1
|
Gordon T, Saleh MA, Pasmanik-Chor M, Vatine GD, Ashkenazi A. Proteomic analysis of human iPSC-derived sympathetic neurons identifies proteostasis collapse as a molecular signature following subtoxic rotenone exposure. Toxicology 2025; 510:154015. [PMID: 39603559 DOI: 10.1016/j.tox.2024.154015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/18/2024] [Accepted: 11/23/2024] [Indexed: 11/29/2024]
Abstract
Rotenone is a toxic isoflavone and an inhibitor of the mitochondrial respiratory chain. Rotenone is commonly used due to its piscicidal and pesticidal properties. The peripheral nervous system (PNS) lacks protective barriers and is exposed to many environmental substances due to its long-reaching structure. A causal association between rotenone and human PNS dysfunction is currently a subject of investigation. Here, we treated human induced pluripotent stem cell (iPSC)-derived peripheral sympathetic neurons with a subtoxic dose of rotenone (10 µg/L) that is considered safe for human health and is permitted for environmental use. Indeed, no overt toxicity was observed in the human peripheral neurons and neurite morphology was intact in the treated neurons. Surprisingly, we detected significant changes in the proteome of rotenone-exposed sympathetic neurons with a signature of protein homeostasis (proteostasis) collapse. Screening the proteostasis modules of protein translation, proteolysis, and chaperones, revealed severe perturbations in clusters of autophagy regulators. Our proteomic profiling reveals compromised proteostasis as a consequence of low-dose non-toxic exposure to rotenone, which can disrupt the ability of the PNS to cope with proteotoxic stress. Exposed individuals may have varying degrees of tolerance to such vulnerabilities but they may eventually progress into peripheral neuropathies.
Collapse
Affiliation(s)
- Tamar Gordon
- The Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Mahmood Ali Saleh
- The Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; The Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv University, Tel Aviv 69978, Israel
| | - Gad D Vatine
- The Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; The Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Avraham Ashkenazi
- The Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
2
|
Pokharel PV, Newchurch AM, Overby SC, Spease CA, Darzi LG, Kraemer BR. LM11a-31 Inhibits p75 Neurotrophin Receptor (p75 NTR ) Cleavage and is Neuroprotective in a Cell Culture Model of Parkinson's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612299. [PMID: 39314373 PMCID: PMC11419115 DOI: 10.1101/2024.09.10.612299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The p75 Neurotrophin Receptor (p75 NTR ) is a multifunctional transmembrane protein that mediates neuronal responses to pathological conditions in specific regions of the nervous system. In many biological contexts, p75 NTR signaling is initiated through sequential cleavage of the receptor by α- and γ-secretases, which releases receptor fragments for downstream signaling. Our previous work demonstrated that proteolytic processing of p75 NTR in this manner is stimulated by oxidative stress in Lund Human Mesencephalic (LUHMES) cells, a dopaminergic neuronal cell line derived from human mesencephalic tissue. Considering the vulnerability of dopaminergic neurons in the ventral mesencephalon to oxidative stress and neurodegeneration associated with Parkinson's disease (PD), we investigated the role of this signaling cascade in neurodegeneration and explored cellular processes that govern oxidative stress-induced p75 NTR signaling. In the present study, we provide evidence that oxidative stress induces cleavage of p75 NTR by promoting c-Jun N-terminal Kinase (JNK)-dependent internalization of p75 NTR from the cell surface. This activation of p75 NTR signaling is counteracted by tropomyosin-related kinase (Trk) receptor signaling; however, oxidative stress leads to Trk receptor downregulation, thereby enhancing p75 NTR processing. Importantly, we demonstrate that this pathway can be inhibited by LM11a-31, a small molecule modulator of p75 NTR , thereby conferring protection against neurodegeneration. Treatment with LM11a-31 significantly reduced p75 NTR cleavage and neuronal death associated with oxidative stress. These findings reveal novel mechanisms underlying activation of p75 NTR in response to oxidative stress, underscore a key role for p75 NTR in dopaminergic neurodegeneration, and highlight p75 NTR as a potential therapeutic target for reducing neurodegeneration in PD.
Collapse
|
3
|
Xia XM, Duan Y, Wang YP, Han RX, Dong YF, Jiang SY, Zheng Y, Qiao C, Cao L, Lu X, Lu M. Vagus nerve stimulation as a promising neuroprotection for ischemic stroke via α7nAchR-dependent inactivation of microglial NLRP3 inflammasome. Acta Pharmacol Sin 2024; 45:1349-1365. [PMID: 38504011 PMCID: PMC11192746 DOI: 10.1038/s41401-024-01245-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/18/2024] [Indexed: 03/21/2024] Open
Abstract
Ischemic stroke is a major cause of disability and death worldwide, and its management requires urgent attention. Previous studies have shown that vagus nerve stimulation (VNS) exerts neuroprotection in ischemic stroke by inhibiting neuroinflammation and apoptosis. In this study, we evaluated the timing for VNS intervention in ischemic stroke, and the underlying mechanisms of VNS-induced neuroprotection. Mice were subjected to transient middle cerebral artery occlusion (tMCAO) for 60 min. The left vagus nerve at cervical level was exposed and attached to an electrode connected to a low-frequency electrical stimulator. Vagus nerve stimulation (VNS) was given for 60 min before, during and after tMCAO (Pre-VNS, Dur-VNS, Post-VNS). Neurological function was assessed 24 h after reperfusion. We found that all the three VNS significantly protected against the tMCAO-induced injury evidenced by improved neurological function and reduced infarct volume. Moreover, the Pre-VNS was the most effective against the ischemic injury. We found that tMCAO activated microglia in the ischemic core and penumbra regions of the brain, followed by the NLRP3 inflammasome activation-induced neuroinflammation, which finally triggered neuronal death. VNS treatment preserved α7nAChR expression in the penumbra regions, inhibited NLRP3 inflammasome activation and ensuing neuroinflammation, rescuing cerebral neurons. The role of α7nAChR in microglial NLRP3 inflammasome activation in ischemic stroke was further validated using genetic manipulations, including Chrna7 knockout mice and microglial Chrna7 overexpression mice, as well as pharmacological interventions using the α7nAChR inhibitor methyllycaconitine and agonist PNU-282987. Collectively, this study demonstrates the potential of VNS as a safe and effective strategy to treat ischemic stroke, and presents a new approach targeting microglial NLRP3 inflammasome, which might be therapeutic for other inflammation-related diseases.
Collapse
Affiliation(s)
- Xiao-Mei Xia
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Department of Rehabilitation Medicine, Kangda College of Nanjing Medical University, Lianyungang, 222000, China
| | - Yu Duan
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yue-Ping Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China
| | - Rui-Xue Han
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China
| | - Yin-Feng Dong
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Si-Yuan Jiang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China
| | - Yu Zheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chen Qiao
- Department of Clinical Pharmacy, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China
| | - Lei Cao
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China.
- Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China.
| | - Xiao Lu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Ming Lu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China.
- Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China.
| |
Collapse
|
4
|
Yang S, Niou ZX, Enriquez A, LaMar J, Huang JY, Ling K, Jafar-Nejad P, Gilley J, Coleman MP, Tennessen JM, Rangaraju V, Lu HC. NMNAT2 supports vesicular glycolysis via NAD homeostasis to fuel fast axonal transport. Mol Neurodegener 2024; 19:13. [PMID: 38282024 PMCID: PMC10823734 DOI: 10.1186/s13024-023-00690-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/28/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Bioenergetic maladaptations and axonopathy are often found in the early stages of neurodegeneration. Nicotinamide adenine dinucleotide (NAD), an essential cofactor for energy metabolism, is mainly synthesized by Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) in CNS neurons. NMNAT2 mRNA levels are reduced in the brains of Alzheimer's, Parkinson's, and Huntington's disease. Here we addressed whether NMNAT2 is required for axonal health of cortical glutamatergic neurons, whose long-projecting axons are often vulnerable in neurodegenerative conditions. We also tested if NMNAT2 maintains axonal health by ensuring axonal ATP levels for axonal transport, critical for axonal function. METHODS We generated mouse and cultured neuron models to determine the impact of NMNAT2 loss from cortical glutamatergic neurons on axonal transport, energetic metabolism, and morphological integrity. In addition, we determined if exogenous NAD supplementation or inhibiting a NAD hydrolase, sterile alpha and TIR motif-containing protein 1 (SARM1), prevented axonal deficits caused by NMNAT2 loss. This study used a combination of techniques, including genetics, molecular biology, immunohistochemistry, biochemistry, fluorescent time-lapse imaging, live imaging with optical sensors, and anti-sense oligos. RESULTS We provide in vivo evidence that NMNAT2 in glutamatergic neurons is required for axonal survival. Using in vivo and in vitro studies, we demonstrate that NMNAT2 maintains the NAD-redox potential to provide "on-board" ATP via glycolysis to vesicular cargos in distal axons. Exogenous NAD+ supplementation to NMNAT2 KO neurons restores glycolysis and resumes fast axonal transport. Finally, we demonstrate both in vitro and in vivo that reducing the activity of SARM1, an NAD degradation enzyme, can reduce axonal transport deficits and suppress axon degeneration in NMNAT2 KO neurons. CONCLUSION NMNAT2 ensures axonal health by maintaining NAD redox potential in distal axons to ensure efficient vesicular glycolysis required for fast axonal transport.
Collapse
Affiliation(s)
- Sen Yang
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
| | - Zhen-Xian Niou
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Andrea Enriquez
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Jacob LaMar
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
- Present address: Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Jui-Yen Huang
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
| | - Karen Ling
- Neuroscience Drug Discovery, Ionis Pharmaceuticals, Inc., 2855, Gazelle Court, Carlsbad, CA, 92010, USA
| | - Paymaan Jafar-Nejad
- Neuroscience Drug Discovery, Ionis Pharmaceuticals, Inc., 2855, Gazelle Court, Carlsbad, CA, 92010, USA
| | - Jonathan Gilley
- Department of Clinical Neuroscience, Cambridge University, Cambridge, UK
| | - Michael P Coleman
- Department of Clinical Neuroscience, Cambridge University, Cambridge, UK
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Vidhya Rangaraju
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
| | - Hui-Chen Lu
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
5
|
Badenetti L, Manzoli R, Trevisan M, D'Avanzo F, Tomanin R, Moro E. A novel CRISPR/Cas9-based iduronate-2-sulfatase (IDS) knockout human neuronal cell line reveals earliest pathological changes. Sci Rep 2023; 13:10289. [PMID: 37357221 DOI: 10.1038/s41598-023-37138-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/16/2023] [Indexed: 06/27/2023] Open
Abstract
Multiple complex intracellular cascades contributing to Hunter syndrome (mucopolysaccharidosis type II) pathogenesis have been recognized and documented in the past years. However, the hierarchy of early cellular abnormalities leading to irreversible neuronal damage is far from being completely understood. To tackle this issue, we have generated two novel iduronate-2-sulfatase (IDS) loss of function human neuronal cell lines by means of genome editing. We show that both neuronal cell lines exhibit no enzymatic activity and increased GAG storage despite a completely different genotype. At a cellular level, they display reduced differentiation, significantly decreased LAMP1 and RAB7 protein levels, impaired lysosomal acidification and increased lipid storage. Moreover, one of the two clones is characterized by a marked decrease of the autophagic marker p62, while none of the two mutants exhibit marked oxidative stress and mitochondrial morphological changes. Based on our preliminary findings, we hypothesize that neuronal differentiation might be significantly affected by IDS functional impairment.
Collapse
Affiliation(s)
- Lorenzo Badenetti
- Department of Women's and Children's Health, University of Padova, 35128, Padova, Italy
- Istituto di Ricerca Pediatrica "Città Della Speranza", 35127, Padova, Italy
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Rosa Manzoli
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35121, Padova, Italy
| | - Marta Trevisan
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Francesca D'Avanzo
- Department of Women's and Children's Health, University of Padova, 35128, Padova, Italy
- Istituto di Ricerca Pediatrica "Città Della Speranza", 35127, Padova, Italy
| | - Rosella Tomanin
- Department of Women's and Children's Health, University of Padova, 35128, Padova, Italy
- Istituto di Ricerca Pediatrica "Città Della Speranza", 35127, Padova, Italy
| | - Enrico Moro
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy.
| |
Collapse
|