1
|
Pintwala SK, Peever J. Brain Circuits Underlying Narcolepsy. Neuroscientist 2023; 29:751-766. [PMID: 34704497 DOI: 10.1177/10738584211052263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Narcolepsy is a sleep disorder manifesting symptoms such as excessive daytime sleepiness and often cataplexy, a sudden and involuntary loss of muscle activity during wakefulness. The underlying neuropathological basis of narcolepsy is the loss of orexin neurons from the lateral hypothalamus. To date numerous animal models of narcolepsy have been produced in the laboratory, being invaluable tools for delineating the brain circuits of narcolepsy. This review will examine the evidence regarding the function of the orexin system, and how loss of this wake-promoting system manifests in excessive daytime sleepiness. This review will also outline the brain circuits controlling cataplexy, focusing on the contribution of orexin signaling loss in narcolepsy. Although our understanding of the brain circuits of narcolepsy has made great progress in recent years, much remains to be understood.
Collapse
Affiliation(s)
| | - John Peever
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Vetrivelan R, Bandaru SS. Neural Control of REM Sleep and Motor Atonia: Current Perspectives. Curr Neurol Neurosci Rep 2023; 23:907-923. [PMID: 38060134 DOI: 10.1007/s11910-023-01322-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE OF REVIEW Since the formal discovery of rapid eye movement (REM) sleep in 1953, we have gained a vast amount of knowledge regarding the specific populations of neurons, their connections, and synaptic mechanisms regulating this stage of sleep and its accompanying features. This article discusses REM sleep circuits and their dysfunction, specifically emphasizing recent studies using conditional genetic tools. RECENT FINDINGS Sublaterodorsal nucleus (SLD) in the dorsolateral pons, especially the glutamatergic subpopulation in this region (SLDGlut), are shown to be indispensable for REM sleep. These neurons appear to be single REM generators in the rodent brain and may initiate and orchestrate all REM sleep events, including cortical and hippocampal activation and muscle atonia through distinct pathways. However, several cell groups in the brainstem and hypothalamus may influence SLDGlut neuron activity, thereby modulating REM sleep timing, amounts, and architecture. Damage to SLDGlut neurons or their projections involved in muscle atonia leads to REM behavior disorder, whereas the abnormal activation of this pathway during wakefulness may underlie cataplexy in narcolepsy. Despite some opposing views, it has become evident that SLDGlut neurons are the sole generators of REM sleep and its associated characteristics. Further research should prioritize a deeper understanding of their cellular, synaptic, and molecular properties, as well as the mechanisms that trigger their activation during cataplexy and make them susceptible in RBD.
Collapse
Affiliation(s)
- Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA.
| | - Sathyajit Sai Bandaru
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| |
Collapse
|
3
|
Parrino L, Halasz P, Szucs A, Thomas RJ, Azzi N, Rausa F, Pizzarotti S, Zilioli A, Misirocchi F, Mutti C. Sleep medicine: Practice, challenges and new frontiers. Front Neurol 2022; 13:966659. [PMID: 36313516 PMCID: PMC9616008 DOI: 10.3389/fneur.2022.966659] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Sleep medicine is an ambitious cross-disciplinary challenge, requiring the mutual integration between complementary specialists in order to build a solid framework. Although knowledge in the sleep field is growing impressively thanks to technical and brain imaging support and through detailed clinic-epidemiologic observations, several topics are still dominated by outdated paradigms. In this review we explore the main novelties and gaps in the field of sleep medicine, assess the commonest sleep disturbances, provide advices for routine clinical practice and offer alternative insights and perspectives on the future of sleep research.
Collapse
Affiliation(s)
- Liborio Parrino
- Department of General and Specialized Medicine, Sleep Disorders Center, University Hospital of Parma, Parma, Italy
- *Correspondence: Liborio Parrino
| | - Peter Halasz
- Szentagothai János School of Ph.D Studies, Clinical Neurosciences, Semmelweis University, Budapest, Hungary
| | - Anna Szucs
- Department of Behavioral Sciences, National Institute of Clinical Neurosciences, Semmelweis University, Budapest, Hungary
| | - Robert J. Thomas
- Division of Pulmonary, Critical Care and Sleep, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Nicoletta Azzi
- Department of General and Specialized Medicine, Sleep Disorders Center, University Hospital of Parma, Parma, Italy
| | - Francesco Rausa
- Department of General and Specialized Medicine, Sleep Disorders Center, University Hospital of Parma, Parma, Italy
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Parma, Italy
| | - Silvia Pizzarotti
- Department of General and Specialized Medicine, Sleep Disorders Center, University Hospital of Parma, Parma, Italy
| | - Alessandro Zilioli
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Parma, Italy
| | - Francesco Misirocchi
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Parma, Italy
| | - Carlotta Mutti
- Department of General and Specialized Medicine, Sleep Disorders Center, University Hospital of Parma, Parma, Italy
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Parma, Italy
| |
Collapse
|
4
|
Shi XB, Wang J, Li FT, Zhang YB, Qu WM, Dai CF, Huang ZL. Whole-brain monosynaptic outputs and presynaptic inputs of GABAergic neurons in the vestibular nuclei complex of mice. Front Neurosci 2022; 16:982596. [PMID: 36090271 PMCID: PMC9459096 DOI: 10.3389/fnins.2022.982596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
GABAergic neurons in the vestibular nuclei (VN) participate in multiple vital vestibular sensory processing allowing for the maintenance and rehabilitation of vestibular functions. However, although the important role of GABA in the central vestibular system has been widely reported, the underlying neural circuits between VN GABAergic neurons and other brain functional regions remain elusive, which limits the further study of the underlying mechanism. Hence, it is necessary to elucidate neural connectivity based on outputs and inputs of GABAergic neurons in the VN. This study employed a modified rabies virus retrograde tracing vector and cre-dependent adeno-associated viruses (AAVs) anterograde tracing vector, combined with a transgenic VGAT-IRES-Cre mice, to map the inputs and outputs of VN GABAergic neurons in the whole brain. We found that 51 discrete brain regions received projections from VN GABAergic neurons in the whole brain, and there were 77 upstream nuclei innervating GABAergic neurons in the VN. These nuclei were mainly located in four brain regions, including the medulla, pons, midbrain, and cerebellum. Among them, VN GABAergic neurons established neural circuits with some functional nuclei in the whole brain, especially regulating balance maintenance, emotion control, pain processing, sleep and circadian rhythm regulation, and fluid homeostasis. Therefore, this study deepens a comprehensive understanding of the whole-brain neural connectivity of VN, providing the neuroanatomical information for further research on the neural mechanism of the co-morbidities with vestibular dysfunction.
Collapse
Affiliation(s)
- Xun-Bei Shi
- Department of Otology and Skull Base Surgery, Eye and Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye and Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Jing Wang
- Department of Otology and Skull Base Surgery, Eye and Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye and Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Fei-Tian Li
- Department of Otology and Skull Base Surgery, Eye and Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye and Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Yi-Bo Zhang
- Department of Otology and Skull Base Surgery, Eye and Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye and Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Wei-Min Qu
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Chun-Fu Dai
- Department of Otology and Skull Base Surgery, Eye and Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye and Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Chun-Fu Dai
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
- *Correspondence: Zhi-Li Huang
| |
Collapse
|
5
|
Stucynski JA, Schott AL, Baik J, Chung S, Weber F. Regulation of REM sleep by inhibitory neurons in the dorsomedial medulla. Curr Biol 2022; 32:37-50.e6. [PMID: 34735794 PMCID: PMC8752505 DOI: 10.1016/j.cub.2021.10.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/20/2021] [Accepted: 10/12/2021] [Indexed: 01/12/2023]
Abstract
The two major stages of mammalian sleep-rapid eye movement sleep (REMs) and non-REM sleep (NREMs)-are characterized by distinct brain rhythms ranging from millisecond to minute-long (infraslow) oscillations. The mechanisms controlling transitions between sleep stages and how they are synchronized with infraslow rhythms remain poorly understood. Using opto- and chemogenetic manipulation in mice, we show that GABAergic neurons in the dorsomedial medulla (dmM) promote the initiation and maintenance of REMs, in part through their projections to the dorsal and median raphe nuclei. Fiber photometry revealed that their activity is strongly increased during REMs and fluctuates during NREMs in close synchrony with infraslow oscillations in the sleep spindle band of the electroencephalogram. The phase of this rhythm influenced the latency and probability with which dmM activation induced REMs. Thus, dmM inhibitory neurons strongly promote REMs, and their slow activity fluctuations may coordinate the timing of REMs episodes with infraslow brain rhythms.
Collapse
Affiliation(s)
- Joseph A Stucynski
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Amanda L Schott
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Justin Baik
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Shinjae Chung
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Franz Weber
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Peinkhofer C, Martial C, Cassol H, Laureys S, Kondziella D. The evolutionary origin of near-death experiences: a systematic investigation. Brain Commun 2021; 3:fcab132. [PMID: 34240053 PMCID: PMC8260963 DOI: 10.1093/braincomms/fcab132] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/18/2021] [Accepted: 05/05/2021] [Indexed: 11/28/2022] Open
Abstract
Near-death experiences are known from all parts of the world, various times and
numerous cultural backgrounds. This universality suggests that near-death
experiences may have a biological origin and purpose. Adhering to a
preregistered protocol, we investigate the hypothesis that thanatosis, aka
death-feigning, a last-resort defense mechanism in animals, is the evolutionary
origin of near-death experiences. We first show that thanatosis is a highly
preserved survival strategy occurring at all major nodes in a cladogram ranging
from insects to humans. We then show that humans under attack by animal, human
and ‘modern’ predators can experience both thanatosis and
near-death experiences, and we further show that the phenomenology and the
effects of the two overlap. In summary, we build a line of evidence suggesting
that thanatosis is the evolutionary foundation of near-death experiences and
that their shared biological purpose is the benefit of survival. We propose that
the acquisition of language enabled humans to transform these events from
relatively stereotyped death-feigning under predatory attacks into the rich
perceptions that form near-death experiences and extend to non-predatory
situations.
Collapse
Affiliation(s)
- Costanza Peinkhofer
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen 2100, Denmark
| | - Charlotte Martial
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège 4000, Belgium
| | - Helena Cassol
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège 4000, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège 4000, Belgium
| | - Daniel Kondziella
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen 2100, Denmark
| |
Collapse
|