1
|
Bharmauria V, Ramezanpour H, Ouelhazi A, Yahia Belkacemi Y, Flouty O, Molotchnikoff S. KETAMINE: Neural- and network-level changes. Neuroscience 2024; 559:188-198. [PMID: 39245312 DOI: 10.1016/j.neuroscience.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Ketamine is a widely used clinical drug that has several functional and clinical applications, including its use as an anaesthetic, analgesic, anti-depressive, anti-suicidal agent, among others. Among its diverse behavioral effects, it influences short-term memory and induces psychedelic effects. At the neural level across different brain areas, it modulates neural firing rates, neural tuning, brain oscillations, and modularity, while promoting hypersynchrony and random connectivity between neurons. In our recent studies we demonstrated that topical application of ketamine on the visual cortex alters neural tuning and promotes vigorous connectivity between neurons by decreasing their firing variability. Here, we begin with a brief review of the literature, followed by results from our lab, where we synthesize a dendritic model of neural tuning and network changes following ketamine application. This model has potential implications for focused modulation of cortical networks in clinical settings. Finally, we identify current gaps in research and suggest directions for future studies, particularly emphasizing the need for more animal experiments to establish a platform for effective translation and synergistic therapies combining ketamine with other protocols such as training and adaptation. In summary, investigating ketamine's broader systemic effects, not only provides deeper insight into cognitive functions and consciousness but also paves the way to advance therapies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Vishal Bharmauria
- The Tampa Human Neurophysiology Lab & Department of Neurosurgery and Brain Repair, Morsani College of Medicine, 2 Tampa General Circle, University of South Florida, Tampa, FL 33606, USA; Centre for Vision Research and Centre for Integrative and Applied Neuroscience, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada.
| | - Hamidreza Ramezanpour
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Afef Ouelhazi
- Neurophysiology of the Visual system, Département de Sciences Biologiques, 1375 Av. Thérèse-Lavoie-Roux, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Yassine Yahia Belkacemi
- Neurophysiology of the Visual system, Département de Sciences Biologiques, 1375 Av. Thérèse-Lavoie-Roux, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Oliver Flouty
- The Tampa Human Neurophysiology Lab & Department of Neurosurgery and Brain Repair, Morsani College of Medicine, 2 Tampa General Circle, University of South Florida, Tampa, FL 33606, USA
| | - Stéphane Molotchnikoff
- Neurophysiology of the Visual system, Département de Sciences Biologiques, 1375 Av. Thérèse-Lavoie-Roux, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| |
Collapse
|
2
|
Seo S, Bharmauria V, Schütz A, Yan X, Wang H, Crawford JD. Multiunit Frontal Eye Field Activity Codes the Visuomotor Transformation, But Not Gaze Prediction or Retrospective Target Memory, in a Delayed Saccade Task. eNeuro 2024; 11:ENEURO.0413-23.2024. [PMID: 39054056 PMCID: PMC11373882 DOI: 10.1523/eneuro.0413-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Single-unit (SU) activity-action potentials isolated from one neuron-has traditionally been employed to relate neuronal activity to behavior. However, recent investigations have shown that multiunit (MU) activity-ensemble neural activity recorded within the vicinity of one microelectrode-may also contain accurate estimations of task-related neural population dynamics. Here, using an established model-fitting approach, we compared the spatial codes of SU response fields with corresponding MU response fields recorded from the frontal eye fields (FEFs) in head-unrestrained monkeys (Macaca mulatta) during a memory-guided saccade task. Overall, both SU and MU populations showed a simple visuomotor transformation: the visual response coded target-in-eye coordinates, transitioning progressively during the delay toward a future gaze-in-eye code in the saccade motor response. However, the SU population showed additional secondary codes, including a predictive gaze code in the visual response and retention of a target code in the motor response. Further, when SUs were separated into regular/fast spiking neurons, these cell types showed different spatial code progressions during the late delay period, only converging toward gaze coding during the final saccade motor response. Finally, reconstructing MU populations (by summing SU data within the same sites) failed to replicate either the SU or MU pattern. These results confirm the theoretical and practical potential of MU activity recordings as a biomarker for fundamental sensorimotor transformations (e.g., target-to-gaze coding in the oculomotor system), while also highlighting the importance of SU activity for coding more subtle (e.g., predictive/memory) aspects of sensorimotor behavior.
Collapse
Affiliation(s)
- Serah Seo
- Centre for Vision Research and Centre for Integrative and Applied Neuroscience, York University, Toronto, Ontario M3J 1P3, Canada
| | - Vishal Bharmauria
- Centre for Vision Research and Centre for Integrative and Applied Neuroscience, York University, Toronto, Ontario M3J 1P3, Canada
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida 33606
| | - Adrian Schütz
- Department of Neurophysics, Philipps-Universität Marburg, 35032 Marburg, Germany
- Center for Mind, Brain, and Behavior - CMBB, Philipps-Universität Marburg, 35032 Marburg, and Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Xiaogang Yan
- Centre for Vision Research and Centre for Integrative and Applied Neuroscience, York University, Toronto, Ontario M3J 1P3, Canada
| | - Hongying Wang
- Centre for Vision Research and Centre for Integrative and Applied Neuroscience, York University, Toronto, Ontario M3J 1P3, Canada
| | - J Douglas Crawford
- Centre for Vision Research and Centre for Integrative and Applied Neuroscience, York University, Toronto, Ontario M3J 1P3, Canada
- Departments of Psychology, Biology, Kinesiology & Health Sciences, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
3
|
Musa L, Yan X, Crawford JD. Instruction alters the influence of allocentric landmarks in a reach task. J Vis 2024; 24:17. [PMID: 39073800 PMCID: PMC11290568 DOI: 10.1167/jov.24.7.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/06/2024] [Indexed: 07/30/2024] Open
Abstract
Allocentric landmarks have an implicit influence on aiming movements, but it is not clear how an explicit instruction (to aim relative to a landmark) influences reach accuracy and precision. Here, 12 participants performed a task with two instruction conditions (egocentric vs. allocentric) but with similar sensory and motor conditions. Participants fixated gaze near the center of a display aligned with their right shoulder while a target stimulus briefly appeared alongside a visual landmark in one visual field. After a brief mask/memory delay the landmark then reappeared at a different location (same or opposite visual field), creating an ego/allocentric conflict. In the egocentric condition, participants were instructed to ignore the landmark and point toward the remembered location of the target. In the allocentric condition, participants were instructed to remember the initial target location relative to the landmark and then reach relative to the shifted landmark (same or opposite visual field). To equalize motor execution between tasks, participants were instructed to anti-point (point to the visual field opposite to the remembered target) on 50% of the egocentric trials. Participants were more accurate and precise and quicker to react in the allocentric condition, especially when pointing to the opposite field. We also observed a visual field effect, where performance was worse overall in the right visual field. These results suggest that, when egocentric and allocentric cues conflict, explicit use of the visual landmark provides better reach performance than reliance on noisy egocentric signals. Such instructions might aid rehabilitation when the egocentric system is compromised by disease or injury.
Collapse
Affiliation(s)
- Lina Musa
- Centre for Vision Research and Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, Canada
- Department of Psychology, York University, Toronto, ON, Canada
| | - Xiaogang Yan
- Centre for Vision Research and Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, Canada
| | - J Douglas Crawford
- Centre for Vision Research and Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, Canada
- Department of Psychology, York University, Toronto, ON, Canada
- Departments of Biology and Kinesiology & Health Sciences, York University, Toronto, ON, Canada
| |
Collapse
|
4
|
Schütz A, Bharmauria V, Yan X, Wang H, Bremmer F, Crawford JD. Integration of landmark and saccade target signals in macaque frontal cortex visual responses. Commun Biol 2023; 6:938. [PMID: 37704829 PMCID: PMC10499799 DOI: 10.1038/s42003-023-05291-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/26/2023] [Indexed: 09/15/2023] Open
Abstract
Visual landmarks influence spatial cognition and behavior, but their influence on visual codes for action is poorly understood. Here, we test landmark influence on the visual response to saccade targets recorded from 312 frontal and 256 supplementary eye field neurons in rhesus macaques. Visual response fields are characterized by recording neural responses to various target-landmark combinations, and then we test against several candidate spatial models. Overall, frontal/supplementary eye fields response fields preferentially code either saccade targets (40%/40%) or landmarks (30%/4.5%) in gaze fixation-centered coordinates, but most cells show multiplexed target-landmark coding within intermediate reference frames (between fixation-centered and landmark-centered). Further, these coding schemes interact: neurons with near-equal target and landmark coding show the biggest shift from fixation-centered toward landmark-centered target coding. These data show that landmark information is preserved and influences target coding in prefrontal visual responses, likely to stabilize movement goals in the presence of noisy egocentric signals.
Collapse
Affiliation(s)
- Adrian Schütz
- Department of Neurophysics, Phillips Universität Marburg, Marburg, Germany
- Center for Mind, Brain, and Behavior - CMBB, Philipps-Universität Marburg, Marburg, Germany & Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Vishal Bharmauria
- York Centre for Vision Research and Vision: Science to Applications Program, York University, Toronto, Canada
| | - Xiaogang Yan
- York Centre for Vision Research and Vision: Science to Applications Program, York University, Toronto, Canada
| | - Hongying Wang
- York Centre for Vision Research and Vision: Science to Applications Program, York University, Toronto, Canada
| | - Frank Bremmer
- Department of Neurophysics, Phillips Universität Marburg, Marburg, Germany
- Center for Mind, Brain, and Behavior - CMBB, Philipps-Universität Marburg, Marburg, Germany & Justus-Liebig-Universität Giessen, Giessen, Germany
| | - J Douglas Crawford
- York Centre for Vision Research and Vision: Science to Applications Program, York University, Toronto, Canada.
- Departments of Psychology, Biology, Kinesiology & Health Sciences, York University, Toronto, Canada.
| |
Collapse
|
5
|
Abedi Khoozani P, Bharmauria V, Schütz A, Wildes RP, Crawford JD. Integration of allocentric and egocentric visual information in a convolutional/multilayer perceptron network model of goal-directed gaze shifts. Cereb Cortex Commun 2022; 3:tgac026. [PMID: 35909704 PMCID: PMC9334293 DOI: 10.1093/texcom/tgac026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Allocentric (landmark-centered) and egocentric (eye-centered) visual codes are fundamental for spatial cognition, navigation, and goal-directed movement. Neuroimaging and neurophysiology suggest these codes are initially segregated, but then reintegrated in frontal cortex for movement control. We created and validated a theoretical framework for this process using physiologically constrained inputs and outputs. To implement a general framework, we integrated a convolutional neural network (CNN) of the visual system with a multilayer perceptron (MLP) model of the sensorimotor transformation. The network was trained on a task where a landmark shifted relative to the saccade target. These visual parameters were input to the CNN, the CNN output and initial gaze position to the MLP, and a decoder transformed MLP output into saccade vectors. Decoded saccade output replicated idealized training sets with various allocentric weightings and actual monkey data where the landmark shift had a partial influence (R2 = 0.8). Furthermore, MLP output units accurately simulated prefrontal response field shifts recorded from monkeys during the same paradigm. In summary, our model replicated both the general properties of the visuomotor transformations for gaze and specific experimental results obtained during allocentric–egocentric integration, suggesting it can provide a general framework for understanding these and other complex visuomotor behaviors.
Collapse
Affiliation(s)
- Parisa Abedi Khoozani
- Centre for Vision Research and Vision: Science to Applications (VISTA) Program , York University, Toronto, Ontario M3J 1P3 , Canada
| | - Vishal Bharmauria
- Centre for Vision Research and Vision: Science to Applications (VISTA) Program , York University, Toronto, Ontario M3J 1P3 , Canada
| | - Adrian Schütz
- Department of Neurophysics Phillips-University Marburg , Marburg 35037 , Germany
| | - Richard P Wildes
- Centre for Vision Research and Vision: Science to Applications (VISTA) Program , York University, Toronto, Ontario M3J 1P3 , Canada
- Department of Electrical Engineering and Computer Science , York University, Toronto, ON M3J 1P3 , Canada
| | - J Douglas Crawford
- Centre for Vision Research and Vision: Science to Applications (VISTA) Program , York University, Toronto, Ontario M3J 1P3 , Canada
- Departments of Psychology, Biology and Kinesiology & Health Sciences, York University , Toronto, Ontario M3J 1P3 , Canada
| |
Collapse
|