1
|
Kent-Dennis C, Klotz JL. The endocannabinoid system in bovine tissues: characterization of transcript abundance in the growing Holstein steer. BMC Vet Res 2024; 20:481. [PMID: 39438841 PMCID: PMC11494806 DOI: 10.1186/s12917-024-04319-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND The endocannabinoid system (ECS) is highly integrated with seemingly all physiological and pathophysiological processes in the body. There is increasing interest in utilizing bioactive plant compounds, for promoting health and improving production in livestock. Given the established interaction between phytochemicals and the ECS, there are many opportunities for identification and development of therapies to address a range of diseases and disorders. However, the ECS has not been thoroughly characterized in cattle, especially in the gastrointestinal tract. The objective of this study was to characterize the distribution and transcriptional abundance of genes associated with the endocannabinoid system in bovine tissues. METHODS Tissues including brain, spleen, thyroid, lung, liver, kidney, mesenteric vein, tongue, sublingual mucosa, rumen, omasum, duodenum, jejunum, ileum and colon were collected from 10-mo old Holstein steers (n = 6). Total RNA was extracted and gene expression was measured using absolute quantification real time qPCR. Gene expression of endocannabinoid receptors CNR1 and CNR2, synthesis enzymes DAGLA, DAGLB and NAPEPLD, degradation enzymes MGLL and FAAH, and transient receptor potential vanilloids TRPV3 and TRPV6 was measured. Data were analyzed in R using a Kruskal-Wallis followed by a Wilcoxon rank-sum test. Results are reported as the median copy number/20 ng of equivalent cDNA (CN) with interquartile range (IQR). RESULTS The greatest expression of CNR1 and CNR2 was in the brain and spleen, respectively. Expression of either receptor was not detected in any gastrointestinal tissues, however there was a tendency (P = 0.095) for CNR2 to be expressed above background in rumen. Expression of endocannabinoid synthesis and degradation enzymes varied greatly across tissues. Brain tissue had the greatest DAGLA expression at 641 CN (IQR 52; P ≤ 0.05). DAGLB was detected in all tissues, with brain and spleen having the greatest expression (P ≤ 0.05). Expression of NAPEPLD in the gastrointestinal tract was lowest in tongue and sublingual mucosal. There was no difference in expression of NAPEPLD between hindgut tissues, however these tissues collectively had 592% greater expression than rumen and omasum (P ≤ 0.05). While MGLL was found to be expressed in all tissues, expression of FAAH was only above the limit of detection in brain, liver, kidney, jejunum and ileum. TRPV3 was expressed above background in tongue, rumen, omasum and colon. Although not different from each other, thyroid and duodenum had the greatest expression of TRPV6, with 285 (IQR 164) and 563 (IQR 467) CN compared to all other tissues (P < 0.05). CONCLUSIONS These data demonstrate the complex distribution and variation of the ECS in bovine tissues. Expression patterns suggest that regulatory functions of this system are tissue dependent, providing initial insight into potential target tissues for manipulation of the ECS.
Collapse
Affiliation(s)
- Coral Kent-Dennis
- USDA-ARS Forage-Animal Production Research Unit, University of Kentucky Campus, 1100 S. Limestone Rd. N220 Ag. Science North, Lexington, KY, 40546, USA
| | - James L Klotz
- USDA-ARS Forage-Animal Production Research Unit, University of Kentucky Campus, 1100 S. Limestone Rd. N220 Ag. Science North, Lexington, KY, 40546, USA.
| |
Collapse
|
2
|
Weise S, Hanslik P, Mignot C, Glushkov E, Bertsch A, Dubreuil R, Bensafi M, Fuessel S, Hummel T. Hot topic: Mapping of the human intranasal mucosal thermal sensitivity: A clinical study on thermal threshold and trigeminal receptors. PLoS One 2024; 19:e0304874. [PMID: 39106272 DOI: 10.1371/journal.pone.0304874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 05/20/2024] [Indexed: 08/09/2024] Open
Abstract
INTRODUCTION The olfactory and trigeminal system are closely interlinked. Existing literature has primarily focused on characterizing trigeminal stimulation through mechanical and chemical stimulation, neglecting thermal stimulation thus far. The present study aimed to characterize the intranasal sensitivity to heat and the expression of trigeminal receptors (transient receptor potential channels, TRP). METHODS A total of 20 healthy participants (aged 21-27 years, 11 women) were screened for olfactory function and trigeminal sensitivity using several tests. Under endoscopic control, a thermal stimulator was placed in 7 intranasal locations: anterior septum, lateral vestibulum, interior nose tip, lower turbinate, middle septum, middle turbinate, and olfactory cleft to determine the thermal threshold. Nasal swabs were obtained in 3 different locations (anterior septum, middle turbinate, olfactory cleft) to analyze the expression of trigeminal receptors TRP: TRPV1, TRPV3, TRPA1, TRPM8. RESULTS The thermal threshold differed between locations (p = 0.018), with a trend for a higher threshold at the anterior septum (p = 0.092). There were no differences in quantitative receptor expression (p = 0.46) at the different sites. The highest overall receptor RNA expression was detected for TRPV1 over all sites (p<0.001). The expression of TRPV3 was highest at the anterior septum compared to the middle turbinate or the olfactory cleft. The thermal sensitivity correlated with olfactory sensitivity and results from tests were related to trigeminal function like intensity ratings of ammonium, a questionnaire regarding trigeminal function, nasal patency, and CO2 thresholds. However, no correlation was found between receptor expression and psychophysical measures of trigeminal function. DISCUSSION This study provided the first insights about intranasal thermal sensitivity and suggested the presence of topographical differences in thermal thresholds. There was no correlation between thermal sensitivity and trigeminal mRNA receptor expression. However, thermal sensitivity was found to be associated with psychophysical measures of trigeminal and olfactory function.
Collapse
Affiliation(s)
- Susanne Weise
- Smell & Taste Clinic, Department of Otorhinolaryngology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Pauline Hanslik
- Smell & Taste Clinic, Department of Otorhinolaryngology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Coralie Mignot
- Smell & Taste Clinic, Department of Otorhinolaryngology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Evgenii Glushkov
- Microsystem Laboratory 4 (LMIS4), School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Arnaud Bertsch
- Microsystem Laboratory 4 (LMIS4), School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Moustafa Bensafi
- Lyon Neuroscience Research Center, CNRS UMR5292-INSERM U1028-University Claude Bernard Lyon 1, Bron, France
| | - Susanne Fuessel
- Department of Urology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Thomas Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
3
|
Sato H, Satoh K, Nozaki K, Yugawa M, Kato T, Toyoda H, Katagiri A, Suda N, Adachi K. Reduced menthol sensitivity in a prodromal Parkinson's disease model induced by intranasal rotenone treatment. Front Cell Neurosci 2024; 18:1345651. [PMID: 38380382 PMCID: PMC10876781 DOI: 10.3389/fncel.2024.1345651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/19/2024] [Indexed: 02/22/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor symptoms, and it is associated with several prodromal non-motor symptoms, including an impaired sense of smell, taste and touch. We previously reported that bitter taste impairments occur independently of olfactory impairments in an early-stage PD animal model using short-term intranasal rotenone-treated mice. Cool temperatures also affect bitter taste perception, but it remains unclear whether or not bitter taste impairments result from an altered sensitivity for intraoral cool stimuli. We examined disturbances in the intraoral menthol sensitivity, such as coolness at low concentrations of menthol, using a brief-access test. Once a day, one solution from the 7-concentration series of (-)-menthol (0-2.3 mM) or the bitter taste quinine-HCl (0.3 mM) was randomly presented 20 times for 10 s to water-deprived mice before and 1 week after rotenone treatment. The total number of licks within 20 times was significantly decreased with the presentation of 2.3 mM menthol and quinine-HCl, compared to distilled water in untreated mice, but not in rotenone-treated mice. The correlation between the licks for quinine-HCl and that for menthol was increased after rotenone treatment. In contrast, the 2-bottle choice test for 48 h clarified that menthol sensitivity was increased after rotenone treatment. Furthermore, a thermal place preference test revealed that seeking behavior toward a cold-floored room was increased in the rotenone-treated mice despite the unchanged plantar cutaneous cold sensitivity. These results suggest that taste impairments in this model mice are at least partly due to intraoral somatosensory impairments, accompanied by peripheral/central malfunction.
Collapse
Affiliation(s)
- Hajime Sato
- Division of Pharmacology, Meikai University School of Dentistry, Sakado, Japan
| | - Keitaro Satoh
- Division of Pharmacology, Meikai University School of Dentistry, Sakado, Japan
| | - Kazunori Nozaki
- Division of Medical Information, Osaka University Dental Hospital, Suita, Japan
| | - Misato Yugawa
- Division of Orthodontics, Meikai University School of Dentistry, Sakado, Japan
| | - Takafumi Kato
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Hiroki Toyoda
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Ayano Katagiri
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Naoto Suda
- Division of Orthodontics, Meikai University School of Dentistry, Sakado, Japan
| | - Kazunori Adachi
- Division of Pharmacology, Meikai University School of Dentistry, Sakado, Japan
| |
Collapse
|
4
|
Hossain MZ, Kitagawa J. Transient receptor potential channels as an emerging therapeutic target for oropharyngeal dysphagia. JAPANESE DENTAL SCIENCE REVIEW 2023; 59:421-430. [PMID: 38022386 PMCID: PMC10665593 DOI: 10.1016/j.jdsr.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/10/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
Oropharyngeal dysphagia is a serious health concern in older adults and patients with neurological disorders. Current oropharyngeal dysphagia management largely relies on compensatory strategies with limited efficacy. A long-term goal in swallowing/dysphagia-related research is the identification of pharmacological treatment strategies for oropharyngeal dysphagia. In recent decades, several pre-clinical and clinical studies have investigated the use of transient receptor potential (TRP) channels as a therapeutic target to facilitate swallowing. Various TRP channels are present in regions involved in the swallowing process. Animal studies have shown that local activation of these channels by their pharmacological agonists initiates swallowing reflexes; the number of reflexes increases when the dose of the agonist reaches a particular level. Clinical studies, including randomized clinical trials involving patients with oropharyngeal dysphagia, have demonstrated improved swallowing efficacy, safety, and physiology when TRP agonists are mixed with the food bolus. Additionally, there is evidence of plasticity development in swallowing-related neuronal networks in the brain upon TRP channel activation in peripheral swallowing-related regions. Thus, TRP channels have emerged as a promising target for the development of pharmacological treatments for oropharyngeal dysphagia.
Collapse
Affiliation(s)
- Mohammad Zakir Hossain
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan
| | - Junichi Kitagawa
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan
| |
Collapse
|
5
|
Kalinovskii AP, Utkina LL, Korolkova YV, Andreev YA. TRPV3 Ion Channel: From Gene to Pharmacology. Int J Mol Sci 2023; 24:ijms24108601. [PMID: 37239947 DOI: 10.3390/ijms24108601] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Transient receptor potential vanilloid subtype 3 (TRPV3) is an ion channel with a sensory function that is most abundantly expressed in keratinocytes and peripheral neurons. TRPV3 plays a role in Ca2+ homeostasis due to non-selective ionic conductivity and participates in signaling pathways associated with itch, dermatitis, hair growth, and skin regeneration. TRPV3 is a marker of pathological dysfunctions, and its expression is increased in conditions of injury and inflammation. There are also pathogenic mutant forms of the channel associated with genetic diseases. TRPV3 is considered as a potential therapeutic target of pain and itch, but there is a rather limited range of natural and synthetic ligands for this channel, most of which do not have high affinity and selectivity. In this review, we discuss the progress in the understanding of the evolution, structure, and pharmacology of TRPV3 in the context of the channel's function in normal and pathological states.
Collapse
Affiliation(s)
- Aleksandr P Kalinovskii
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCh RAS), 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia
| | - Lyubov L Utkina
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trbetskaya Str. 8, Bld. 2, 119991 Moscow, Russia
| | - Yuliya V Korolkova
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCh RAS), 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia
| | - Yaroslav A Andreev
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCh RAS), 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trbetskaya Str. 8, Bld. 2, 119991 Moscow, Russia
| |
Collapse
|
6
|
Hossain MZ, Ando H, Unno S, Roy RR, Kitagawa J. Pharmacological activation of transient receptor potential vanilloid 4 promotes triggering of the swallowing reflex in rats. Front Cell Neurosci 2023; 17:1149793. [PMID: 36909278 PMCID: PMC9992545 DOI: 10.3389/fncel.2023.1149793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
The swallowing reflex is an essential physiological reflex that allows food or liquid to pass into the esophagus from the oral cavity. Delayed triggering of this reflex is a significant health problem in patients with oropharyngeal dysphagia for which no pharmacological treatments exist. Transient receptor potential channels have recently been discovered as potential targets to facilitate triggering of the swallowing reflex. However, the ability of transient receptor potential vanilloid 4 (TRPV4) to trigger the swallowing reflex has not been studied. Here, we demonstrate the involvement of TRPV4 in triggering the swallowing reflex in rats. TRPV4 immunoreactive nerve fibers were observed in the superior laryngeal nerve (SLN)-innervated swallowing-related regions. Retrograde tracing with fluorogold revealed localization of TRPV4 on approximately 25% of SLN-afferent neurons in the nodose-petrosal-jugular ganglionic complex. Among them, approximately 49% were large, 35% medium, and 15% small-sized SLN-afferent neurons. Topical application of a TRPV4 agonist (GSK1016790A) to the SLN-innervated regions dose-dependently facilitated triggering of the swallowing reflex, with the highest number of reflexes triggered at a concentration of 250 μM. The number of agonist-induced swallowing reflexes was significantly reduced by prior topical application of a TRPV4 antagonist. These findings indicate that TRPV4 is expressed on sensory nerves innervating the swallowing-related regions, and that its activation by an agonist can facilitate swallowing. TRPV4 is a potential pharmacological target for the management of oropharyngeal dysphagia.
Collapse
Affiliation(s)
- Mohammad Zakir Hossain
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan
| | - Hiroshi Ando
- Department of Biology, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan
| | - Shumpei Unno
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan
| | - Rita Rani Roy
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan
| | - Junichi Kitagawa
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan
| |
Collapse
|