1
|
Jaber Y, Sarusi-Portuguez A, Netanely Y, Naamneh R, Yacoub S, Saar O, Darawshi N, Eli-Berchoer L, Shapiro H, Elinav E, Wilensky A, Hovav AH. Gingival spatial analysis reveals geographic immunological variation in a microbiota-dependent and -independent manner. NPJ Biofilms Microbiomes 2024; 10:142. [PMID: 39627243 PMCID: PMC11615284 DOI: 10.1038/s41522-024-00625-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
In mucosal barriers, tissue cells and leukocytes collaborate to form specialized niches that support host-microbiome symbiosis. Understanding the spatial organization of these barriers is crucial for elucidating the mechanisms underlying health and disease. The gingiva, a unique mucosal barrier with significant health implications, exhibits intricate tissue architecture and likely contains specialized immunological regions. Through spatial transcriptomic analysis, this study reveals distinct immunological characteristics between the buccal and palate regions of the murine gingiva, impacting natural alveolar bone loss. The microbiota primarily affects gingival immunity in the buccal region. Additionally, a significant influence of the microbiota on the junctional epithelium facing the oral biofilm offers new insights into neutrophil recruitment. The microbiota also regulates the proliferation and barrier-sealing function of the gingival epithelium. This underscores the presence of immunological niches in the gingiva, with the microbiota differentially influencing them, highlighting the high complexity of this oral mucosal barrier.
Collapse
Affiliation(s)
- Yasmin Jaber
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | | | - Yasmin Netanely
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Reem Naamneh
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Shahd Yacoub
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Or Saar
- Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel; Department of Periodontology, Hadassah Medical Center, Jerusalem, Israel
| | - Nadeem Darawshi
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Luba Eli-Berchoer
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Hagit Shapiro
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Elinav
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
- Microbiome & Cancer Division, DKFZ, Heidelberg, Germany
| | - Asaf Wilensky
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Avi-Hai Hovav
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel.
| |
Collapse
|
2
|
Reisert J, Pifferi S, Guarneri G, Ricci C, Menini A, Dibattista M. The Ca 2+-activated Cl - channel TMEM16B shapes the response time course of olfactory sensory neurons. J Physiol 2024; 602:4889-4905. [PMID: 39167717 PMCID: PMC11466690 DOI: 10.1113/jp286959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Mammalian olfactory sensory neurons (OSNs) generate an odorant-induced response by sequentially activating two ion channels, which are in their ciliary membranes. First, a cationic, Ca2+-permeable cyclic nucleotide-gated channel is opened following odorant stimulation via a G protein-coupled transduction cascade and an ensuing rise in cAMP. Second, the increase in ciliary Ca2+ opens the excitatory Ca2+-activated Cl- channel TMEM16B, which carries most of the odorant-induced receptor current. While the role of TMEM16B in amplifying the response has been well established, it is less understood how this secondary ion channel contributes to response kinetics and action potential generation during single as well as repeated stimulation and, on the other hand, which response properties the cyclic nucleotide-gated (CNG) channel determines. We first demonstrate that basic membrane properties such as input resistance, resting potential and voltage-gated currents remained unchanged in OSNs that lack TMEM16B. The CNG channel predominantly determines the response delay and adaptation during odorant exposure, while the absence of the Cl- channels shortens both the time the response requires to reach its maximum and the time to terminate after odorant stimulation. This faster response termination in Tmem16b knockout OSNs allows them, somewhat counterintuitively despite the large reduction in receptor current, to fire action potentials more reliably when stimulated repeatedly in rapid succession, a phenomenon that occurs both in isolated OSNs and in OSNs within epithelial slices. Thus, while the two olfactory ion channels act in concert to generate the overall response, each one controls specific aspects of the odorant-induced response. KEY POINTS: Mammalian olfactory sensory neurons (OSNs) generate odorant-induced responses by activating two ion channels sequentially in their ciliary membranes: a Na+, Ca2⁺-permeable cyclic nucleotide-gated (CNG) channel and the Ca2⁺-activated Cl⁻ channel TMEM16B. The CNG channel controls response delay and adaptation during odorant exposure, while TMEM16B amplifies the response and influences the time required for the response to reach its peak and terminate. OSNs lacking TMEM16B display faster response termination, allowing them to fire action potentials more reliably during rapid repeated stimulation. The CNG and TMEM16B channels have distinct and complementary roles in shaping the kinetics and reliability of odorant-induced responses in OSNs.
Collapse
Affiliation(s)
| | - Simone Pifferi
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Giorgia Guarneri
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Chiara Ricci
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Anna Menini
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Michele Dibattista
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
3
|
Bhat S, Dietz A, Senf K, Nietzsche S, Hirabayashi Y, Westermann M, Neuhaus EM. GPRC5C regulates the composition of cilia in the olfactory system. BMC Biol 2023; 21:292. [PMID: 38110903 PMCID: PMC10729543 DOI: 10.1186/s12915-023-01790-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Olfactory sensory neurons detect odourants via multiple long cilia that protrude from their dendritic endings. The G protein-coupled receptor GPRC5C was identified as part of the olfactory ciliary membrane proteome, but its function and localization is unknown. RESULTS High-resolution confocal and electron microscopy revealed that GPRC5C is located at the base of sensory cilia in olfactory neurons, but not in primary cilia of immature neurons or stem cells. Additionally, GPRC5C localization in sensory cilia parallels cilia formation and follows the formation of the basal body. In closer examination, GPRC5C was found in the ciliary transition zone. GPRC5C deficiency altered the structure of sensory cilia and increased ciliary layer thickness. However, primary cilia were unaffected. Olfactory sensory neurons from Gprc5c-deficient mice exhibited altered localization of olfactory signalling cascade proteins, and of ciliary phosphatidylinositol-4,5-bisphosphat. Sensory neurons also exhibited increased neuronal activity as well as altered mitochondrial morphology, and knockout mice had an improved ability to detect food pellets based on smell. CONCLUSIONS Our study shows that GPRC5C regulates olfactory cilia composition and length, thereby controlling odour perception.
Collapse
Affiliation(s)
- Sneha Bhat
- Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, 07747, Jena, Germany
| | - André Dietz
- Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, 07747, Jena, Germany
| | - Katja Senf
- Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, 07747, Jena, Germany
| | - Sandor Nietzsche
- Centre for Electron Microscopy, Jena University Hospital, Friedrich Schiller University Jena, Ziegelmühlenweg 1, 07743, Jena, Germany
| | - Yoshio Hirabayashi
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, 279-0021, Japan
- RIKEN Cluster for Pioneering Research, RIKEN, Wako, Saitama, 351-0198, Japan
| | - Martin Westermann
- Centre for Electron Microscopy, Jena University Hospital, Friedrich Schiller University Jena, Ziegelmühlenweg 1, 07743, Jena, Germany
| | - Eva Maria Neuhaus
- Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, 07747, Jena, Germany.
| |
Collapse
|
4
|
Hernandez-Clavijo A, Sánchez Triviño CA, Guarneri G, Ricci C, Mantilla-Esparza FA, Gonzalez-Velandia KY, Boscolo-Rizzo P, Tofanelli M, Bonini P, Dibattista M, Tirelli G, Menini A. Shedding light on human olfaction: Electrophysiological recordings from sensory neurons in acute slices of olfactory epithelium. iScience 2023; 26:107186. [PMID: 37456832 PMCID: PMC10345129 DOI: 10.1016/j.isci.2023.107186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/19/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
The COVID-19 pandemic brought attention to our limited understanding of human olfactory physiology. While the cellular composition of the human olfactory epithelium is similar to that of other vertebrates, its functional properties are largely unknown. We prepared acute slices of human olfactory epithelium from nasal biopsies and used the whole-cell patch-clamp technique to record electrical properties of cells. We measured voltage-gated currents in human olfactory sensory neurons and supporting cells, and action potentials in neurons. Additionally, neuronal inward current and action potentials responses to a phosphodiesterase inhibitor suggested a transduction cascade involving cAMP as a second messenger. Furthermore, responses to odorant mixtures demonstrated that the transduction cascade was intact in this preparation. This study provides the first electrophysiological characterization of olfactory sensory neurons in acute slices of the human olfactory epithelium, paving the way for future research to expand our knowledge of human olfactory physiology.
Collapse
Affiliation(s)
- Andres Hernandez-Clavijo
- Neuroscience Area, SISSA, Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
| | | | - Giorgia Guarneri
- Neuroscience Area, SISSA, Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
| | - Chiara Ricci
- Neuroscience Area, SISSA, Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
| | | | | | - Paolo Boscolo-Rizzo
- Department of Medical, Surgical and Health Sciences, Section of Otolaryngology, University of Trieste, 34149 Trieste, Italy
| | - Margherita Tofanelli
- Department of Medical, Surgical and Health Sciences, Section of Otolaryngology, University of Trieste, 34149 Trieste, Italy
| | - Pierluigi Bonini
- Department of Medical, Surgical and Health Sciences, Section of Otolaryngology, University of Trieste, 34149 Trieste, Italy
| | - Michele Dibattista
- Department of Translational Biomedicine and Neuroscience, University of Bari A. Moro, 70121 Bari, Italy
| | - Giancarlo Tirelli
- Department of Medical, Surgical and Health Sciences, Section of Otolaryngology, University of Trieste, 34149 Trieste, Italy
| | - Anna Menini
- Neuroscience Area, SISSA, Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
| |
Collapse
|
5
|
Liang X, Taylor M, Napier-Jameson R, Calovich-Benne C, Norris A. A Conserved Role for Stomatin Domain Genes in Olfactory Behavior. eNeuro 2023; 10:ENEURO.0457-22.2023. [PMID: 36858824 PMCID: PMC10035767 DOI: 10.1523/eneuro.0457-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
The highly-conserved stomatin domain has been identified in genes throughout all classes of life. In animals, different stomatin domain-encoding genes have been implicated in the function of the kidney, red blood cells, and specific neuron types, although the underlying mechanisms remain unresolved. In one well-studied example of stomatin domain gene function, the Caenorhabditis elegans gene mec-2 and its mouse homolog Stoml3 are required for the function of mechanosensory neurons, where they modulate the activity of mechanosensory ion channels on the plasma membrane. Here, we identify an additional shared function for mec-2 and Stoml3 in a very different sensory context, that of olfaction. In worms, we find that a subset of stomatin domain genes are expressed in olfactory neurons, but only mec-2 is strongly required for olfactory behavior. mec-2 acts cell-autonomously and multiple alternatively-spliced isoforms of mec-2 can be substituted for each other. We generate a Stoml3 knock-out (KO) mouse and demonstrate that, like its worm homolog mec-2, it is required for olfactory behavior. In mice, Stoml3 is not required for odor detection, but is required for odor discrimination. Therefore, in addition to their shared roles in mechanosensory behavior, mec-2 and Stoml3 also have a shared role in olfactory behavior.
Collapse
Affiliation(s)
- Xiaoyu Liang
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275
| | - Morgan Taylor
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275
| | | | - Canyon Calovich-Benne
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275
| | - Adam Norris
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275
| |
Collapse
|
6
|
Gavid M, Coulomb L, Thomas J, Aouimeur I, Verhoeven P, Mentek M, Dumollard JM, Forest F, Prades JM, Thuret G, Gain P, He Z. Technique of flat-mount immunostaining for mapping the olfactory epithelium and counting the olfactory sensory neurons. PLoS One 2023; 18:e0280497. [PMID: 36649285 PMCID: PMC9844923 DOI: 10.1371/journal.pone.0280497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
The pathophysiology underlying olfactory dysfunction is still poorly understood, and more efficient biomolecular tools are necessary to explore this aspect. Immunohistochemistry (IHC) on cross sections is one of the major tools to study the olfactory epithelium (OE), but does not allow reliable counting of olfactory sensory neurons (OSNs) or cartography of the OE. In this study, we want to present an easy immunostaining technique to compensate for these defects of IHC. Using the rat model, we first validated and pre-screened the key OSN markers by IHC on cross sections of the OE. Tuj-1, OMP, DCX, PGP9.5, and N-cadherin were selected for immunostaining on flat-mounted OE because of their staining of OSN dendrites. A simple technique for immunostaining on flat-mounted septal OE was developed: fixation of the isolated septum mucosa in 0.5% paraformaldehyde (PFA) preceded by pretreatment of the rat head in 1% PFA for 1 hour. This technique allowed us to correctly reveal the olfactory areas using all the 5 selected markers on septum mucosa. By combining the mature OSN marker (OMP) and an immature OSN marker (Tuj-1), we quantified the mature (OMP+, Tuj-1-), immature (OMP-, Tuj-1+), transitory (OMP+, Tuj-1+) and total OSN density on septal OE. They were respectively 42080 ± 11820, 49384 ± 7134, 14448 ± 5865 and 105912 ± 13899 cells per mm2 (mean ± SD). Finally, the same immunostaining technique described above was performed with Tuj-1 for OE cartography on ethmoid turbinates without flat-mount.
Collapse
Affiliation(s)
- Marie Gavid
- Laboratory BIIO (EA2521), Jean Monnet University, Saint-Etienne, France
- Department of Otorhinolaryngology, CHU of Saint-Etienne, Saint-Etienne, France
| | - Louise Coulomb
- Laboratory BIIO (EA2521), Jean Monnet University, Saint-Etienne, France
| | - Justin Thomas
- Laboratory BIIO (EA2521), Jean Monnet University, Saint-Etienne, France
| | - Inès Aouimeur
- Laboratory BIIO (EA2521), Jean Monnet University, Saint-Etienne, France
| | - Paul Verhoeven
- CIRI, GIMAP Team, INSERM U1111, CNRS UMR5308, University of Lyon, University of Saint-Etienne, Saint-Etienne, France
| | - Marielle Mentek
- Laboratory BIIO (EA2521), Jean Monnet University, Saint-Etienne, France
| | - Jean-Marc Dumollard
- Laboratory BIIO (EA2521), Jean Monnet University, Saint-Etienne, France
- Department of Pathology, CHU of Saint-Etienne, Saint-Etienne, France
| | - Fabien Forest
- Laboratory BIIO (EA2521), Jean Monnet University, Saint-Etienne, France
- Department of Pathology, CHU of Saint-Etienne, Saint-Etienne, France
| | - Jean-Michel Prades
- Department of Otorhinolaryngology, CHU of Saint-Etienne, Saint-Etienne, France
| | - Gilles Thuret
- Laboratory BIIO (EA2521), Jean Monnet University, Saint-Etienne, France
| | - Philippe Gain
- Laboratory BIIO (EA2521), Jean Monnet University, Saint-Etienne, France
| | - Zhiguo He
- Laboratory BIIO (EA2521), Jean Monnet University, Saint-Etienne, France
- * E-mail:
| |
Collapse
|
7
|
Expression pattern of Stomatin-domain proteins in the peripheral olfactory system. Sci Rep 2022; 12:11447. [PMID: 35794236 PMCID: PMC9259621 DOI: 10.1038/s41598-022-15572-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
Recent data show that Stomatin-like protein 3 (STOML3), a member of the stomatin-domain family, is expressed in the olfactory sensory neurons (OSNs) where it modulates both spontaneous and evoked action potential firing. The protein family is constituted by other 4 members (besides STOML3): STOM, STOML1, STOML2 and podocin. Interestingly, STOML3 with STOM and STOML1 are expressed in other peripheral sensory neurons: dorsal root ganglia. In here, they functionally interact and modulate the activity of the mechanosensitive Piezo channels and members of the ASIC family. Therefore, we investigated whether STOM and STOML1 are expressed together with STOML3 in the OSNs and whether they could interact. We found that all three are indeed expressed in ONSs, although STOML1 at very low level. STOM and STOML3 share a similar expression pattern and STOML3 is necessary for STOM to properly localize to OSN cilia. In addition, we extended our investigation to podocin and STOML2, and while the former is not expressed in the olfactory system, the latter showed a peculiar expression pattern in multiple cell types. In summary, we provided a first complete description of stomatin-domain protein family in the olfactory system, highlighting the precise compartmentalization, possible interactions and, finally, their functional implications.
Collapse
|