1
|
Esmaealzadeh N, Miri MS, Mavaddat H, Peyrovinasab A, Ghasemi Zargar S, Sirous Kabiri S, Razavi SM, Abdolghaffari AH. The regulating effect of curcumin on NF-κB pathway in neurodegenerative diseases: a review of the underlying mechanisms. Inflammopharmacology 2024; 32:2125-2151. [PMID: 38769198 DOI: 10.1007/s10787-024-01492-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Neurodegenerative diseases are part of the central nervous system (CNS) disorders that indicate their presence with neuronal loss, neuroinflammation, and increased oxidative stress. Several pathophysiological factors and biomarkers are involved in this inflammatory process causing these neurological disorders. The nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is an inflammation element, which induced transcription and appears to be one of the important players in physiological procedures, especially nervous disorders. NF-κB can impact upon series of intracellular actions and induce or inhibit many inflammation-related pathways. Multiple reports have focused on the modification of NF-κB activity, controlling its expression, translocation, and signaling pathway in neurodegenerative disorders and injuries like Alzheimer's disease (AD), spinal cord injuries (SCI), and Parkinson's disease (PD). Curcumin has been noted to be a popular anti-oxidant and anti-inflammatory substance and is the foremost natural compound produced by turmeric. According to various studies, when playing an anti-inflammatory role, it interacts with several modulating proteins of long-standing disease signaling pathways and has an unprovocative consequence on pro-inflammatory cytokines. This review article determined to figure out curcumin's role in limiting the promotion of neurodegenerative disease via influencing the NF-κB signaling route. Preclinical studies were gathered from plenty of scientific platforms including PubMed, Scopus, Cochrane, and Google Scholar to evaluate this hypothesis. Extracted findings from the literature review explained the repressing impact of Curcumin on the NF-κB signaling pathway and, occasionally down-regulating the cytokine expression. Yet, there is an essential need for further analysis and specific clinical experiments to fully understand this subject.
Collapse
Affiliation(s)
- Niusha Esmaealzadeh
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Traditional Persian Medicine and Complementary Medicine (PerCoMed) Student Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahdis Sadat Miri
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., P. O. Box: 19419-33111, Tehran, Iran
| | - Helia Mavaddat
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., P. O. Box: 19419-33111, Tehran, Iran
| | - Amirreza Peyrovinasab
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., P. O. Box: 19419-33111, Tehran, Iran
| | - Sara Ghasemi Zargar
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., P. O. Box: 19419-33111, Tehran, Iran
| | - Shirin Sirous Kabiri
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., P. O. Box: 19419-33111, Tehran, Iran
| | - Seyed Mehrad Razavi
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., P. O. Box: 19419-33111, Tehran, Iran.
| | - Amir Hossein Abdolghaffari
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., P. O. Box: 19419-33111, Tehran, Iran.
| |
Collapse
|
2
|
Anilkumar S, Wright-Jin E. NF-κB as an Inducible Regulator of Inflammation in the Central Nervous System. Cells 2024; 13:485. [PMID: 38534329 PMCID: PMC10968931 DOI: 10.3390/cells13060485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/01/2024] [Accepted: 03/09/2024] [Indexed: 03/28/2024] Open
Abstract
The NF-κB (nuclear factor K-light-chain-enhancer of activated B cells) transcription factor family is critical for modulating the immune proinflammatory response throughout the body. During the resting state, inactive NF-κB is sequestered by IκB in the cytoplasm. The proteasomal degradation of IκB activates NF-κB, mediating its translocation into the nucleus to act as a nuclear transcription factor in the upregulation of proinflammatory genes. Stimuli that initiate NF-κB activation are diverse but are canonically attributed to proinflammatory cytokines and chemokines. Downstream effects of NF-κB are cell type-specific and, in the majority of cases, result in the activation of pro-inflammatory cascades. Acting as the primary immune responders of the central nervous system, microglia exhibit upregulation of NF-κB upon activation in response to pathological conditions. Under such circumstances, microglial crosstalk with other cell types in the central nervous system can induce cell death, further exacerbating the disease pathology. In this review, we will emphasize the role of NF-κB in triggering neuroinflammation mediated by microglia.
Collapse
Affiliation(s)
- Sudha Anilkumar
- Neonatal Brain Injury Laboratory, Division of Biomedical Research, Nemours Children’s Health, Wilmington, DE 19803, USA
| | - Elizabeth Wright-Jin
- Neonatal Brain Injury Laboratory, Division of Biomedical Research, Nemours Children’s Health, Wilmington, DE 19803, USA
- Division of Neurology, Department of Pediatrics, Nemours Children’s Health, Wilmington, DE 19803, USA
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
3
|
Pérez R, Burgos V, Marín V, Camins A, Olloquequi J, González-Chavarría I, Ulrich H, Wyneke U, Luarte A, Ortiz L, Paz C. Caffeic Acid Phenethyl Ester (CAPE): Biosynthesis, Derivatives and Formulations with Neuroprotective Activities. Antioxidants (Basel) 2023; 12:1500. [PMID: 37627495 PMCID: PMC10451560 DOI: 10.3390/antiox12081500] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 08/27/2023] Open
Abstract
Neurodegenerative disorders are characterized by a progressive process of degeneration and neuronal death, where oxidative stress and neuroinflammation are key factors that contribute to the progression of these diseases. Therefore, two major pathways involved in these pathologies have been proposed as relevant therapeutic targets: The nuclear transcription factor erythroid 2 (Nrf2), which responds to oxidative stress with cytoprotecting activity; and the nuclear factor NF-κB pathway, which is highly related to the neuroinflammatory process by promoting cytokine expression. Caffeic acid phenethyl ester (CAPE) is a phenylpropanoid naturally found in propolis that shows important biological activities, including neuroprotective activity by modulating the Nrf2 and NF-κB pathways, promoting antioxidant enzyme expression and inhibition of proinflammatory cytokine expression. Its simple chemical structure has inspired the synthesis of many derivatives, with aliphatic and/or aromatic moieties, some of which have improved the biological properties. Moreover, new drug delivery systems increase the bioavailability of these compounds in vivo, allowing its transcytosis through the blood-brain barrier, thus protecting brain cells from the increased inflammatory status associated to neurodegenerative and psychiatric disorders. This review summarizes the biosynthesis and chemical synthesis of CAPE derivatives, their miscellaneous activities, and relevant studies (from 2010 to 2023), addressing their neuroprotective activity in vitro and in vivo.
Collapse
Affiliation(s)
- Rebeca Pérez
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (R.P.); (V.M.)
| | - Viviana Burgos
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Rudecindo Ortega, Temuco 4780000, Chile;
| | - Víctor Marín
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (R.P.); (V.M.)
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain;
- Institut de Neurociències (UBNeuro), Universitat de Barcelona, 08028 Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Jordi Olloquequi
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain;
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Talca 3460000, Chile
| | - Iván González-Chavarría
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas Universidad de Concepción, Concepción 4030000, Chile;
| | - Henning Ulrich
- Department of Biochemistry, Instituto de Química, Universidad de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, SP, Brazil;
| | - Ursula Wyneke
- Facultad de Medicina, Universidad de Los Andes, Santiago 111711, Chile; (U.W.)
- Center of Interventional Medicine for Precision and Advanced Cellular Therapy (IMPACT), Santiago 7620001, Chile
| | - Alejandro Luarte
- Facultad de Medicina, Universidad de Los Andes, Santiago 111711, Chile; (U.W.)
- Center of Interventional Medicine for Precision and Advanced Cellular Therapy (IMPACT), Santiago 7620001, Chile
| | - Leandro Ortiz
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia 5110566, Chile;
| | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (R.P.); (V.M.)
| |
Collapse
|
4
|
Miralles MP, Sansa A, Beltran M, Soler RM, Garcera A. Survival motor neuron protein and neurite degeneration are regulated by Gemin3 in spinal muscular atrophy motoneurons. Front Cell Neurosci 2022; 16:1054270. [PMID: 36619669 PMCID: PMC9813745 DOI: 10.3389/fncel.2022.1054270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Spinal Muscular Atrophy (SMA) is a genetic neuromuscular disorder caused by reduction of the ubiquitously expressed protein Survival Motor Neuron (SMN). Low levels of SMN impact on spinal cord motoneurons (MNs) causing their degeneration and progressive muscle weakness and atrophy. To study the molecular mechanisms leading to cell loss in SMN-reduced MNs, we analyzed the NF-κB intracellular pathway in SMA models. NF-κB pathway activation is required for survival and regulates SMN levels in cultured MNs. Here we describe that NF-κB members, inhibitor of kappa B kinase beta (IKKβ), and RelA, were reduced in SMA mouse and human MNs. In addition, we observed that Gemin3 protein level was decreased in SMA MNs, but not in non-neuronal SMA cells. Gemin3 is a core member of the SMN complex responsible for small nuclear ribonucleoprotein biogenesis, and it regulates NF-κB activation through the mitogen-activated protein kinase TAK1. Our experiments showed that Gemin3 knockdown reduced SMN, IKKβ, and RelA protein levels, and caused significant neurite degeneration. Overexpression of SMN increased Gemin3 protein in SMA MNs, but did not prevent neurite degeneration in Gemin3 knockdown cells. These data indicated that Gemin3 reduction may contribute to cell degeneration in SMA MNs.
Collapse
|
5
|
Cao X, He W, Rong K, Xu S, Chen Z, Liang Y, Han S, Zhou Y, Yang X, Ma H, Qin A, Zhao J. DZNep promotes mouse bone defect healing via enhancing both osteogenesis and osteoclastogenesis. Stem Cell Res Ther 2021; 12:605. [PMID: 34930462 PMCID: PMC8686256 DOI: 10.1186/s13287-021-02670-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/29/2021] [Indexed: 11/24/2022] Open
Abstract
Background Enhancer of zeste homolog 2 (EZH2) is a novel oncogene that can specifically trimethylate the histone H3 lysine 27 (H3K27me3) to transcriptionally inhibit the expression of downstream tumor-suppressing genes. As a small molecular inhibitor of EZH2, 3-Deazaneplanocin (DZNep) has been widely studied due to the role of tumor suppression. With the roles of epigenetic regulation of bone cells emerged in past decades, the property and molecular mechanism of DZNep on enhancing osteogenesis had been reported and attracted a great deal of attention recently. This study aims to elucidate the role of DZNep on EZH2-H3K27me3 axis and downstream factors during both osteoclasts and osteoblasts formation and the therapeutic possibility of DZNep on bone defect healing. Methods Bone marrow-derived macrophages (BMMs) cells were cultured, and their responsiveness to DZNep was evaluated by cell counting kit-8, TRAP staining assay, bone resorption assay, podosome actin belt. Bone marrow-derived mesenchymal stem cells (BMSC) were cultured and their responsiveness to DZNep was evaluated by cell counting kit-8, ALP and AR staining assay. The expression of nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), Wnt signaling pathway was determined by qPCR and western blotting. Mouse bone defect models were created, rescued by DZNep injection, and the effectiveness was evaluated by X-ray and micro-CT and histological staining. Results Consistent with the previous study that DZNep enhances osteogenesis via Wnt family member 1(Wnt1), Wnt6, and Wnt10a, our results showed that DZNep also promotes osteoblasts differentiation and mineralization through the EZH2-H3K27me3-Wnt4 axis. Furthermore, we identified that DZNep promoted the receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclast formation via facilitating the phosphorylation of IKKα/β, IκB, and subsequently NF-κB nuclear translocation, which credit to the EZH2-H3K27me3-Foxc1 axis. More importantly, the enhanced osteogenesis and osteoclastogenesis result in accelerated mice bone defect healing in vivo. Conclusion DZNep targeting EZH2-H3K27me3 axis facilitated the healing of mice bone defect via simultaneously enhancing osteoclastic bone resorption and promoting osteoblastic bone formation. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02670-6.
Collapse
Affiliation(s)
- Xiankun Cao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedics Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Wenxin He
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedics Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Kewei Rong
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedics Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Shenggui Xu
- Department of Orthopaedics, Mindong Hospital Affiliated to Fujian Medical University, Fuan, 355000, Fujian Province, People's Republic of China
| | - Zhiqian Chen
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedics Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Yuwei Liang
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Shuai Han
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Collaborative Innovation Center for Biomedicine, GuangxiASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Yifan Zhou
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedics Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Xiao Yang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedics Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Hui Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedics Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, 200011, People's Republic of China.
| | - An Qin
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedics Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, 200011, People's Republic of China.
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedics Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
6
|
Sansa A, de la Fuente S, Comella JX, Garcera A, Soler RM. Intracellular pathways involved in cell survival are deregulated in mouse and human spinal muscular atrophy motoneurons. Neurobiol Dis 2021; 155:105366. [PMID: 33845129 DOI: 10.1016/j.nbd.2021.105366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/18/2021] [Accepted: 04/07/2021] [Indexed: 12/14/2022] Open
Abstract
Spinal Muscular Atrophy (SMA) is a severe neuromuscular disorder caused by loss of the Survival Motor Neuron 1 gene (SMN1). Due to this depletion of the survival motor neuron (SMN) protein, the disease is characterized by the degeneration of spinal cord motoneurons (MNs), progressive muscular atrophy, and weakness. Nevertheless, the ultimate cellular and molecular mechanisms leading to cell loss in SMN-reduced MNs are only partially known. We have investigated the activation of apoptotic and neuronal survival pathways in several models of SMA cells. Even though the antiapoptotic proteins FAIM-L and XIAP were increased in SMA MNs, the apoptosis executioner cleaved-caspase-3 was also elevated in these cells, suggesting the activation of the apoptosis process. Analysis of the survival pathway PI3K/Akt showed that Akt phosphorylation was reduced in SMA MNs and pharmacological inhibition of PI3K diminished SMN and Gemin2 at transcriptional level in control MNs. In contrast, ERK phosphorylation was increased in cultured mouse and human SMA MNs. Our observations suggest that apoptosis is activated in SMA MNs and that Akt phosphorylation reduction may control cell degeneration, thereby regulating the transcription of Smn and other genes related to SMN function.
Collapse
Affiliation(s)
- Alba Sansa
- Neuronal Signaling Unit, Experimental Medicine Department, Universitat de Lleida-IRBLleida, Rovira Roure, 80, 25198, Lleida, Spain
| | - Sandra de la Fuente
- Neuronal Signaling Unit, Experimental Medicine Department, Universitat de Lleida-IRBLleida, Rovira Roure, 80, 25198, Lleida, Spain
| | - Joan X Comella
- CIBERNED & Cell Signaling and Apoptosis Group, Vall d'Hebron Research Institute (VHIR), 08035, Barcelona, Spain
| | - Ana Garcera
- Neuronal Signaling Unit, Experimental Medicine Department, Universitat de Lleida-IRBLleida, Rovira Roure, 80, 25198, Lleida, Spain
| | - Rosa M Soler
- Neuronal Signaling Unit, Experimental Medicine Department, Universitat de Lleida-IRBLleida, Rovira Roure, 80, 25198, Lleida, Spain..
| |
Collapse
|
7
|
Menduti G, Rasà DM, Stanga S, Boido M. Drug Screening and Drug Repositioning as Promising Therapeutic Approaches for Spinal Muscular Atrophy Treatment. Front Pharmacol 2020; 11:592234. [PMID: 33281605 PMCID: PMC7689316 DOI: 10.3389/fphar.2020.592234] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy (SMA) is the most common genetic disease affecting infants and young adults. Due to mutation/deletion of the survival motor neuron (SMN) gene, SMA is characterized by the SMN protein lack, resulting in motor neuron impairment, skeletal muscle atrophy and premature death. Even if the genetic causes of SMA are well known, many aspects of its pathogenesis remain unclear and only three drugs have been recently approved by the Food and Drug Administration (Nusinersen-Spinraza; Onasemnogene abeparvovec or AVXS-101-Zolgensma; Risdiplam-Evrysdi): although assuring remarkable results, the therapies show some important limits including high costs, still unknown long-term effects, side effects and disregarding of SMN-independent targets. Therefore, the research of new therapeutic strategies is still a hot topic in the SMA field and many efforts are spent in drug discovery. In this review, we describe two promising strategies to select effective molecules: drug screening (DS) and drug repositioning (DR). By using compounds libraries of chemical/natural compounds and/or Food and Drug Administration-approved substances, DS aims at identifying new potentially effective compounds, whereas DR at testing drugs originally designed for the treatment of other pathologies. The drastic reduction in risks, costs and time expenditure assured by these strategies make them particularly interesting, especially for those diseases for which the canonical drug discovery process would be long and expensive. Interestingly, among the identified molecules by DS/DR in the context of SMA, besides the modulators of SMN2 transcription, we highlighted a convergence of some targeted molecular cascades contributing to SMA pathology, including cell death related-pathways, mitochondria and cytoskeleton dynamics, neurotransmitter and hormone modulation.
Collapse
Affiliation(s)
| | | | | | - Marina Boido
- Department of Neuroscience Rita Levi Montalcini, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| |
Collapse
|
8
|
Foster AD, Downing P, Figredo E, Polain N, Stott A, Layfield R, Rea SL. ALS-associated TBK1 variant p.G175S is defective in phosphorylation of p62 and impacts TBK1-mediated signalling and TDP-43 autophagic degradation. Mol Cell Neurosci 2020; 108:103539. [PMID: 32835772 DOI: 10.1016/j.mcn.2020.103539] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
Mutations affecting SQSTM1 coding for p62 and TANK-Binding Kinase 1 (TBK1) have been implicated in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). TBK1 is a serine-threonine kinase that regulates p62's activity as an autophagy receptor via phosphorylation and also has roles in neuroinflammatory signalling pathways. The mechanisms underlying ALS and FTLD pathogenesis as a result of TBK1 mutations are incompletely understood, however, loss of TBK1 function can lead to dysregulated autophagy and mitophagy. Here, we report that an ALS-associated TBK1 variant affecting the kinase domain, p.G175S, is defective in phosphorylation of p62 at Ser-403, a modification critical for regulating its ubiquitin-binding function, as well as downstream phosphorylation at Ser-349. Consistent with these findings, expression of p.G175S TBK1 was associated with decreased induction of autophagy compared to wild type and reduced degradation of the ALS-linked protein TDP-43. Expression of wild type TBK1 increased NF-κB signalling ~300 fold in comparison to empty vector cells, whereas p.G175S TBK1 was unable to promote NF-κB signalling above levels observed in empty vector transfected cells. We also noted a hitherto unknown role for TBK1 as a suppressor of oxidative stress (Nrf2) signalling and show that p.G175S TBK1 expressing cells lose this inhibitory function. Our data suggest that TBK1 ALS mutations may broadly impair p62-mediated cell signalling, which ultimately may reduce neuronal survival, in addition TDP-43 was not efficiently degraded, together these effects may contribute to TBK1 mutation associated ALS and FTLD pathogenesis.
Collapse
Affiliation(s)
- A D Foster
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Western Australia, Australia; Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia; Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, Western Australia, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch, WA, Australia
| | - P Downing
- School of Health Sciences, Notre Dame University, Fremantle, Western Australia, Australia
| | - E Figredo
- School of Health Sciences, Notre Dame University, Fremantle, Western Australia, Australia
| | - N Polain
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch, WA, Australia
| | - A Stott
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Western Australia, Australia; Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - R Layfield
- School of Health Sciences, Notre Dame University, Fremantle, Western Australia, Australia; School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - S L Rea
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Western Australia, Australia; Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia; Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, Western Australia, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch, WA, Australia.
| |
Collapse
|
9
|
New Treatments in Spinal Muscular Atrophy: Positive Results and New Challenges. J Clin Med 2020; 9:jcm9072222. [PMID: 32668756 PMCID: PMC7408870 DOI: 10.3390/jcm9072222] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/01/2020] [Accepted: 07/10/2020] [Indexed: 12/24/2022] Open
Abstract
Spinal muscular atrophy (SMA) is one of the most common autosomal recessive diseases with progressive weakness of skeletal and respiratory muscles, leading to significant disability. The disorder is caused by mutations in the survival motor neuron 1 (SMN1) gene and a consequent decrease in the SMN protein leading to lower motor neuron degeneration. Recently, Food and Drug Administration (FDA) and European Medical Agency (EMA) approved the antisense oligonucleotide nusinersen, the first SMA disease-modifying treatment and gene replacement therapy by onasemnogene abeparvovec. Encouraging results from phase II and III clinical trials have raised hope that other therapeutic options will enter soon in clinical practice. However, the availability of effective approaches has raised up ethical, medical and financial issues that are routinely faced by the SMA community. This review covers the available data and the new challenges of SMA therapeutic strategies.
Collapse
|
10
|
Tiong YL, Ng KY, Koh RY, Ponnudurai G, Chye SM. Melatonin Prevents Oxidative Stress-Induced Mitochondrial Dysfunction and Apoptosis in High Glucose-Treated Schwann Cells via Upregulation of Bcl2, NF-κB, mTOR, Wnt Signalling Pathways. Antioxidants (Basel) 2019; 8:antiox8070198. [PMID: 31247931 PMCID: PMC6680940 DOI: 10.3390/antiox8070198] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/07/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022] Open
Abstract
Neuropathy is a complication that affects more than 50% of long-standing diabetic patients. One of the causes of diabetes neuropathy (DN) is the apoptosis of Schwann cells due to prolonged exposure to high glucose and build-up of oxidative stress. Melatonin is a hormone that has a known antioxidant property. In this study, we investigated the protective effect of melatonin on high glucose-induced Schwann cells' apoptosis. Our results revealed that high glucose promoted apoptosis via mitochondrial-related oxidative stress and downregulated Bcl-2 family proteins in Schwann cells. In this signalling pathway, Bcl-2, Bcl-XL and Mcl-1 proteins were down-regulated while p-BAD and Puma proteins were up-regulated by high glucose treatment. Besides, we also proved that high glucose promoted apoptosis in Schwann cells through decreasing the p-NF-κB in the NF-κB signalling pathway. Key regulators of mTOR signalling pathway such as p-mTOR, Rictor and Raptor were also down-regulated after high glucose treatment. Additionally, high glucose treatment also decreased the Wnt signalling pathway downstream proteins (Wnt 5a/b, p-Lrp6 and Axin). Our results showed that melatonin treatment significantly inhibited high glucose-induced ROS generation, restored mitochondrial membrane potential and inhibited high glucose-induced apoptosis in Schwann cells. Furthermore, melatonin reversed the alterations of protein expression caused by high glucose treatment. Our results concluded that melatonin alleviates high glucose-induced apoptosis in Schwann cells through mitigating mitochondrial-related oxidative stress and the alterations of Bcl-2, NF-κB, mTOR and Wnt signalling pathways.
Collapse
Affiliation(s)
- Yee Lian Tiong
- School of Postgraduate Studies, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, Selangor 47500, Malaysia
| | - Rhun Yian Koh
- School of Health Science, International Medical University, Kuala Lumpur 57000, Malaysia
| | | | - Soi Moi Chye
- School of Health Science, International Medical University, Kuala Lumpur 57000, Malaysia.
| |
Collapse
|
11
|
Ma J, Xu R, Qi S, Wang F, Ma Y, Zhang H, Xu J, Qin X, Zhang H, Liu C, Li B, Chen J, Yang H, Saijilafu. Regulation of adult mammalian intrinsic axonal regeneration by NF‐κB/STAT3 signaling cascade. J Cell Physiol 2019; 234:22517-22528. [PMID: 31102288 DOI: 10.1002/jcp.28815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/07/2019] [Accepted: 04/11/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Jin‐Jin Ma
- Orthopaedic Institute, Medical College Soochow University Suzhou Jiangsu China
| | - Ren‐Jie Xu
- Department of Orthopaedic Surgery, The First Affiliated Hospital Soochow University Suzhou China
- Department of Orthopaedics Suzhou Municipal Hospital/The Affiliated Hospital of Nanjing Medical University Suzhou Jiangsu China
| | - Shi‐Bin Qi
- Orthopaedic Institute, Medical College Soochow University Suzhou Jiangsu China
| | - Feng Wang
- Orthopaedic Institute, Medical College Soochow University Suzhou Jiangsu China
| | - Yan‐Xia Ma
- Orthopaedic Institute, Medical College Soochow University Suzhou Jiangsu China
| | - Hong‐Cheng Zhang
- Orthopaedic Institute, Medical College Soochow University Suzhou Jiangsu China
| | - Jin‐Hui Xu
- Orthopaedic Institute, Medical College Soochow University Suzhou Jiangsu China
| | - Xu‐Zhen Qin
- Orthopaedic Institute, Medical College Soochow University Suzhou Jiangsu China
| | - Hao‐Nan Zhang
- Orthopaedic Institute, Medical College Soochow University Suzhou Jiangsu China
| | - Chang‐Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology Institute of Zoology, Chinese Academy of Science Beijing China
- Savaid Medical School University of Chinese Academy of Sciences Beijing China
| | - Bin Li
- Orthopaedic Institute, Medical College Soochow University Suzhou Jiangsu China
- Department of Orthopaedic Surgery, The First Affiliated Hospital Soochow University Suzhou China
| | - Jian‐Quan Chen
- Orthopaedic Institute, Medical College Soochow University Suzhou Jiangsu China
- Department of Orthopaedic Surgery, The First Affiliated Hospital Soochow University Suzhou China
| | - Hui‐Lin Yang
- Orthopaedic Institute, Medical College Soochow University Suzhou Jiangsu China
- Department of Orthopaedic Surgery, The First Affiliated Hospital Soochow University Suzhou China
| | - Saijilafu
- Orthopaedic Institute, Medical College Soochow University Suzhou Jiangsu China
- Department of Orthopaedic Surgery, The First Affiliated Hospital Soochow University Suzhou China
| |
Collapse
|
12
|
Dresselhaus EC, Meffert MK. Cellular Specificity of NF-κB Function in the Nervous System. Front Immunol 2019; 10:1043. [PMID: 31143184 PMCID: PMC6520659 DOI: 10.3389/fimmu.2019.01043] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/24/2019] [Indexed: 12/17/2022] Open
Abstract
Nuclear Factor Kappa B (NF-κB) is a ubiquitously expressed transcription factor with key functions in a wide array of biological systems. While the role of NF-κB in processes, such as host immunity and oncogenesis has been more clearly defined, an understanding of the basic functions of NF-κB in the nervous system has lagged behind. The vast cell-type heterogeneity within the central nervous system (CNS) and the interplay between cell-type specific roles of NF-κB contributes to the complexity of understanding NF-κB functions in the brain. In this review, we will focus on the emerging understanding of cell-autonomous regulation of NF-κB signaling as well as the non-cell-autonomous functional impacts of NF-κB activation in the mammalian nervous system. We will focus on recent work which is unlocking the pleiotropic roles of NF-κB in neurons and glial cells (including astrocytes and microglia). Normal physiology as well as disorders of the CNS in which NF-κB signaling has been implicated will be discussed with reference to the lens of cell-type specific responses.
Collapse
Affiliation(s)
- Erica C Dresselhaus
- Department of Biological Chemistry and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mollie K Meffert
- Department of Biological Chemistry and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
13
|
Purroy R, Britti E, Delaspre F, Tamarit J, Ros J. Mitochondrial pore opening and loss of Ca 2+ exchanger NCLX levels occur after frataxin depletion. Biochim Biophys Acta Mol Basis Dis 2018; 1864:618-631. [PMID: 29223733 DOI: 10.1016/j.bbadis.2017.12.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/29/2017] [Accepted: 12/05/2017] [Indexed: 12/12/2022]
Abstract
Frataxin-deficient neonatal rat cardiomyocytes and dorsal root ganglia neurons have been used as cell models of Friedreich ataxia. In previous work we show that frataxin depletion resulted in mitochondrial swelling and lipid droplet accumulation in cardiomyocytes, and compromised DRG neurons survival. Now, we show that these cells display reduced levels of the mitochondrial calcium transporter NCLX that can be restored by calcium-chelating agents and by external addition of frataxin fused to TAT peptide. Also, the transcription factor NFAT3, involved in cardiac hypertrophy and apoptosis, becomes activated by dephosphorylation in both cardiomyocytes and DRG neurons. In cardiomyocytes, frataxin depletion also results in mitochondrial permeability transition pore opening. Since the pore opening can be inhibited by cyclosporin A, we show that this treatment reduces lipid droplets and mitochondrial swelling in cardiomyocytes, restores DRG neuron survival and inhibits NFAT dephosphorylation. These results highlight the importance of calcium homeostasis and that targeting mitochondrial pore by repurposing cyclosporin A, could be envisaged as a new strategy to treat the disease.
Collapse
Affiliation(s)
- R Purroy
- Department of Ciències Mèdiques Bàsiques, Fac. Medicina, University of Lleida, IRB Lleida, Lleida, Spain
| | - E Britti
- Department of Ciències Mèdiques Bàsiques, Fac. Medicina, University of Lleida, IRB Lleida, Lleida, Spain
| | - F Delaspre
- Department of Ciències Mèdiques Bàsiques, Fac. Medicina, University of Lleida, IRB Lleida, Lleida, Spain
| | - J Tamarit
- Department of Ciències Mèdiques Bàsiques, Fac. Medicina, University of Lleida, IRB Lleida, Lleida, Spain
| | - J Ros
- Department of Ciències Mèdiques Bàsiques, Fac. Medicina, University of Lleida, IRB Lleida, Lleida, Spain.
| |
Collapse
|
14
|
Arumugam S, Mincheva-Tasheva S, Periyakaruppiah A, de la Fuente S, Soler RM, Garcera A. Regulation of Survival Motor Neuron Protein by the Nuclear Factor-Kappa B Pathway in Mouse Spinal Cord Motoneurons. Mol Neurobiol 2017; 55:5019-5030. [PMID: 28808928 DOI: 10.1007/s12035-017-0710-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/02/2017] [Indexed: 12/20/2022]
Abstract
Survival motor neuron (SMN) protein deficiency causes the genetic neuromuscular disorder spinal muscular atrophy (SMA), characterized by spinal cord motoneuron degeneration. Since SMN protein level is critical to disease onset and severity, analysis of the mechanisms involved in SMN stability is one of the central goals of SMA research. Here, we describe the role of several members of the NF-κB pathway in regulating SMN in motoneurons. NF-κB is one of the main regulators of motoneuron survival and pharmacological inhibition of NF-κB pathway activity also induces mouse survival motor neuron (Smn) protein decrease. Using a lentiviral-based shRNA approach to reduce the expression of several members of NF-κB pathway, we observed that IKK and RelA knockdown caused Smn reduction in mouse-cultured motoneurons whereas IKK or RelB knockdown did not. Moreover, isolated motoneurons obtained from the severe SMA mouse model showed reduced protein levels of several NF-κB members and RelA phosphorylation. We describe the alteration of NF-κB pathway in SMA cells. In the context of recent studies suggesting regulation of altered intracellular pathways as a future pharmacological treatment of SMA, we propose the NF-κB pathway as a candidate in this new therapeutic approach.
Collapse
Affiliation(s)
- Saravanan Arumugam
- Unitat de Senyalització Neuronal, Dep. Medicina Experimental, Universitat de Lleida-IRBLLEIDA, Rovira Roure 80, 25198, Lleida, Spain
| | - Stefka Mincheva-Tasheva
- Unitat de Senyalització Neuronal, Dep. Medicina Experimental, Universitat de Lleida-IRBLLEIDA, Rovira Roure 80, 25198, Lleida, Spain
| | - Ambika Periyakaruppiah
- Unitat de Senyalització Neuronal, Dep. Medicina Experimental, Universitat de Lleida-IRBLLEIDA, Rovira Roure 80, 25198, Lleida, Spain
| | - Sandra de la Fuente
- Unitat de Senyalització Neuronal, Dep. Medicina Experimental, Universitat de Lleida-IRBLLEIDA, Rovira Roure 80, 25198, Lleida, Spain
| | - Rosa M Soler
- Unitat de Senyalització Neuronal, Dep. Medicina Experimental, Universitat de Lleida-IRBLLEIDA, Rovira Roure 80, 25198, Lleida, Spain.
| | - Ana Garcera
- Unitat de Senyalització Neuronal, Dep. Medicina Experimental, Universitat de Lleida-IRBLLEIDA, Rovira Roure 80, 25198, Lleida, Spain
| |
Collapse
|
15
|
Dvoriantchikova G, Pappas S, Luo X, Ribeiro M, Danek D, Pelaez D, Park KK, Ivanov D. Virally delivered, constitutively active NFκB improves survival of injured retinal ganglion cells. Eur J Neurosci 2016; 44:2935-2943. [PMID: 27564592 DOI: 10.1111/ejn.13383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/21/2016] [Accepted: 08/23/2016] [Indexed: 12/17/2022]
Abstract
As axon damage and retinal ganglion cell (RGC) loss lead to blindness, therapies that increase RGC survival and axon regrowth have direct clinical relevance. Given that NFκB signaling is critical for neuronal survival and may regulate neurite growth, we investigated the therapeutic potential of NFκB signaling in RGC survival and axon regeneration. Although both NFκB subunits (p65 and p50) are present in RGCs, p65 exists in an inactive (unphosphorylated) state when RGCs are subjected to neurotoxic conditions. In this study, we used a phosphomimetic approach to generate DNA coding for an activated (phosphorylated) p65 (p65mut), then employed an adeno-associated virus serotype 2 (AAV2) to deliver the DNA into RGCs. We tested whether constitutive p65mut expression prevents death and facilitates neurite outgrowth in RGCs subjected to transient retinal ischemia or optic nerve crush (ONC), two models of neurotoxicity. Our data indicate that RGCs treated with AAV2-p65mut displayed a significant increase in survival compared to controls in ONC model (77 ± 7% vs. 25 ± 3%, P-value = 0.0001). We also found protective effect of modified p65 in RGCs of ischemic retinas (55 ± 12% vs. 35 ± 6%), but not to a statistically significant degree (P-value = 0.14). We did not detect a difference in axon regeneration between experimental and control animals after ONC. These findings suggest that increased NFκB signaling in RGCs attenuates retinal damage in animal models of neurodegeneration, but insignificantly impacts axon regeneration.
Collapse
Affiliation(s)
- Galina Dvoriantchikova
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Steve Pappas
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Xueting Luo
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Marcio Ribeiro
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dagmara Danek
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Daniel Pelaez
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Kevin K Park
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dmitry Ivanov
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.,Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
16
|
Jiang F, Mao Y, Liu H, Xu P, Zhang L, Qian X, Sun X. Magnesium Lithospermate B Protects Neurons Against Amyloid β (1–42)-Induced Neurotoxicity Through the NF-κB Pathway. Neurochem Res 2015; 40:1954-65. [DOI: 10.1007/s11064-015-1691-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/20/2015] [Accepted: 08/05/2015] [Indexed: 12/17/2022]
|
17
|
Obis È, Irazusta V, Sanchís D, Ros J, Tamarit J. Frataxin deficiency in neonatal rat ventricular myocytes targets mitochondria and lipid metabolism. Free Radic Biol Med 2014; 73:21-33. [PMID: 24751525 DOI: 10.1016/j.freeradbiomed.2014.04.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 04/04/2014] [Accepted: 04/04/2014] [Indexed: 11/21/2022]
Abstract
Friedreich ataxia (FRDA) is a hereditary disease caused by deficient frataxin expression. This mitochondrial protein has been related to iron homeostasis, energy metabolism, and oxidative stress. Patients with FRDA experience neurologic alterations and cardiomyopathy, which is the leading cause of death. The specific effects of frataxin depletion on cardiomyocytes are poorly understood because no appropriate cardiac cellular model is available to researchers. To address this research need, we present a model based on primary cultures of neonatal rat ventricular myocytes (NRVMs) and short-hairpin RNA interference. Using this approach, frataxin was reduced down to 5 to 30% of control protein levels after 7 days of transduction. At this stage the activity and amount of the iron-sulfur protein aconitase, in vitro activities of several OXPHOS components, levels of iron-regulated mRNAs, and the ATP/ADP ratio were comparable to controls. However, NRVMs exhibited markers of oxidative stress and a disorganized mitochondrial network with enlarged mitochondria. Lipids, the main energy source of heart cells, also underwent a clear metabolic change, indicated by the increased presence of lipid droplets and induction of medium-chain acyl-CoA dehydrogenase. These results indicate that mitochondria and lipid metabolism are primary targets of frataxin deficiency in NRVMs. Therefore, they contribute to the understanding of cardiac-specific mechanisms occurring in FRDA and give clues for the design of cardiac-specific treatment strategies for FRDA.
Collapse
MESH Headings
- Aconitate Hydratase/metabolism
- Animals
- Cardiomyopathies/pathology
- Cells, Cultured
- Disease Models, Animal
- Friedreich Ataxia/pathology
- Heart Ventricles/cytology
- Heart Ventricles/metabolism
- Humans
- Iron-Binding Proteins/genetics
- Lipid Metabolism/genetics
- Membrane Potential, Mitochondrial/physiology
- Mitochondria, Heart/genetics
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/metabolism
- Oxidative Stress/physiology
- Peroxisome Proliferator-Activated Receptors/metabolism
- RNA Interference
- RNA, Small Interfering
- Rats
- Rats, Sprague-Dawley
- Frataxin
Collapse
Affiliation(s)
- Èlia Obis
- Departament de Ciències Mèdiques Bàsiques, IRB-Lleida, Universitat de Lleida, 25198 Lleida, Spain
| | - Verónica Irazusta
- Instituto de Investigación para la Industria Química, INIQUI-CONICET, Salta, Argentina
| | - Daniel Sanchís
- Departament de Ciències Mèdiques Bàsiques, IRB-Lleida, Universitat de Lleida, 25198 Lleida, Spain
| | - Joaquim Ros
- Departament de Ciències Mèdiques Bàsiques, IRB-Lleida, Universitat de Lleida, 25198 Lleida, Spain
| | - Jordi Tamarit
- Departament de Ciències Mèdiques Bàsiques, IRB-Lleida, Universitat de Lleida, 25198 Lleida, Spain.
| |
Collapse
|
18
|
Mincheva-Tasheva S, Obis E, Tamarit J, Ros J. Apoptotic cell death and altered calcium homeostasis caused by frataxin depletion in dorsal root ganglia neurons can be prevented by BH4 domain of Bcl-xL protein. Hum Mol Genet 2014; 23:1829-41. [PMID: 24242291 DOI: 10.1093/hmg/ddt576] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Friedreich ataxia (FRDA) is a neurodegenerative disease characterized by a decreased expression of the mitochondrial protein frataxin. Major neurological symptoms of the disease are due to degeneration of dorsal root ganglion (DRG) sensory neurons. In this study we have explored the neurodegenerative events occurring by frataxin depletion on primary cultures of neurons obtained from rat DRGs. Reduction of 80% of frataxin levels in these cells was achieved by transduction with lentivirus containing shRNA silencing sequences. Frataxin depletion caused mitochondrial membrane potential decrease, neurite degeneration and apoptotic cell death. A marked increase of free intracellular Ca(2+) levels and alteration in Ca(2+)-mediated signaling pathways was also observed, thus suggesting that altered calcium homeostasis can play a pivotal role in neurodegeneration caused by frataxin deficiency. These deleterious effects were reverted by the addition of a cell-penetrant TAT peptide coupled to the BH4, the anti-apoptotic domain of Bcl-x(L). Treatment of cultured frataxin-depleted neurons with TAT-BH4 was able to restore the free intracellular Ca(2+) levels and protect the neurons from degeneration. These observations open the possibility of new therapies of FRDA based on modulating the Ca(2+) signaling and prevent apoptotic process to protect DRG neurons from neurodegeneration.
Collapse
Affiliation(s)
- Stefka Mincheva-Tasheva
- Grup de Bioquímica de L'Estrès Oxidatiu, Departament de Ciències Mèdiques Bàsiques, IRB Lleida, Universitat de Lleida, Lleida, Spain
| | | | | | | |
Collapse
|
19
|
Bowerman M, Michalski JP, Beauvais A, Murray LM, DeRepentigny Y, Kothary R. Defects in pancreatic development and glucose metabolism in SMN-depleted mice independent of canonical spinal muscular atrophy neuromuscular pathology. Hum Mol Genet 2014; 23:3432-44. [PMID: 24497575 PMCID: PMC4049303 DOI: 10.1093/hmg/ddu052] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Spinal muscular atrophy (SMA) is characterized by motor neuron loss, caused by mutations or deletions in the ubiquitously expressed survival motor neuron 1 (SMN1) gene. We recently identified a novel role for Smn protein in glucose metabolism and pancreatic development in both an intermediate SMA mouse model (Smn(2B/-)) and type I SMA patients. In the present study, we sought to determine if the observed metabolic and pancreatic defects are SMA-dependent. We employed a line of heterozygous Smn-depleted mice (Smn(+/-)) that lack the hallmark SMA neuromuscular pathology and overt phenotype. At 1 month of age, pancreatic/metabolic function of Smn(+/-)mice is indistinguishable from wild type. However, when metabolically challenged with a high-fat diet, Smn(+/-)mice display abnormal localization of glucagon-producing α-cells within the pancreatic islets and increased hepatic insulin and glucagon sensitivity, through increased p-AKT and p-CREB, respectively. Further, aging results in weight gain, an increased number of insulin-producing β cells, hyperinsulinemia and increased hepatic glucagon sensitivity in Smn(+/-)mice. Our study uncovers and highlights an important function of Smn protein in pancreatic islet development and glucose metabolism, independent of canonical SMA pathology. These findings suggest that carriers of SMN1 mutations and/or deletions may be at an increased risk of developing pancreatic and glucose metabolism defects, as even small depletions in Smn protein may be a risk factor for diet- and age-dependent development of metabolic disorders.
Collapse
Affiliation(s)
- Melissa Bowerman
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada The Neuroscience Institute of Montpellier (INM), Inserm UMR1051, Saint Eloi Hospital, Montpellier, France
| | - John-Paul Michalski
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada Department of Cellular and Molecular Medicine and
| | | | | | | | - Rashmi Kothary
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada Department of Cellular and Molecular Medicine and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
20
|
BDNF and NT4 play interchangeable roles in gustatory development. Dev Biol 2013; 386:308-20. [PMID: 24378336 DOI: 10.1016/j.ydbio.2013.12.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/17/2013] [Accepted: 12/20/2013] [Indexed: 01/10/2023]
Abstract
A limited number of growth factors are capable of regulating numerous developmental processes, but how they accomplish this is unclear. The gustatory system is ideal for examining this issue because the neurotrophins brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT4) have different developmental roles although both of them activate the same receptors, TrkB and p75. Here we first investigated whether the different roles of BDNF and NT4 are due to their differences in temporal and spatial expression patterns. Then, we asked whether or not these two neurotrophins exert their unique roles on the gustatory system by regulating different sets of downstream genes. By using Bdnf(Nt4/Nt4) mice, in which the coding region for BDNF is replaced with NT4, we examined whether the different functions of BDNF and NT4 are interchangeable during taste development. Our results demonstrated that NT4 could mediate most of the unique roles of BDNF during taste development. Specifically, caspase-3-mediated cell death, which was increased in the geniculate ganglion in Bdnf(-/-) mice, was rescued in Bdnf(Nt4/Nt4) mice. In BDNF knockout mice, tongue innervation was disrupted, and gustatory axons failed to reach their targets. However, disrupted innervation was rescued and target innervation is normal when NT4 replaced BDNF. Genome wide expression analyses revealed that BDNF and NT4 mutant mice exhibited different gene expression profiles in the gustatory (geniculate) ganglion. Compared to wild type, the expression of differentiation-, apoptosis- and axon guidance-related genes was changed in BDNF mutant mice, which is consistent with their different roles during taste development. However, replacement of BDNF by NT4 rescued these gene expression changes. These findings indicate that the functions of BDNF and NT4 in taste development are interchangeable. Spatial and temporal differences in BDNF and NT4 expression can regulate differential gene expression in vivo and determine their specific roles during development.
Collapse
|
21
|
Vandenbosch R, Chocholova E, Robe PA, Wang Y, Lambert C, Moonen G, Lallemend F, Malgrange B, Hadjab S. A role for the canonical nuclear factor-κB pathway in coupling neurotrophin-induced differential survival of developing spiral ganglion neurons. Front Cell Neurosci 2013; 7:242. [PMID: 24348336 PMCID: PMC3842586 DOI: 10.3389/fncel.2013.00242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/14/2013] [Indexed: 11/13/2022] Open
Abstract
Neurotrophins are key players of neural development by controlling cell death programs. However, the signaling pathways that mediate their selective responses in different populations of neurons remain unclear. In the mammalian cochlea, sensory neurons differentiate perinatally into type I and II populations both expressing TrkB and TrkC, which bind respectively brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3). How these two neuronal populations respond differentially to these two neurotrophins remains unknown. Here, we report in rat the segregation of the nuclear factor-κB (NFκB) subunit p65 specifically within the type II population postnatally. Using dissociated cultures of embryonic and postnatal spiral ganglion neurons, we observed a specific requirement of NFκB for BDNF but not NT3-dependent neuronal survival during a particular postnatal time window that corresponds to a period of neuronal cell death and hair cell innervation refinement in the developing cochlea. Consistently, postnatal p65 knockout mice showed a specific decreased number in type II spiral ganglion neurons. Taken together, these results identify NFκB as a type II neuron-specific factor that participates in the selective survival effects of BDNF and NT3 signaling on developing spiral ganglion neurons.
Collapse
Affiliation(s)
- Renaud Vandenbosch
- Groupe Interdisciplinaire de Génoprotéomique Appliquée-Neurosciences, Developmental Neurobiology Unit, University of Liège Liège, Belgium
| | - Eva Chocholova
- Groupe Interdisciplinaire de Génoprotéomique Appliquée-Neurosciences, Developmental Neurobiology Unit, University of Liège Liège, Belgium
| | - Pierre A Robe
- Department of Human Genetics, University of Liège Liège, Belgium ; Groupe Interdisciplinaire de Génoprotéomique Appliquée-Research Center, University of Liège Liège, Belgium
| | - Yiqiao Wang
- Department of Neuroscience, Karolinska Institute Stockholm, Sweden
| | - Cécile Lambert
- Bone and Cartilage Research Unit, Institute of Pathology, Centre Hospitalier Universitaire du Sart-Tilman Liège, Belgium
| | - Gustave Moonen
- Groupe Interdisciplinaire de Génoprotéomique Appliquée-Neurosciences, Developmental Neurobiology Unit, University of Liège Liège, Belgium ; Department of Neurology, Centre Hospitalier Universitaire du Sart Tilman Liège, Belgium
| | - François Lallemend
- Groupe Interdisciplinaire de Génoprotéomique Appliquée-Neurosciences, Developmental Neurobiology Unit, University of Liège Liège, Belgium ; Department of Neuroscience, Karolinska Institute Stockholm, Sweden
| | - Brigitte Malgrange
- Groupe Interdisciplinaire de Génoprotéomique Appliquée-Neurosciences, Developmental Neurobiology Unit, University of Liège Liège, Belgium
| | - Saïda Hadjab
- Groupe Interdisciplinaire de Génoprotéomique Appliquée-Neurosciences, Developmental Neurobiology Unit, University of Liège Liège, Belgium ; Department of Neuroscience, Karolinska Institute Stockholm, Sweden
| |
Collapse
|
22
|
Garcera A, Bahi N, Periyakaruppiah A, Arumugam S, Soler RM. Survival motor neuron protein reduction deregulates autophagy in spinal cord motoneurons in vitro. Cell Death Dis 2013; 4:e686. [PMID: 23788043 PMCID: PMC3702296 DOI: 10.1038/cddis.2013.209] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Spinal muscular atrophy (SMA) is a genetic disorder characterized by degeneration of spinal cord motoneurons (MNs), resulting in muscular atrophy and weakness. SMA is caused by mutations in the Survival Motor Neuron 1 (SMN1) gene and decreased SMN protein. SMN is ubiquitously expressed and has a general role in the assembly of small nuclear ribonucleoproteins and pre-mRNA splicing requirements. SMN reduction causes neurite degeneration and cell death without classical apoptotic features, but the direct events leading to SMN degeneration in SMA are still unknown. Autophagy is a conserved lysosomal protein degradation pathway whose precise roles in neurodegenerative diseases remain largely unknown. In particular, it is unclear whether autophagosome accumulation is protective or destructive, but the accumulation of autophagosomes in the neuritic beadings observed in several neurite degeneration models suggests a close relationship between the autophagic process and neurite collapse. In the present work, we describe an increase in the levels of the autophagy markers including autophagosomes, Beclin1 and light chain (LC)3-II proteins in cultured mouse spinal cord MNs from two SMA cellular models, suggesting an upregulation of the autophagy process in Smn (murine survival motor neuron protein)-reduced MNs. Overexpression of Bcl-xL counteracts LC3-II increase, contributing to the hypothesis that the protective role of Bcl-xL observed in some SMA models may be mediated by its role in autophagy inhibition. Our in vitro experimental data indicate an upregulation in the autophagy process and autophagosome accumulation in the pathogenesis of SMA, thus providing a valuable clue in understanding the mechanisms of axonal degeneration and a possible therapeutic target in the treatment of SMA.
Collapse
Affiliation(s)
- A Garcera
- Unitat de Senyalització Neuronal, Department Ciències Mèdiques Bàsiques, Universitat de Lleida-IRBLLEIDA, Lleida 25198, Spain
| | | | | | | | | |
Collapse
|
23
|
Chacón PJ, Rodríguez-Tébar A. Increased expression of the homologue of enhancer-of-split 1 protects neurons from beta amyloid neurotoxicity and hints at an alternative role for transforming growth factor beta1 as a neuroprotector. ALZHEIMERS RESEARCH & THERAPY 2012; 4:31. [PMID: 22849569 PMCID: PMC3506945 DOI: 10.1186/alzrt134] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 06/11/2012] [Accepted: 07/31/2012] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the deposition of β-amyloid (Aβ) in the brain, which produces progressive neuronal loss and dementia. We recently demonstrated that the noxious effects of Aβ on cultured hippocampal neurons are in part provoked by the antagonism of nerve growth factor (NGF) signalling, which impairs the activation of nuclear factor κB (NF-κB) by impeding the tyrosine phosphorylation of I-κBα. As a result, the expression of the homologue of Enhancer-of split 1 (Hes1) gene is downregulated and ultimately, gamma-aminobutyric acid (GABA)-ergic connectivity is lost. METHODS Hes1 activity was promoted in cultured hippocampal neurons by overexpressing a Hes1-encoding plasmid or by upregulating this gene by activating NF-κB through different approaches (overexpressing either the I-κB kinaseβ, or p65/RelA/NF-κB). Alternatively neurons were exposed to TGFβ1. Dendrite patterning, GABAergic connectivity and cell survival were analyzed by immunofluorescence microscopy. Hes1 expression was determined by real-time PCR. NF-κB activation was measured using the dual-luciferase reporter assay. RESULTS The expression of Hes1 abolished the effects of Aβ on dendritic patterning and GABAergic input, and it prevented the death of the cultured neurons. TGFβ1, a known neuroprotector, could counteract the deleterious effects of Aβ by inducing NF-κB activation following the serine phosphorylation of I-κBα. Indeed, the number of GABAergic terminals generated by inducing Hes1 expression was doubled. CONCLUSION Our data define some of the mechanisms involved in Aβ-mediated cell death and they point to potential means to counteract this noxious activity.
Collapse
Affiliation(s)
- Pedro J Chacón
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Americo Vespucio s/n, Isla de la Cartuja, 41092 Seville, Spain.
| | | |
Collapse
|
24
|
Mincheva-Tasheva S, Soler RM. NF-κB signaling pathways: role in nervous system physiology and pathology. Neuroscientist 2012; 19:175-94. [PMID: 22785105 DOI: 10.1177/1073858412444007] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intracellular pathways related to cell survival regulate neuronal physiology during development and neurodegenerative disorders. One of the pathways that have recently emerged with an important role in these processes is nuclear factor-κB (NF-κB). The activity of this pathway leads to the nuclear translocation of the NF-κB transcription factors and the regulation of anti-apoptotic gene expression. Different stimuli can activate the pathway through different intracellular cascades (canonical, non-canonical, and atypical), contributing to the translocation of specific dimers of the NF-κB transcription factors, and each of these dimers can regulate the transcription of different genes. Recent studies have shown that the activation of this pathway regulates opposite responses such as cell survival or neuronal degeneration. These apparent contradictory effects depend on conditions such as the pathway stimuli, the origin of the cells, or the cellular context. In the present review, the authors summarize these findings and discuss their significance with respect to survival or death in the nervous system.
Collapse
Affiliation(s)
- Stefka Mincheva-Tasheva
- Neuronal Signaling Unit, Dep. Ciencies Mediques Basiques, Facultat de Medicina, Universitat de Lleida-IRBLLEIDA, Lleida, Spain
| | | |
Collapse
|