|
Lavanga M, Stumme J, Yalcinkaya BH, Fousek J, Jockwitz C, Sheheitli H, Bittner N, Hashemi M, Petkoski S, Caspers S, Jirsa V. The virtual aging brain: Causal inference supports interhemispheric dedifferentiation in healthy aging. Neuroimage 2023; 283:120403. [PMID: 37865260 DOI: 10.1016/j.neuroimage.2023.120403] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 09/20/2023] [Accepted: 10/05/2023] [Indexed: 10/23/2023] Open
Abstract
The mechanisms of cognitive decline and its variability during healthy aging are not fully understood, but have been associated with reorganization of white matter tracts and functional brain networks. Here, we built a brain network modeling framework to infer the causal link between structural connectivity and functional architecture and the consequent cognitive decline in aging. By applying in-silico interhemispheric degradation of structural connectivity, we reproduced the process of functional dedifferentiation during aging. Thereby, we found the global modulation of brain dynamics by structural connectivity to increase with age, which was steeper in older adults with poor cognitive performance. We validated our causal hypothesis via a deep-learning Bayesian approach. Our results might be the first mechanistic demonstration of dedifferentiation during aging leading to cognitive decline.
Collapse
Affiliation(s)
- Mario Lavanga
- Institut de Neurosciences des Systèmes (INS), Inserm, Aix-Marseille University, Marseille 13005, France
| | - Johanna Stumme
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Bahar Hazal Yalcinkaya
- Institut de Neurosciences des Systèmes (INS), Inserm, Aix-Marseille University, Marseille 13005, France
| | - Jan Fousek
- Institut de Neurosciences des Systèmes (INS), Inserm, Aix-Marseille University, Marseille 13005, France
| | - Christiane Jockwitz
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Hiba Sheheitli
- Institut de Neurosciences des Systèmes (INS), Inserm, Aix-Marseille University, Marseille 13005, France
| | - Nora Bittner
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Meysam Hashemi
- Institut de Neurosciences des Systèmes (INS), Inserm, Aix-Marseille University, Marseille 13005, France
| | - Spase Petkoski
- Institut de Neurosciences des Systèmes (INS), Inserm, Aix-Marseille University, Marseille 13005, France
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Viktor Jirsa
- Institut de Neurosciences des Systèmes (INS), Inserm, Aix-Marseille University, Marseille 13005, France.
| |
Collapse
|
9
|
Betzel RF, Faskowitz J, Sporns O. Living on the edge: network neuroscience beyond nodes. Trends Cogn Sci 2023; 27:1068-1084. [PMID: 37716895 PMCID: PMC10592364 DOI: 10.1016/j.tics.2023.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/14/2023] [Accepted: 08/10/2023] [Indexed: 09/18/2023]
Abstract
Network neuroscience has emphasized the connectional properties of neural elements - cells, populations, and regions. This has come at the expense of the anatomical and functional connections that link these elements to one another. A new perspective - namely one that emphasizes 'edges' - may prove fruitful in addressing outstanding questions in network neuroscience. We highlight one recently proposed 'edge-centric' method and review its current applications, merits, and limitations. We also seek to establish conceptual and mathematical links between this method and previously proposed approaches in the network science and neuroimaging literature. We conclude by presenting several avenues for future work to extend and refine existing edge-centric analysis.
Collapse
Affiliation(s)
- Richard F Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Cognitive Science Program, Indiana University, Bloomington, IN 47405, USA; Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA; Network Science Institute, Indiana University, Bloomington, IN 47405, USA.
| | - Joshua Faskowitz
- Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, USA
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Cognitive Science Program, Indiana University, Bloomington, IN 47405, USA; Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA; Network Science Institute, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
10
|
Castaldo F, Páscoa Dos Santos F, Timms RC, Cabral J, Vohryzek J, Deco G, Woolrich M, Friston K, Verschure P, Litvak V. Multi-modal and multi-model interrogation of large-scale functional brain networks. Neuroimage 2023; 277:120236. [PMID: 37355200 PMCID: PMC10958139 DOI: 10.1016/j.neuroimage.2023.120236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023] Open
Abstract
Existing whole-brain models are generally tailored to the modelling of a particular data modality (e.g., fMRI or MEG/EEG). We propose that despite the differing aspects of neural activity each modality captures, they originate from shared network dynamics. Building on the universal principles of self-organising delay-coupled nonlinear systems, we aim to link distinct features of brain activity - captured across modalities - to the dynamics unfolding on a macroscopic structural connectome. To jointly predict connectivity, spatiotemporal and transient features of distinct signal modalities, we consider two large-scale models - the Stuart Landau and Wilson and Cowan models - which generate short-lived 40 Hz oscillations with varying levels of realism. To this end, we measure features of functional connectivity and metastable oscillatory modes (MOMs) in fMRI and MEG signals - and compare them against simulated data. We show that both models can represent MEG functional connectivity (FC), functional connectivity dynamics (FCD) and generate MOMs to a comparable degree. This is achieved by adjusting the global coupling and mean conduction time delay and, in the WC model, through the inclusion of balance between excitation and inhibition. For both models, the omission of delays dramatically decreased the performance. For fMRI, the SL model performed worse for FCD and MOMs, highlighting the importance of balanced dynamics for the emergence of spatiotemporal and transient patterns of ultra-slow dynamics. Notably, optimal working points varied across modalities and no model was able to achieve a correlation with empirical FC higher than 0.4 across modalities for the same set of parameters. Nonetheless, both displayed the emergence of FC patterns that extended beyond the constraints of the anatomical structure. Finally, we show that both models can generate MOMs with empirical-like properties such as size (number of brain regions engaging in a mode) and duration (continuous time interval during which a mode appears). Our results demonstrate the emergence of static and dynamic properties of neural activity at different timescales from networks of delay-coupled oscillators at 40 Hz. Given the higher dependence of simulated FC on the underlying structural connectivity, we suggest that mesoscale heterogeneities in neural circuitry may be critical for the emergence of parallel cross-modal functional networks and should be accounted for in future modelling endeavours.
Collapse
Affiliation(s)
- Francesca Castaldo
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, United Kingdom.
| | - Francisco Páscoa Dos Santos
- Eodyne Systems SL, Barcelona, Spain; Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ryan C Timms
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Joana Cabral
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - Portuguese Government Associate Laboratory, Braga/Guimarães, Portugal; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, United United Kingdom
| | - Jakub Vohryzek
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, United United Kingdom; Centre for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Gustavo Deco
- Centre for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Mark Woolrich
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Karl Friston
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Paul Verschure
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Vladimir Litvak
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
11
|
Sorrentino P, Lopez ET, Romano A, Granata C, Corsi MC, Sorrentino G, Jirsa V. Brain fingerprint is based on the aperiodic, scale-free, neuronal activity. Neuroimage 2023:120260. [PMID: 37392807 DOI: 10.1016/j.neuroimage.2023.120260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/13/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023] Open
Abstract
Subject differentiation bears the possibility to individualize brain analyses. However, the nature of the processes generating subject-specific features remains unknown. Most of the current literature uses techniques that assume stationarity (e.g., Pearson's correlation), which might fail to capture the non-linear nature of brain activity. We hypothesize that non-linear perturbations (defined as neuronal avalanches in the context of critical dynamics) spread across the brain and carry subject-specific information, contributing the most to differentiability. To test this hypothesis, we compute the avalanche transition matrix (ATM) from source-reconstructed magnetoencephalographic data, as to characterize subject-specific fast dynamics. We perform differentiability analysis based on the ATMs, and compare the performance to that obtained using Pearson's correlation (which assumes stationarity). We demonstrate that selecting the moments and places where neuronal avalanches spread improves differentiation (P < 0.0001, permutation testing), despite the fact that most of the data (i.e., the linear part) are discarded. Our results show that the non-linear part of the brain signals carries most of the subject-specific information, thereby clarifying the nature of the processes that underlie individual differentiation. Borrowing from statistical mechanics, we provide a principled way to link emergent large-scale personalized activations to non-observable, microscopic processes.
Collapse
Affiliation(s)
- Pierpaolo Sorrentino
- Institut de Neurosciences des Systèmes, Aix-Marseille Universitè, Marseille, France; Institute of Applied Sciences and Intelligent Systems, CNR, Naples, Italy.
| | - Emahnuel Troisi Lopez
- Institute of Applied Sciences and Intelligent Systems, CNR, Naples, Italy; Department of Motor Sciences and Wellness, University of Naples "Parthenope", Naples, Italy
| | - Antonella Romano
- Department of Motor Sciences and Wellness, University of Naples "Parthenope", Naples, Italy
| | - Carmine Granata
- Institute of Applied Sciences and Intelligent Systems, CNR, Naples, Italy
| | - Marie Constance Corsi
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, F-75013, Paris, France
| | - Giuseppe Sorrentino
- Institute of Applied Sciences and Intelligent Systems, CNR, Naples, Italy; Department of Motor Sciences and Wellness, University of Naples "Parthenope", Naples, Italy; Institute of Diagnosis and Treatment Hermitage Capodimonte, Naples, Italy
| | - Viktor Jirsa
- Institut de Neurosciences des Systèmes, Aix-Marseille Universitè, Marseille, France
| |
Collapse
|
12
|
Duma GM, Danieli A, Mento G, Vitale V, Opipari RS, Jirsa V, Bonanni P, Sorrentino P. Altered spreading of neuronal avalanches in temporal lobe epilepsy relates to cognitive performance: A resting-state hdEEG study. Epilepsia 2023; 64:1278-1288. [PMID: 36799098 DOI: 10.1111/epi.17551] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023]
Abstract
OBJECTIVE Large aperiodic bursts of activations named neuronal avalanches have been used to characterize whole-brain activity, as their presence typically relates to optimal dynamics. Epilepsy is characterized by alterations in large-scale brain network dynamics. Here we exploited neuronal avalanches to characterize differences in electroencephalography (EEG) basal activity, free from seizures and/or interictal spikes, between patients with temporal lobe epilepsy (TLE) and matched controls. METHOD We defined neuronal avalanches as starting when the z-scored source-reconstructed EEG signals crossed a specific threshold in any region and ending when all regions returned to baseline. This technique avoids data manipulation or assumptions of signal stationarity, focusing on the aperiodic, scale-free components of the signals. We computed individual avalanche transition matrices to track the probability of avalanche spreading across any two regions, compared them between patients and controls, and related them to memory performance in patients. RESULTS We observed a robust topography of significant edges clustering in regions functionally and structurally relevant for the TLE, such as the entorhinal cortex, the inferior parietal and fusiform area, the inferior temporal gyrus, and the anterior cingulate cortex. We detected a significant correlation between the centrality of the entorhinal cortex in the transition matrix and the long-term memory performance (delay recall Rey-Osterrieth Complex Figure Test). SIGNIFICANCE Our results show that the propagation patterns of large-scale neuronal avalanches are altered in TLE during the resting state, suggesting a potential diagnostic application in epilepsy. Furthermore, the relationship between specific patterns of propagation and memory performance support the neurophysiological relevance of neuronal avalanches.
Collapse
Affiliation(s)
- Gian Marco Duma
- Epilepsy Unit, IRCCS E. Medea Scientific Institute, Treviso, Italy
| | - Alberto Danieli
- Epilepsy Unit, IRCCS E. Medea Scientific Institute, Treviso, Italy
| | - Giovanni Mento
- Department of General Psychology, University of Padova, Padova, Italy.,Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| | - Valerio Vitale
- Department of Neuroscience, Neuroradiology Unit, San Bortolo Hospital, Vicenza, Italy
| | | | - Viktor Jirsa
- Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille, France
| | - Paolo Bonanni
- Epilepsy Unit, IRCCS E. Medea Scientific Institute, Treviso, Italy
| | - Pierpaolo Sorrentino
- Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille, France
| |
Collapse
|
13
|
Manos T, Diaz-Pier S, Fortel I, Driscoll I, Zhan L, Leow A. Enhanced simulations of whole-brain dynamics using hybrid resting-state structural connectomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528836. [PMID: 36824821 PMCID: PMC9948985 DOI: 10.1101/2023.02.16.528836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The human brain, composed of billions of neurons and synaptic connections, is an intricate network coordinating a sophisticated balance of excitatory and inhibitory activity between brain regions. The dynamical balance between excitation and inhibition is vital for adjusting neural input/output relationships in cortical networks and regulating the dynamic range of their responses to stimuli. To infer this balance using connectomics, we recently introduced a computational framework based on the Ising model, first developed to explain phase transitions in ferromagnets, and proposed a novel hybrid resting-state structural connectome (rsSC). Here, we show that a generative model based on the Kuramoto phase oscillator can be used to simulate static and dynamic functional connectomes (FC) with rsSC as the coupling weight coefficients, such that the simulated FC well aligns with the observed FC when compared to that simulated with traditional structural connectome. Simulations were performed using the open source framework The Virtual Brain on High Performance Computing infrastructure.
Collapse
|
14
|
Rabuffo G, Sorrentino P, Bernard C, Jirsa V. Spontaneous neuronal avalanches as a correlate of access consciousness. Front Psychol 2022; 13:1008407. [PMID: 36337573 PMCID: PMC9634647 DOI: 10.3389/fpsyg.2022.1008407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/04/2022] [Indexed: 09/03/2023] Open
Abstract
Decades of research have advanced our understanding of the biophysical mechanisms underlying consciousness. However, an overarching framework bridging between models of consciousness and the large-scale organization of spontaneous brain activity is still missing. Based on the observation that spontaneous brain activity dynamically switches between epochs of segregation and large-scale integration of information, we hypothesize a brain-state dependence of conscious access, whereby the presence of either segregated or integrated states marks distinct modes of information processing. We first review influential works on the neuronal correlates of consciousness, spontaneous resting-state brain activity and dynamical system theory. Then, we propose a test experiment to validate our hypothesis that conscious access occurs in aperiodic cycles, alternating windows where new incoming information is collected but not experienced, to punctuated short-lived integration events, where conscious access to previously collected content occurs. In particular, we suggest that the integration events correspond to neuronal avalanches, which are collective bursts of neuronal activity ubiquitously observed in electrophysiological recordings. If confirmed, the proposed framework would link the physics of spontaneous cortical dynamics, to the concept of ignition within the global neuronal workspace theory, whereby conscious access manifest itself as a burst of neuronal activity.
Collapse
Affiliation(s)
- Giovanni Rabuffo
- Institut de Neurosciences des Systemes, Aix-Marseille University, Marseille, France
| | | | | | | |
Collapse
|
15
|
Raj A, Verma P, Nagarajan S. Structure-function models of temporal, spatial, and spectral characteristics of non-invasive whole brain functional imaging. Front Neurosci 2022; 16:959557. [PMID: 36110093 PMCID: PMC9468900 DOI: 10.3389/fnins.2022.959557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022] Open
Abstract
We review recent advances in using mathematical models of the relationship between the brain structure and function that capture features of brain dynamics. We argue the need for models that can jointly capture temporal, spatial, and spectral features of brain functional activity. We present recent work on spectral graph theory based models that can accurately capture spectral as well as spatial patterns across multiple frequencies in MEG reconstructions.
Collapse
Affiliation(s)
- Ashish Raj
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | | | | |
Collapse
|
16
|
Fortel I, Butler M, Korthauer LE, Zhan L, Ajilore O, Sidiropoulos A, Wu Y, Driscoll I, Schonfeld D, Leow A. Inferring excitation-inhibition dynamics using a maximum entropy model unifying brain structure and function. Netw Neurosci 2022; 6:420-444. [PMID: 35733430 PMCID: PMC9205431 DOI: 10.1162/netn_a_00220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/07/2021] [Indexed: 11/04/2022] Open
Abstract
Neural activity coordinated across different scales from neuronal circuits to large-scale brain networks gives rise to complex cognitive functions. Bridging the gap between micro- and macroscale processes, we present a novel framework based on the maximum entropy model to infer a hybrid resting-state structural connectome, representing functional interactions constrained by structural connectivity. We demonstrate that the structurally informed network outperforms the unconstrained model in simulating brain dynamics, wherein by constraining the inference model with the network structure we may improve the estimation of pairwise BOLD signal interactions. Further, we simulate brain network dynamics using Monte Carlo simulations with the new hybrid connectome to probe connectome-level differences in excitation-inhibition balance between apolipoprotein E (APOE)-ε4 carriers and noncarriers. Our results reveal sex differences among APOE-ε4 carriers in functional dynamics at criticality; specifically, female carriers appear to exhibit a lower tolerance to network disruptions resulting from increased excitatory interactions. In sum, the new multimodal network explored here enables analysis of brain dynamics through the integration of structure and function, providing insight into the complex interactions underlying neural activity such as the balance of excitation and inhibition.
Collapse
Affiliation(s)
- Igor Fortel
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Mitchell Butler
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Laura E. Korthauer
- Department of Psychology, University of Wisconsin–Milwaukee, Milwaukee, WI, USA
- Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Yichao Wu
- Department of Math, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Ira Driscoll
- Department of Psychology, University of Wisconsin–Milwaukee, Milwaukee, WI, USA
| | - Dan Schonfeld
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Alex Leow
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
17
|
van der Vlag M, Woodman M, Fousek J, Diaz-Pier S, Pérez Martín A, Jirsa V, Morrison A. RateML: A Code Generation Tool for Brain Network Models. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:826345. [PMID: 36926112 PMCID: PMC10013028 DOI: 10.3389/fnetp.2022.826345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022]
Abstract
Whole brain network models are now an established tool in scientific and clinical research, however their use in a larger workflow still adds significant informatics complexity. We propose a tool, RateML, that enables users to generate such models from a succinct declarative description, in which the mathematics of the model are described without specifying how their simulation should be implemented. RateML builds on NeuroML's Low Entropy Model Specification (LEMS), an XML based language for specifying models of dynamical systems, allowing descriptions of neural mass and discretized neural field models, as implemented by the Virtual Brain (TVB) simulator: the end user describes their model's mathematics once and generates and runs code for different languages, targeting both CPUs for fast single simulations and GPUs for parallel ensemble simulations. High performance parallel simulations are crucial for tuning many parameters of a model to empirical data such as functional magnetic resonance imaging (fMRI), with reasonable execution times on small or modest hardware resources. Specifically, while RateML can generate Python model code, it enables generation of Compute Unified Device Architecture C++ code for NVIDIA GPUs. When a CUDA implementation of a model is generated, a tailored model driver class is produced, enabling the user to tweak the driver by hand and perform the parameter sweep. The model and driver can be executed on any compute capable NVIDIA GPU with a high degree of parallelization, either locally or in a compute cluster environment. The results reported in this manuscript show that with the CUDA code generated by RateML, it is possible to explore thousands of parameter combinations with a single Graphics Processing Unit for different models, substantially reducing parameter exploration times and resource usage for the brain network models, in turn accelerating the research workflow itself. This provides a new tool to create efficient and broader parameter fitting workflows, support studies on larger cohorts, and derive more robust and statistically relevant conclusions about brain dynamics.
Collapse
Affiliation(s)
- Michiel van der Vlag
- Simulation and Data Lab Neuroscience, Institute for Advanced Simulation, Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, JARA, Jülich, Germany
| | - Marmaduke Woodman
- Institut de Neurosciences des Systèmes, Aix Marseille Université, Marseille, France
| | - Jan Fousek
- Institut de Neurosciences des Systèmes, Aix Marseille Université, Marseille, France
| | - Sandra Diaz-Pier
- Simulation and Data Lab Neuroscience, Institute for Advanced Simulation, Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, JARA, Jülich, Germany
| | - Aarón Pérez Martín
- Simulation and Data Lab Neuroscience, Institute for Advanced Simulation, Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, JARA, Jülich, Germany
| | - Viktor Jirsa
- Institut de Neurosciences des Systèmes, Aix Marseille Université, Marseille, France
| | - Abigail Morrison
- Simulation and Data Lab Neuroscience, Institute for Advanced Simulation, Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, JARA, Jülich, Germany.,Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain, Jülich, Germany.,Computer Science 3-Software Engineering, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
18
|
Pope M, Fukushima M, Betzel RF, Sporns O. Modular origins of high-amplitude cofluctuations in fine-scale functional connectivity dynamics. Proc Natl Acad Sci U S A 2021; 118:e2109380118. [PMID: 34750261 PMCID: PMC8609635 DOI: 10.1073/pnas.2109380118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2021] [Indexed: 11/22/2022] Open
Abstract
The topology of structural brain networks shapes brain dynamics, including the correlation structure of brain activity (functional connectivity) as estimated from functional neuroimaging data. Empirical studies have shown that functional connectivity fluctuates over time, exhibiting patterns that vary in the spatial arrangement of correlations among segregated functional systems. Recently, an exact decomposition of functional connectivity into frame-wise contributions has revealed fine-scale dynamics that are punctuated by brief and intermittent episodes (events) of high-amplitude cofluctuations involving large sets of brain regions. Their origin is currently unclear. Here, we demonstrate that similar episodes readily appear in silico using computational simulations of whole-brain dynamics. As in empirical data, simulated events contribute disproportionately to long-time functional connectivity, involve recurrence of patterned cofluctuations, and can be clustered into distinct families. Importantly, comparison of event-related patterns of cofluctuations to underlying patterns of structural connectivity reveals that modular organization present in the coupling matrix shapes patterns of event-related cofluctuations. Our work suggests that brief, intermittent events in functional dynamics are partly shaped by modular organization of structural connectivity.
Collapse
Affiliation(s)
- Maria Pope
- Program in Neuroscience, Indiana University, Bloomington, IN 47405
- School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN 47405
| | - Makoto Fukushima
- Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
- Data Science Center, Nara Institute of Science and Technology, Nara 630-0192, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka 565-0871, Japan
| | - Richard F Betzel
- Program in Neuroscience, Indiana University, Bloomington, IN 47405
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405
- Cognitive Science Program, Indiana University, Bloomington, IN 47405
- Network Science Institute, Indiana University, Bloomington, IN 47405
| | - Olaf Sporns
- Program in Neuroscience, Indiana University, Bloomington, IN 47405;
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405
- Cognitive Science Program, Indiana University, Bloomington, IN 47405
- Network Science Institute, Indiana University, Bloomington, IN 47405
| |
Collapse
|