1
|
Lee PY, Greferath U, Zhao D, Huang JY, Wang AYM, Vessey KA, Chrysostomou V, Fletcher EL, Crowston JG, Bui BV. Systemic TRPV4 inhibition worsens retinal response to acute intraocular pressure elevation in older but not younger mice. Optom Vis Sci 2025:00006324-990000000-00250. [PMID: 39882862 DOI: 10.1097/opx.0000000000002217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
SIGNIFICANCE Previous evidence showed that transient receptor potential vanilloid 4 (TRPV4) inhibition was protective of retinal ganglion cell (RGC) loss after chronic intraocular pressure (IOP) elevation in young animals. However, the role of TRPV4 in mechanosensing IOP changes in the aging eye is not well understood. PURPOSE This study compared the recovery of retinal function and structure after acute IOP elevation in 3- and 12-month-old mouse eyes with and without TRPV4 inhibition. METHODS We examined retinal TRPV4 expression in 2-month-old rodent eyes using immunohistochemistry and transcript analysis of isolated macroglia and RGCs. To modulate TRPV4, mice were treated daily with either vehicle or a TRPV4 antagonist (HC-067047 10 mg/kg) delivered intraperitoneally for 7 days before and 7 days after IOP elevation (50 mmHg for 30 minutes). Retinal function and structure were assessed using dark-adapted full-field electroretinography and optical coherence tomography, respectively. RESULTS We showed that Müller cells strongly expressed TRPV4. Seven days after IOP elevation, RGC functional recovery was significantly poorer in older mice treated with TRPV4 antagonist compared with age-matched vehicle controls (-54 ± 7% vs. -24 ± 10%, p=0.046) and their younger TRPV4 antagonist-treated counterparts (-5 ± 5%, p<0.001). CONCLUSIONS This study showed that there was an age-related deficit in RGC functional recovery from IOP elevation with TRPV4 inhibition.
Collapse
Affiliation(s)
- Pei Ying Lee
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Ursula Greferath
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Da Zhao
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Jin Y Huang
- School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Anna Y M Wang
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Kirstan A Vessey
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Vicki Chrysostomou
- Singapore Eye Research Institute, Duke-NUS Medical School, Singapore, Singapore
| | - Erica L Fletcher
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
2
|
Lapajne L, Lakk M, Rudzitis CN, Vemaraju S, Lang RA, Hawlina M, Križaj D. Neuropsin, TRPV4 and intracellular calcium mediate intrinsic photosensitivity in corneal epithelial cells. Ocul Surf 2024; 36:1-9. [PMID: 39681161 DOI: 10.1016/j.jtos.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024]
Abstract
PURPOSE To investigate intrinsic phototransduction in the corneal epithelium and its role in intracellular and inflammatory signaling. METHODS Optical imaging in isolated corneal epithelial cells (CECs) and debrided epithelia was combined with molecular, biochemical, pharmacological assays and gene deletion studies to track UVB-induced calcium signaling and release of cytokines, chemokines and matrix remodeling enzymes. Results from wild type mouse CECs were compared to data obtained from Opn5-/- and Trpv4-/- cells. RESULTS UVB stimuli and TRPV4 activity induced epithelial release of IL-1β, IL-17, matrix metalloproteinases MMP-3/MMP-9, and thymic stromal lymphopoietin (TSLP). UVB stimuli evoked [Ca2+]i elevations in dissociated mouse CECs that were partially reduced by inhibition of TRPV4 channels, Trpv4 knockdown and replacement of control saline with Ca2+-free saline. UVB-induced Ca2+ responses were significantly suppressed by OPN5 deletion and by inhibition of phospholipase C signaling, and responses were abrogated in cells with depleted intracellular Ca2+ stores. CONCLUSIONS Mammalian CECs are intrinsically and constitutively photosensitive. UVB photons are transduced by neuropsin, phospholipase C and CICR signaling, with mouse but not human CE transduction exhibiting a UVB-sensitive TRPV4 component. TRPV4 activity and UVB transduction are linked to cell-autonomous release of proinflammatory, matrix remodeling and nociceptive interleukins and MMPS. TRPV4-induced cytokine release may contribute to the pain induced by mechanical injury of the cornea and CEC photosensing may alert and protect the visual system from ultraviolet B (UVB) radiation -induced snow blindness, injury, vision loss and cancer.
Collapse
Affiliation(s)
- Luka Lapajne
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA; Department of Ophthalmology, University Medical Center, Ljubljana, Slovenia
| | - Monika Lakk
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Christopher N Rudzitis
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA; Interdepartmental Program in Neuroscience, University of Utah, USA
| | - Shruti Vemaraju
- Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Richard A Lang
- Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Marko Hawlina
- Department of Ophthalmology, University Medical Center, Ljubljana, Slovenia
| | - David Križaj
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA; Interdepartmental Program in Neuroscience, University of Utah, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT, USA; Department of Neurobiology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
3
|
Villarreal DL, Krautschneider W. Spatially Localized Visual Perception Estimation by Means of Prosthetic Vision Simulation. J Imaging 2024; 10:294. [PMID: 39590758 PMCID: PMC11595353 DOI: 10.3390/jimaging10110294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Retinal prosthetic devices aim to repair some vision in visually impaired patients by electrically stimulating neural cells in the visual system. Although there have been several notable advancements in the creation of electrically stimulated small dot-like perceptions, a deeper comprehension of the physical properties of phosphenes is still necessary. This study analyzes the influence of two independent electrode array topologies to achieve single-localized stimulation while the retina is electrically stimulated: a two-dimensional (2D) hexagon-shaped array reported in clinical studies and a patented three-dimensional (3D) linear electrode carrier. For both, cell stimulation is verified in COMSOL Multiphysics by developing a lifelike 3D computational model that includes the relevant retinal interface elements and dynamics of the voltage-gated ionic channels. The evoked percepts previously described in clinical studies using the 2D array are strongly associated with our simulation-based findings, allowing for the development of analytical models of the evoked percepts. Moreover, our findings identify differences between visual sensations induced by the arrays. The 2D array showed drawbacks during stimulation; similarly, the state-of-the-art 2D visual prostheses provide only dot-like visual sensations in close proximity to the electrode. The 3D design could offer a technique for improving cell selectivity because it requires low-intensity threshold activation which results in volumes of stimulation similar to the volume surrounded by a solitary RGC. Our research establishes a proof-of-concept technique for determining the utility of the 3D electrode array for selectively activating individual RGCs at the highest density via small-sized electrodes while maintaining electrochemical safety.
Collapse
Affiliation(s)
- Diego Luján Villarreal
- Departamento de Mecatrónica y Biomédica, Escuela de Ingeniería y Ciencias, Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey 64700, Mexico
| | - Wolfgang Krautschneider
- Institut für Integrierte Schaltungen, Hamburg University of Technology, D-21073 Hamburg, Germany;
| |
Collapse
|
4
|
Pang VY, Yang Z, Wu SM, Pang JJ. The co-expression of the depolarizing and hyperpolarizing mechanosensitive ion channels in mammalian retinal neurons. Front Med (Lausanne) 2024; 11:1463898. [PMID: 39606631 PMCID: PMC11601153 DOI: 10.3389/fmed.2024.1463898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/25/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction The elevation of the intraocular and extraocular pressures is associated with various visual conditions, including glaucoma and traumatic retinal injury. The retina expresses mechanosensitive channels (MSCs), but the role of MSCs in retinal physiology and pathologies has been unclear. Methods Using immunocytochemistry, confocal microscopy, and patch-clamp recording techniques, we studied the co-expression of K+-permeable (K-MSCs) TRAAK and big potassium channel BK with the epithelial sodium channel ENaC and transient receptor potential channel vanilloid TPRV4 and TRPV2 favorably permeable to Ca2+ than Na+ (together named N-MSCs), and TRPV4 activity in the mouse retina. Results TRAAK immunoreactivity (IR) was mainly located in Müller cells. Photoreceptor outer segments (OSs) expressed BK and ENaCα intensively and TRAAK, TRPV2, and TRPV4 weakly. Somas and axons of retinal ganglion cells (RGCs) retrograde-identified clearly expressed ENaCα, TRPV4, and TRPV2 but lacked TRAAK and BK. Rod bipolar cells (RBCs) showed TRPV4-IR in somas and BK-IR in axonal globules. Horizontal cells were BK-negative, and some cone BCs lacked TRPV4-IR. TRPV4 agonist depolarized RGCs, enhanced spontaneous spikes and excitatory postsynaptic currents, reduced the visual signal reliability (VSR = 1-noise/signal) by ~50%, and resulted in ATP crisis, which could inactivate voltage-gated sodium channels in RGCs. Conclusion Individual neurons co-express hyperpolarizing K-MSCs with depolarizing N-MSCs to counterbalance the pressure-induced excitation, and the level of K-MSCs relative to N-MSCs (RK/N ratio) is balanced in the outer retina but low in RGCs, bringing out novel determinants for the pressure vulnerability of retinal neurons and new targets for clinical interventions.
Collapse
Affiliation(s)
| | | | | | - Ji-Jie Pang
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
5
|
Rudzitis CN, Lakk M, Singh A, Redmon SN, Kirdajova D, Tseng YT, De Ieso ML, Stamer WD, Herberg S, Križaj D. TRPV4 overactivation enhances cellular contractility and drives ocular hypertension in TGFβ2 overexpressing eyes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.05.622187. [PMID: 39574569 PMCID: PMC11580928 DOI: 10.1101/2024.11.05.622187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
The risk for developing primary open-angle glaucoma (POAG) correlates with the magnitude of ocular hypertension (OHT) and the concentration of transforming growth factor-β2 (TGFβ2) in the aqueous humor. Effective treatment of POAG requires detailed understanding of interaction between pressure sensing mechanisms in the trabecular meshwork (TM) and biochemical risk factors. Here, we employed molecular, optical, electrophysiological and tonometric strategies to establish the role of TGFβ2 in transcription and functional expression of mechanosensitive channel isoforms alongside studies of TM contractility in biomimetic hydrogels, and intraocular pressure (IOP) regulation in a mouse model of TGFβ2 -induced OHT. TGFβ2 upregulated expression of TRPV4 and PIEZO1 transcripts and time-dependently augmented functional TRPV4 activation. TRPV4 activation induced TM contractility whereas pharmacological inhibition suppressed TGFβ2-induced hypercontractility and abrogated OHT in eyes overexpressing TGFβ2. Trpv4-deficient mice resisted TGFβ2-driven increases in IOP. Nocturnal OHT was not additive to TGFβ-evoked OHT. Our study establishes the fundamental role of TGFβ as a modulator of mechanosensing in nonexcitable cells, identifies TRPV4 channel as the final common mechanism for TM contractility and circadian and pathological OHT and offers insights future treatments that can lower IOP in the sizeable cohort of hypertensive glaucoma patients that resist current treatments.
Collapse
Affiliation(s)
- Christopher N. Rudzitis
- Department of Ophthalmology and Visual Sciences
- Department of Neurobiology, University of Utah, Salt Lake City, UT
| | - Monika Lakk
- Department of Ophthalmology and Visual Sciences
| | - Ayushi Singh
- Department of Ophthalmology and Visual Sciences
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY
| | | | | | | | - Michael L. De Ieso
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC
| | - W. Daniel Stamer
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY
| | - David Križaj
- Department of Ophthalmology and Visual Sciences
- Department of Neurobiology, University of Utah, Salt Lake City, UT
- Department of Bioengineering, University of Utah, Salt Lake City, UT
| |
Collapse
|
6
|
Yarishkin O, Lakk M, Rudzitis CN, Searle JE, Kirdajova D, Križaj D. Resting trabecular meshwork cells experience constitutive cation influx. Vision Res 2024; 224:108487. [PMID: 39303640 PMCID: PMC11552692 DOI: 10.1016/j.visres.2024.108487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
A quintessential sentinel of cell health, the membrane potential in nonexcitable cells integrates biochemical and biomechanical inputs, determines the driving force for ionic currents activated by input signals and plays critical functions in cellular differentiation, signaling, and pathology. The identity and properties of ion channels that subserve the resting potential in trabecular meshwork (TM) cells is poorly understood, which impairs our understanding of intraocular pressure regulation in healthy and diseased eyes. Here, we identified a powerful cationic conductance that subserves the TM resting potential. It disappears following Na+ removal or substitution with choline or NMDG+, is insensitive to TTX, verapamil, phenamil methanesulfonate, amiloride and GsMTx4, is substituted by Li+ and Cs+, and inhibited by Gd3+ and Ruthenium Red. Constitutive cation influx is thus not mediated by voltage-operated Na+, Ca2+, epithelial Na+ (ENaC) channels, Piezo channels or Na+/H+ exchange but may involve TRP-like channels. Transcriptional analysis detected expression of many TRP genes, with the transcriptome pool dominated by TRPC1 followed by expression of TRPV1, TRPC3, TRPV4 and TRPC5. Pyr3 and Pico1,4,5 did not affect the standing current whereas SKF96365 promoted rather than suppressed, Na+ influx. SEA-0400 induced a modest hyperpolarization, indicating residual contribution from Na+/Ca2+ exchange. The resting membrane potential in human TM cells is thus maintained by a constitutive monovalent cation leak current with properties not unlike those of TRP channels. This conductance is likely to influence conventional outflow by setting the homeostatic steady-state and by regulating the magnitude of pressure-induced currents in normotensive and hypertensive eyes.
Collapse
Affiliation(s)
- Oleg Yarishkin
- Department of Ophthalmology and Visual Sciences, Salt Lake City, UT 84132, USA
| | - Monika Lakk
- Department of Ophthalmology and Visual Sciences, Salt Lake City, UT 84132, USA
| | | | - Jordan E Searle
- Department of Ophthalmology and Visual Sciences, Salt Lake City, UT 84132, USA
| | - Denisa Kirdajova
- Department of Ophthalmology and Visual Sciences, Salt Lake City, UT 84132, USA
| | - David Križaj
- Department of Ophthalmology and Visual Sciences, Salt Lake City, UT 84132, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT 84132, USA; Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| |
Collapse
|
7
|
Garcia-Sanchez J, Lin D, Liu WW. Mechanosensitive ion channels in glaucoma pathophysiology. Vision Res 2024; 223:108473. [PMID: 39180975 PMCID: PMC11398070 DOI: 10.1016/j.visres.2024.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
Force sensing is a fundamental ability that allows cells and organisms to interact with their physical environment. The eye is constantly subjected to mechanical forces such as blinking and eye movements. Furthermore, elevated intraocular pressure (IOP) can cause mechanical strain at the optic nerve head, resulting in retinal ganglion cell death (RGC) in glaucoma. How mechanical stimuli are sensed and affect cellular physiology in the eye is unclear. Recent studies have shown that mechanosensitive ion channels are expressed in many ocular tissues relevant to glaucoma and may influence IOP regulation and RGC survival. Furthermore, variants in mechanosensitive ion channel genes may be associated with risk for primary open angle glaucoma. These findings suggest that mechanosensitive channels may be important mechanosensors mediating cellular responses to pressure signals in the eye. In this review, we focus on mechanosensitive ion channels from three major channel families-PIEZO, two-pore potassium and transient receptor potential channels. We review the key properties of these channels, their effects on cell function and physiology, and discuss their possible roles in glaucoma pathophysiology.
Collapse
Affiliation(s)
- Julian Garcia-Sanchez
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Danting Lin
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Wendy W Liu
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
8
|
do Nascimento THO, Pereira-Figueiredo D, Veroneze L, Nascimento AA, De Logu F, Nassini R, Campello-Costa P, Faria-Melibeu ADC, Souza Monteiro de Araújo D, Calaza KC. Functions of TRPs in retinal tissue in physiological and pathological conditions. Front Mol Neurosci 2024; 17:1459083. [PMID: 39386050 PMCID: PMC11461470 DOI: 10.3389/fnmol.2024.1459083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024] Open
Abstract
The Transient Receptor Potential (TRP) constitutes a family of channels subdivided into seven subfamilies: Ankyrin (TRPA), Canonical (TRPC), Melastatin (TRPM), Mucolipin (TRPML), no-mechano-potential C (TRPN), Polycystic (TRPP), and Vanilloid (TRPV). Although they are structurally similar to one another, the peculiarities of each subfamily are key to the response to stimuli and the signaling pathway that each one triggers. TRPs are non-selective cation channels, most of which are permeable to Ca2+, which is a well-established second messenger that modulates several intracellular signaling pathways and is involved in physiological and pathological conditions in various cell types. TRPs depolarize excitable cells by increasing the influx of Ca2+, Na+, and other cations. Most TRP families are activated by temperature variations, membrane stretching, or chemical agents and, therefore, are defined as polymodal channels. All TPRs are expressed, at some level, in the central nervous system (CNS) and ocular-related structures, such as the retina and optic nerve (ON), except the TRPP in the ON. TRPC, TRPM, TRPV, and TRPML are found in the retinal pigmented cells, whereas only TRPA1 and TRPM are detected in the uvea. Accordingly, several studies have focused on the search to unravel the role of TRPs in physiological and pathological conditions related to the eyes. Thus, this review aims to shed light on endogenous and exogenous modulators, triggered cell signaling pathways, and localization and roles of each subfamily of TRP channels in physiological and pathological conditions in the retina, optic nerve, and retinal pigmented epithelium of vertebrates.
Collapse
Affiliation(s)
- Thaianne Hanah Oliveira do Nascimento
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Biomedical Sciences, Biology Institute, Fluminense Federal University Niterói, Rio de Janeiro, Brazil
| | - Danniel Pereira-Figueiredo
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Louise Veroneze
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Amanda Alves Nascimento
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Paula Campello-Costa
- Laboratory of Neuroplasticity, Program of Neurosciences, Department of Neurobiology, Biology Institute, Niteroi, Brazil
| | - Adriana da Cunha Faria-Melibeu
- Laboratory of Neurobiology of Development, Program of Neurosciences, Department of Neurobiology, Biology Institute, Niteroi, Brazil
| | | | - Karin Costa Calaza
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Biomedical Sciences, Biology Institute, Fluminense Federal University Niterói, Rio de Janeiro, Brazil
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Redmon SN, Lakk M, Tseng YT, Rudzitis CN, Searle JE, Ahmed F, Unser A, Borrás T, Torrejon K, Krizaj D. TRPV4 subserves physiological and pathological elevations in intraocular pressure. RESEARCH SQUARE 2024:rs.3.rs-4714050. [PMID: 39041037 PMCID: PMC11261973 DOI: 10.21203/rs.3.rs-4714050/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Ocular hypertension (OHT) caused by mechanical stress and chronic glucocorticoid exposure reduces the hydraulic permeability of the conventional outflow pathway. It increases the risk for irreversible vision loss, yet healthy individuals experience nightly intraocular pressure (IOP) elevations without adverse lifetime effects. It is not known which pressure sensors regulate physiological vs. pathological OHT nor how they impact the permeability of the principal drainage pathway through the trabecular meshwork (TM). We report that OHT induced by the circadian rhythm, occlusion of the iridocorneal angle and glucocorticoids requires activation of TRPV4, a stretch-activated cation channel. Wild-type mice responded to nocturnal topical administration of the agonist GSK1016790A with IOP lowering, while intracameral injection of the agonist elevated diurnal IOP. Microinjection of TRPV4 antagonists HC067047 and GSK2193874 lowered IOP during the nocturnal OHT phase and in hypertensive eyes treated with steroids or injection of polystyrene microbeads. Conventional outflow-specific Trpv4 knockdown induced partial IOP lowering in mice with occluded iridocorneal angle and protected retinal neurons from pressure injury. Indicating a central role for TRPV4-dependent mechanosensing in trabecular outflow, HC067047 doubled the outflow facility in TM-populated steroid-treated 3D nanoscaffolds. Tonic TRPV4 signaling thus represents a fundamental property of TM biology as a driver of increased in vitro and in vivo outflow resistance. The TRPV4-dependence of OHT under conditions that mimic primary and secondary glaucomas could be explored as a novel target for glaucoma treatments.
Collapse
|
10
|
Sripinun P, See LP, Nikonov S, Chavali VRM, Vrathasha V, He J, O'Brien JM, Xia J, Lu W, Mitchell CH. Piezo1 and Piezo2 channels in retinal ganglion cells and the impact of Piezo1 stimulation on light-dependent neural activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.599602. [PMID: 38979351 PMCID: PMC11230181 DOI: 10.1101/2024.06.25.599602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Piezo channels are associated with neuropathology in diseases like traumatic brain injury and glaucoma, but pathways linking tissue stretch to aberrant neural signaling remain unclear. The present study demonstrates that Piezo1 activation increases action potential frequency in response to light and the spontaneous dark signal from mouse retinal explants. Piezo1 stimulation was sufficient to increase cytoplasmic Ca 2+ in soma and neurites, while stretch increased spiking activity in current clamp recordings from of isolated retinal ganglion cells (RGCs). Axon-marker beta-tubulin III colocalized with both Piezo1 and Piezo2 protein in the mouse optic nerve head, while RGC nuclear marker BRN3A colocalized with Piezo channels in the soma. Piezo1 was also present on GFAP-positive regions in the optic nerve head and colocalized with glutamine synthetase in the nerve fiber layer, suggesting expression in optic nerve head astrocytes and Müller glia end feet, respectively. Human RGCs from induced pluripotent stem cells also expressed Piezo1 and Piezo2 in soma and axons, while staining patterns in rats resembled those in mice. mRNA message for Piezo1 was greatest in the RPE/choroid tissue, while Piezo2 levels were highest in the optic nerve, with both channels also expressed in the retina. Increased expression of Piezo1 and Piezo2 occurred both 1 and 10 days after a single stretch in vivo; this increase suggests a potential role in rising sensitivity to repeated nerve stretch. In summary, Piezo1 and Piezo2 were detected in the soma and axons of RGCs, and stimulation affected the light-dependent output of RGCs. The rise in RGCs excitability induced by Piezo stimulation may have parallels to the early disease progression in models of glaucoma and other retinal degenerations. Highlights Activation of Piezo1 excites retinal ganglion cells, paralleling the early neurodegenerative progression in glaucoma mouse models and retinal degeneration.Piezo1 and Piezo2 were expressed in axons and soma of retinal ganglion cells in mice, rats, and human iPSC-RGCs.Functional assays confirmed Piezo1 in soma and neurites of neurons. Sustained elevation of Piezo1 and Piezo2 occurred after a single transient stretch may enhance damage from repeated traumatic nerve injury. Abstract Figure
Collapse
|
11
|
Long Y, Kozhemyakin M, Wu SM, Pang JJ. TRPV4 affects visual signals in photoreceptors and rod bipolar cells. Front Cell Neurosci 2024; 18:1404929. [PMID: 38903773 PMCID: PMC11188360 DOI: 10.3389/fncel.2024.1404929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/17/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction Mechanical sensitive channels expressed in mammalian retinas are effectors of elevated pressure stresses, but it is unclear how their activation affects visual function in pressure-related retinal disorders. Methods This study investigated the role of the transient potential channel vanilloid TRPV4 in photoreceptors and rod bipolar cells (RBCs) with immunohistochemistry, confocal microscopy, electroretinography (ERG), and patch-clamp techniques. Results TRPV4 immunoreactivity (IR) was found in the outer segments of photoreceptors, dendrites and somas of PKCα-positive RBCs and other BCs, plexiform layers, and retinal ganglion cells (RGCs) in wild-type mice. TRPV4-IR was largely diminished in the retinas of homozygous TRPV4 transgenic mice. Genetically suppressing TRPV4 expression moderately but significantly enhanced the amplitude of ERG a- and b-waves evoked by scotopic and mesopic lights (0.55 to 200 Rh*rod-1 s-1) and photopic lights (105-106 Rh*rod-1 s-1) compared to wild-type mice in fully dark-adapted conditions. The implicit time evoked by dim lights (0.55 to 200 Rh*rod-1 s-1) was significantly decreased for b-waves and elongated for a-waves in the transgenic mice. ERG b-wave evoked by dim lights is primarily mediated by RBCs, and under voltage-clamp conditions, the latency of the light-evoked cation current in RBCs of the transgenic mice was significantly shorter compared to wild-type mice. About 10% of the transgenic mice had one eye undeveloped, and the percentage was significantly higher than in wild-type mice. Conclusions The data indicates that TRPV4 involves ocular development and is expressed and active in outer retinal neurons, and interventions of TRPV4 can variably affect visual signals in rods, cones, RBCs, and cone ON BCs.
Collapse
Affiliation(s)
| | | | | | - Ji-Jie Pang
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
12
|
Cibelli A, Mola MG, Saracino E, Barile B, Abbrescia P, Mogni G, Spray DC, Scemes E, Rossi A, Spennato D, Svelto M, Frigeri A, Benfenati V, Nicchia GP. Aquaporin-4 and transient receptor potential vanilloid 4 balance in early postnatal neurodevelopment. Glia 2024; 72:938-959. [PMID: 38362923 DOI: 10.1002/glia.24512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/17/2024]
Abstract
In the adult brain, the water channel aquaporin-4 (AQP4) is expressed in astrocyte endfoot, in supramolecular assemblies, called "Orthogonal Arrays of Particles" (OAPs) together with the transient receptor potential vanilloid 4 (TRPV4), finely regulating the cell volume. The present study aimed at investigating the contribution of AQP4 and TRPV4 to CNS early postnatal development using WT and AQP4 KO brain and retina and neuronal stem cells (NSCs), as an in vitro model of astrocyte differentiation. Western blot analysis showed that, differently from AQP4 and the glial cell markers, TRPV4 was downregulated during CNS development and NSC differentiation. Blue native/SDS-PAGE revealed that AQP4 progressively organized into OAPs throughout the entire differentiation process. Fluorescence quenching assay indicated that the speed of cell volume changes was time-related to NSC differentiation and functional to their migratory ability. Calcium imaging showed that the amplitude of TRPV4 Ca2+ transient is lower, and the dynamics are changed during differentiation and suppressed in AQP4 KO NSCs. Overall, these findings suggest that early postnatal neurodevelopment is subjected to temporally modulated water and Ca2+ dynamics likely to be those sustaining the biochemical and physiological mechanisms responsible for astrocyte differentiation during brain and retinal development.
Collapse
Affiliation(s)
- Antonio Cibelli
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Maria Grazia Mola
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Emanuela Saracino
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Bologna, Italy
| | - Barbara Barile
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Pasqua Abbrescia
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro-Medical School, Bari, Italy
| | - Guido Mogni
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - David C Spray
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Eliana Scemes
- Department of Cell Biology and Anatomy, NY Medical College, Valhalla, New York, USA
| | - Andrea Rossi
- Genome Engineering and Model Development Lab (GEMD), IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Diletta Spennato
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Bologna, Italy
| | - Maria Svelto
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Antonio Frigeri
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro-Medical School, Bari, Italy
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Valentina Benfenati
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Bologna, Italy
| | - Grazia Paola Nicchia
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Bologna, Italy
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
13
|
Pang JJ. The Variety of Mechanosensitive Ion Channels in Retinal Neurons. Int J Mol Sci 2024; 25:4877. [PMID: 38732096 PMCID: PMC11084373 DOI: 10.3390/ijms25094877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Alterations in intraocular and external pressure critically involve the pathogenesis of glaucoma, traumatic retinal injury (TRI), and other retinal disorders, and retinal neurons have been reported to express multiple mechanical-sensitive channels (MSCs) in recent decades. However, the role of MSCs in visual functions and pressure-related retinal conditions has been unclear. This review will focus on the variety and functional significance of the MSCs permeable to K+, Na+, and Ca2+, primarily including the big potassium channel (BK); the two-pore domain potassium channels TRAAK and TREK; Piezo; the epithelial sodium channel (ENaC); and the transient receptor potential channels vanilloid TRPV1, TRPV2, and TRPV4 in retinal photoreceptors, bipolar cells, horizontal cells, amacrine cells, and ganglion cells. Most MSCs do not directly mediate visual signals in vertebrate retinas. On the other hand, some studies have shown that MSCs can open in physiological conditions and regulate the activities of retinal neurons. While these data reasonably predict the crossing of visual and mechanical signals, how retinal light pathways deal with endogenous and exogenous mechanical stimulation is uncertain.
Collapse
Affiliation(s)
- Ji-Jie Pang
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
14
|
Liu W, Zhang W, Wang C, Song J, Li K, Zhang X, Wu X, Guo H. TRPV4 antagonist suppresses retinal ganglion cell apoptosis by regulating the activation of CaMKII and TNF-α expression in a chronic ocular hypertension rat model. Int Immunopharmacol 2024; 130:111811. [PMID: 38457929 DOI: 10.1016/j.intimp.2024.111811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Glaucoma is characterized by a progressive loss of retinal ganglion cells (RGCs), leading to irreversible visual function impairment. Sustained increase in intraocular pressure represents a major risk factor for glaucoma, yet the underlying mechanisms of RGC apoptosis induced by intraocular pressure remains unclear. This study aims to investigate the role of TRPV4 in RGC apoptosis in a rat model of chronic ocular hypertension (COH) and the underlying molecular mechanism. In the COH rat models, we evaluated the visual function, retinal pathological changes and RGC apoptosis. TRPV4 expression and downstream signaling molecules were also detected. We found that RGC density decreased and RGC apoptosis was induced in COH eyes compared with control eyes. TRPV4 expression increased significantly in response to elevated IOP. TRPV4 inhibition by the TRPV4 antagonist HC-067047 (HC-067) suppressed RGC apoptosis and protected visual function. HC-067 treatment upregulated the phosphorylation of CaMKII in both control and COH eyes. Finally, HC-067 treatment suppressed the production of TNF-α induced by ocular hypertension. The TRPV4 antagonist HC-067 might suppress RGC apoptosis by regulating the activation of CaMKII and inhibiting the production of TNF-α in the COH model. This indicated that TRPV4 antagonists may be a potential and novel therapeutic strategy for glaucoma.
Collapse
Affiliation(s)
- Wenhui Liu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Wenzhe Zhang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Chen Wang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Jiarun Song
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Kaiyue Li
- Department of Nuclear Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Xia Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xinyi Wu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China.
| | - Hui Guo
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
15
|
Zhang X, Zhang Y, Su Q, Liu Y, Li Z, Yong VW, Xue M. Ion Channel Dysregulation Following Intracerebral Hemorrhage. Neurosci Bull 2024; 40:401-414. [PMID: 37755675 PMCID: PMC10912428 DOI: 10.1007/s12264-023-01118-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/14/2023] [Indexed: 09/28/2023] Open
Abstract
Injury to the brain after intracerebral hemorrhage (ICH) results from numerous complex cellular mechanisms. At present, effective therapy for ICH is limited and a better understanding of the mechanisms of brain injury is necessary to improve prognosis. There is increasing evidence that ion channel dysregulation occurs at multiple stages in primary and secondary brain injury following ICH. Ion channels such as TWIK-related K+ channel 1, sulfonylurea 1 transient receptor potential melastatin 4 and glutamate-gated channels affect ion homeostasis in ICH. They in turn participate in the formation of brain edema, disruption of the blood-brain barrier, and the generation of neurotoxicity. In this review, we summarize the interaction between ions and ion channels, the effects of ion channel dysregulation, and we discuss some therapeutics based on ion-channel modulation following ICH.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Yan Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Qiuyang Su
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Zhe Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
16
|
Zhang X, Wang F, Su Y. TRPV: An emerging target in glaucoma and optic nerve damage. Exp Eye Res 2024; 239:109784. [PMID: 38199261 DOI: 10.1016/j.exer.2024.109784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/30/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Transient receptor potential vanilloid (TRPV) channels are members of the TRP channel superfamily, which are ion channels that sense mechanical and osmotic stimuli and participate in Ca2+ signalling across the cell membrane. TRPV channels play important roles in maintaining the normal functions of an organism, and defects or abnormalities in TRPV channel function cause a range of diseases, including cardiovascular, neurological and urological disorders. Glaucoma is a group of chronic progressive optic nerve diseases with pathological changes that can occur in the tissues of the anterior and posterior segments of the eye, including the ciliary body, trabecular meshwork, Schlemm's canal, and retina. TRPV channels are expressed in these tissues and play various roles in glaucoma. In this article, we review various aspects of the pathogenesis of glaucoma, the structure and function of TRPV channels, the relationship between TRPV channels and systemic diseases, and the relationship between TRPV channels and ocular diseases, especially glaucoma, and we suggest future research directions. This information will help to further our understanding of TRPV channels and provide new ideas and targets for the treatment of glaucoma and optic nerve damage.
Collapse
Affiliation(s)
- Xiaotong Zhang
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Feng Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China.
| | - Ying Su
- Eye Hospital, The First Affiliated Hospital, Harbin Medical University, Harbin, China.
| |
Collapse
|
17
|
Li X, Lu K, Guo S, Xue S, Lian F. TRPV4 blockade alleviates endoplasmic reticulum stress mediated apoptosis in hypoxia-induced cardiomyocyte injury. Cell Signal 2024; 114:110973. [PMID: 37981067 DOI: 10.1016/j.cellsig.2023.110973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/23/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Hypoxia-induced myocardial injury remains to be a huge health issue worldwide. Transient receptor potential vanilloid 4 (TRPV4) is a high-flux Ca2+ channel that is involved in numerous cardiovascular diseases. However, the role of TRPV4 in myocardial hypoxic injury remains unclear. Accordingly, this study aimed to investigate the antiapoptotic activity of TRPV4 inhibition and elucidate the underlying mechanisms in myocardial hypoxic injury. METHODS The ability of TRPV4 to modulate the endoplasmic reticulum stress (ERS) and apoptosis was assessed in vitro through the administration of the TRPV4 antagonist HC-067047 or the agonist GSK1016790A. Additionally, intracellular Ca2+ concentration was measured by Fluo-4 AM. RESULTS TRPV4 expression was significantly upregulated in hypoxic H9c2 cells compared with that in normoxic cardiomyocytes, accompanied with increased intracellular Ca2+ levels. Conversely, TRPV4 inhibition alleviated ERS in hypoxic H9c2 cells and prevented apoptosis, whereas TRPV4 agonist exacerbated such events. Furthermore, H9c2 cell apoptosis was attenuated with the administration of 4-PBA, an ERS inhibitor. CONCLUSION TRPV4 inhibition alleviates hypoxia-induced H9c2 cell apoptosis by mitigating ERS.
Collapse
Affiliation(s)
- Xueqing Li
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Kongli Lu
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Suxiang Guo
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China.
| | - Feng Lian
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China.
| |
Collapse
|
18
|
Choi GW, Kim ML, Sung KR. Modulation of TRPV4-mediated TNF-α expression in Müller glia and subsequent RGC apoptosis by statins. Exp Eye Res 2024; 239:109781. [PMID: 38184223 DOI: 10.1016/j.exer.2024.109781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
In addition to regulating cholesterol synthesis, statins have neuroprotective effects. Apoptosis of retinal ganglion cells (RGCs) causes a gradual loss of visual function in glaucoma. This study aimed to investigate the neuroprotective effect of statins on the RGC apoptosis induced by activated Müller glia. Primary Müller cells and RGCs were cultured from the retina of C57BL6 mice. Müller cells were activated with GSK101, a transient receptor potential vanilloid 4 (TRPV4) agonist, and tumor necrosis factor-alpha (TNF-α) released to the medium was measured using an enzyme-linked immunosorbent assay. Cells were pretreated with simvastatin or lovastatin before GSK101. RGCs were treated with conditioned media from Müller glia cultures, and apoptosis was determined using flow cytometry. TRPV4 activation through GSK101 treatment induced gliosis of Müller cells, and the conditioned media from activated Müller cells was potent to induce RGC apoptosis. Statins suppress both gliosis in Müller cells and subsequent RGC apoptosis. TNF-α release to the media was increased in GSK101-treated Müller cells, and TNF-α in the conditioned media was the critical factor causing RGC apoptosis. The increase in TRPV4-mediated TNF-α expression occurred through the nuclear factor kappa-light chain enhancer of activated B cell pathway activation, which was inhibited by statins. Herein, we showed that statins can modulate gliosis and TNF-α expression in Müller cells, protecting RGCs. These data further support the neuroprotective effect of statins, promoting them as a potential treatment for glaucoma.
Collapse
Affiliation(s)
- Go Woon Choi
- Biomedical Research Center, Asan Medical Center, College of Medicine, University of Ulsan, 88, Olympic-Ro 43-Gil, Songpa-gu, Seoul, 05505, South Korea
| | - Mi-Lyang Kim
- Biomedical Research Center, Asan Medical Center, College of Medicine, University of Ulsan, 88, Olympic-Ro 43-Gil, Songpa-gu, Seoul, 05505, South Korea
| | - Kyung Rim Sung
- Department of Ophthalmology, Asan Medical Center, College of Medicine, University of Ulsan, 88, Olympic-Ro 43-Gil, Songpa-gu, Seoul, 05505, South Korea.
| |
Collapse
|
19
|
Pereiro X, Ruzafa N, Azkargorta M, Elortza F, Acera A, Ambrósio AF, Santiago AR, Vecino E. Müller glial cells located in the peripheral retina are more susceptible to high pressure: implications for glaucoma. Cell Biosci 2024; 14:5. [PMID: 38183095 PMCID: PMC10770903 DOI: 10.1186/s13578-023-01186-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/13/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Glaucoma, a progressive neurodegenerative disease, is a leading cause of irreversible vision loss worldwide. This study aims to elucidate the critical role of Müller glia (MG) in the context of retinal ganglion cell (RGC) death, particularly focusing on the influence of peripheral MG sensitivity to high pressure (HP). METHODS Co-cultures of porcine RGCs with MG were isolated from both the central and peripheral regions of pig retinas and subjected to both normal and HP conditions. Mass spectrometry analysis of the MG-conditioned medium was conducted to identify the proteins released by MG under all conditions. RESULTS Peripheral MG were found to secrete a higher quantity of neuroprotective factors, effectively promoting RGC survival under normal physiological conditions. However, under HP conditions, co-cultures with peripheral MG exhibited impaired RGC survival. Moreover, under HP conditions, peripheral MG significantly upregulated the secretion of proteins associated with apoptosis, oxidative stress, and inflammation. CONCLUSIONS This study provides robust evidence suggesting the involvement of MG in RGC death in glaucoma, thus paving the way for future therapeutic investigations.
Collapse
Affiliation(s)
- Xandra Pereiro
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain.
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.
| | - Noelia Ruzafa
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehdProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160, Derio, Spain
| | - Félix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehdProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160, Derio, Spain
| | - Arantxa Acera
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
| | - António Francisco Ambrósio
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
| | - Ana Raquel Santiago
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
| | - Elena Vecino
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain.
| |
Collapse
|
20
|
Spurlock M, An W, Reshetnikova G, Wen R, Wang H, Braha M, Solis G, Kurtenbach S, Galindez OJ, de Rivero Vaccari JP, Chou TH, Porciatti V, Shestopalov VI. The Inflammasome-Dependent Dysfunction and Death of Retinal Ganglion Cells after Repetitive Intraocular Pressure Spikes. Cells 2023; 12:2626. [PMID: 37998361 PMCID: PMC10670000 DOI: 10.3390/cells12222626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
The dysfunction and selective loss of retinal ganglion cells (RGCs) is a known cause of vision loss in glaucoma and other neuropathies, where ocular hypertension (OHT) is the major risk factor. We investigated the impact of transient non-ischemic OHT spikes (spOHT) on RGC function and viability in vivo to identify cellular pathways linking low-grade repetitive mechanical stress to RGC pathology. We found that repetitive spOHT had an unexpectedly high impact on intraocular homeostasis and RGC viability, while exposure to steady OHT (stOHT) of a similar intensity and duration failed to induce pathology. The repetitive spOHT induced the rapid activation of the inflammasome, marked by the upregulation of NLRP1, NLRP3, AIM2, caspases -1, -3/7, -8, and Gasdermin D (GSDMD), and the release of interleukin-1β (IL-1β) and other cytokines into the vitreous. Similar effects were also detected after 5 weeks of exposure to chronic OHT in an induced glaucoma model. The onset of these immune responses in both spOHT and glaucoma models preceded a 50% deficit in pattern electroretinogram (PERG) amplitude and a significant loss of RGCs 7 days post-injury. The inactivation of inflammasome complexes in Nlrp1-/-, Casp1-/-, and GsdmD-/- knockout animals significantly suppressed the spOHT-induced inflammatory response and protected RGCs. Our results demonstrate that mechanical stress produced by acute repetitive spOHT or chronic OHT is mechanistically linked to inflammasome activation, which leads to RGC dysfunction and death.
Collapse
Affiliation(s)
- Markus Spurlock
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Weijun An
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Galina Reshetnikova
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Rong Wen
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Hua Wang
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Michelle Braha
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Gabriela Solis
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Stefan Kurtenbach
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Orlando J. Galindez
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Juan Pablo de Rivero Vaccari
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Tsung-Han Chou
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Vittorio Porciatti
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Valery I. Shestopalov
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
21
|
Zuo Z, Zhang Z, Zhang S, Fan B, Li G. The Molecular Mechanisms Involved in Axonal Degeneration and Retrograde Retinal Ganglion Cell Death. DNA Cell Biol 2023; 42:653-667. [PMID: 37819746 DOI: 10.1089/dna.2023.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Axonal degeneration is a pathologic change common to multiple retinopathies and optic neuropathies. Various pathologic factors, such as mechanical injury, inflammation, and ischemia, can damage retinal ganglion cell (RGC) somas and axons, eventually triggering axonal degeneration and RGC death. The molecular mechanisms of somal and axonal degeneration are distinct but also overlap, and axonal degeneration can result in retrograde somal degeneration. While the mitogen-activated protein kinase pathway acts as a central node in RGC axon degeneration, several newly discovered molecules, such as sterile alpha and Toll/interleukin-1 receptor motif-containing protein 1 and nicotinamide mononucleotide adenylyltransferase 2, also play a critical role in this pathological process following different types of injury. Therefore, we summarize the types of injury that cause RGC axon degeneration and retrograde RGC death and important underlying molecular mechanisms, providing a reference for the identification of targets for protecting axons and RGCs.
Collapse
Affiliation(s)
- Zhaoyang Zuo
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Ziyuan Zhang
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Siming Zhang
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Bin Fan
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Guangyu Li
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
22
|
Alarcon-Martinez L, Shiga Y, Villafranca-Baughman D, Cueva Vargas JL, Vidal Paredes IA, Quintero H, Fortune B, Danesh-Meyer H, Di Polo A. Neurovascular dysfunction in glaucoma. Prog Retin Eye Res 2023; 97:101217. [PMID: 37778617 DOI: 10.1016/j.preteyeres.2023.101217] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Retinal ganglion cells, the neurons that die in glaucoma, are endowed with a high metabolism requiring optimal provision of oxygen and nutrients to sustain their activity. The timely regulation of blood flow is, therefore, essential to supply firing neurons in active areas with the oxygen and glucose they need for energy. Many glaucoma patients suffer from vascular deficits including reduced blood flow, impaired autoregulation, neurovascular coupling dysfunction, and blood-retina/brain-barrier breakdown. These processes are tightly regulated by a community of cells known as the neurovascular unit comprising neurons, endothelial cells, pericytes, Müller cells, astrocytes, and microglia. In this review, the neurovascular unit takes center stage as we examine the ability of its members to regulate neurovascular interactions and how their function might be altered during glaucomatous stress. Pericytes receive special attention based on recent data demonstrating their key role in the regulation of neurovascular coupling in physiological and pathological conditions. Of particular interest is the discovery and characterization of tunneling nanotubes, thin actin-based conduits that connect distal pericytes, which play essential roles in the complex spatial and temporal distribution of blood within the retinal capillary network. We discuss cellular and molecular mechanisms of neurovascular interactions and their pathophysiological implications, while highlighting opportunities to develop strategies for vascular protection and regeneration to improve functional outcomes in glaucoma.
Collapse
Affiliation(s)
- Luis Alarcon-Martinez
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada; Centre for Eye Research Australia, University of Melbourne, Melbourne, Australia
| | - Yukihiro Shiga
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada
| | - Deborah Villafranca-Baughman
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada
| | - Jorge L Cueva Vargas
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada
| | - Isaac A Vidal Paredes
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada
| | - Heberto Quintero
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada
| | - Brad Fortune
- Discoveries in Sight Research Laboratories, Devers Eye Institute and Legacy Research Institute, Legacy Healthy, Portland, OR, USA
| | - Helen Danesh-Meyer
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Adriana Di Polo
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada.
| |
Collapse
|
23
|
Liu WW, Kinzy TG, Cooke Bailey JN, Xu Z, Hysi P, Wiggs JL. Mechanosensitive ion channel gene survey suggests potential roles in primary open angle glaucoma. Sci Rep 2023; 13:15871. [PMID: 37741866 PMCID: PMC10517927 DOI: 10.1038/s41598-023-43072-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023] Open
Abstract
Although glaucoma is a disease modulated by eye pressure, the mechanisms of pressure sensing in the eye are not well understood. Here, we investigated associations between mechanosensitive ion channel gene variants and primary open-angle glaucoma (POAG). Common (minor allele frequency > 5%) single nucleotide polymorphisms located within the genomic regions of 20 mechanosensitive ion channel genes in the K2P, TMEM63, PIEZO and TRP channel families were assessed using genotype data from the NEIGHBORHOOD consortium of 3853 cases and 33,480 controls. Rare (minor allele frequency < 1%) coding variants were assessed using exome array genotyping data for 2606 cases and 2606 controls. Association with POAG was analyzed using logistic regression adjusting for age and sex. Two rare PIEZO1 coding variants with protective effects were identified in the NEIGHBOR dataset: R1527H, (OR 0.17, P = 0.0018) and a variant that alters a canonical splice donor site, g.16-88737727-C-G Hg38 (OR 0.38, P = 0.02). Both variants showed similar effects in the UK Biobank and the R1527H also in the FinnGen database. Several common variants also reached study-specific thresholds for association in the NEIGHBORHOOD dataset. These results identify novel variants in several mechanosensitive channel genes that show associations with POAG, suggesting that these channels may be potential therapeutic targets.
Collapse
Affiliation(s)
- Wendy W Liu
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, 2370 Watson Court, Palo Alto, CA, 94303, USA.
| | - Tyler G Kinzy
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Jessica N Cooke Bailey
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Zihe Xu
- Department of Ophthalmology, King's College London, St. Thomas' Hospital, London, UK
| | - Pirro Hysi
- Department of Ophthalmology, King's College London, St. Thomas' Hospital, London, UK
- Department of Twin Research and Genetic Epidemiology, King's College London, St. Thomas' Hospital, London, UK
| | - Janey L Wiggs
- Massachusetts Eye and Ear, Harvard Medical School Boston, Boston, MA, USA
| |
Collapse
|
24
|
Lindner T, Schmidl D, Peschorn L, Pai V, Popa-Cherecheanu A, Chua J, Schmetterer L, Garhöfer G. Therapeutic Potential of Cannabinoids in Glaucoma. Pharmaceuticals (Basel) 2023; 16:1149. [PMID: 37631064 PMCID: PMC10460067 DOI: 10.3390/ph16081149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide. To date, intraocular pressure (IOP) is the only modifiable risk factor in glaucoma treatment, but even in treated patients, the disease can progress. Cannabinoids, which have been known to lower IOP since the 1970s, have been shown to have beneficial effects in glaucoma patients beyond their IOP-lowering properties. In addition to the classical cannabinoid receptors CB1 and CB2, knowledge of non-classical cannabinoid receptors and the endocannabinoid system has increased in recent years. In particular, the CB2 receptor has been shown to mediate anti-inflammatory, anti-apoptotic, and neuroprotective properties, which may represent a promising therapeutic target for neuroprotection in glaucoma patients. Due to their vasodilatory effects, cannabinoids improve blood flow to the optic nerve head, which may suggest a vasoprotective potential and counteract the altered blood flow observed in glaucoma patients. The aim of this review was to assess the available evidence on the effects and therapeutic potential of cannabinoids in glaucoma patients. The pharmacological mechanisms underlying the effects of cannabinoids on IOP, neuroprotection, and ocular hemodynamics have been discussed.
Collapse
Affiliation(s)
- Theresa Lindner
- Department of Clinical Pharmacology, Medical University Vienna, 1090 Vienna, Austria; (T.L.); (D.S.); (L.P.); (V.P.); (L.S.)
| | - Doreen Schmidl
- Department of Clinical Pharmacology, Medical University Vienna, 1090 Vienna, Austria; (T.L.); (D.S.); (L.P.); (V.P.); (L.S.)
| | - Laura Peschorn
- Department of Clinical Pharmacology, Medical University Vienna, 1090 Vienna, Austria; (T.L.); (D.S.); (L.P.); (V.P.); (L.S.)
| | - Viktoria Pai
- Department of Clinical Pharmacology, Medical University Vienna, 1090 Vienna, Austria; (T.L.); (D.S.); (L.P.); (V.P.); (L.S.)
| | - Alina Popa-Cherecheanu
- Department of Ophthalmology, Emergency University Hospital, 050098 Bucharest, Romania;
- Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Jacqueline Chua
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 169856, Singapore;
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Leopold Schmetterer
- Department of Clinical Pharmacology, Medical University Vienna, 1090 Vienna, Austria; (T.L.); (D.S.); (L.P.); (V.P.); (L.S.)
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 169856, Singapore;
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE), Nanyang Technological University, Singapore 639798, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, 1090 Vienna, Austria
- Institute of Molecular and Clinical Ophthalmology, 4031 Basel, Switzerland
| | - Gerhard Garhöfer
- Department of Clinical Pharmacology, Medical University Vienna, 1090 Vienna, Austria; (T.L.); (D.S.); (L.P.); (V.P.); (L.S.)
| |
Collapse
|
25
|
Wang Y, Zhang W, Xu G, Shi C, Wang X, Qu J, Wang H, Liu C. The role of TRPV4 in the regulation of retinal ganglion cells apoptosis in rat and mouse. Heliyon 2023; 9:e17583. [PMID: 37456002 PMCID: PMC10338314 DOI: 10.1016/j.heliyon.2023.e17583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
Retinal ganglion cell (RGC) damages are common in glaucoma, causing atrophy of the optic papilla, visual field damage, and visual loss. Transient receptor potential vanilloid 4 (TRPV4) is significantly expressed in the eyeball and is sensitive to mechanical and osmotic pressure. However, the specific role and mechanism of TRPV4 in glaucoma and RGC progression remain unclear. TRPV4 expression was detected in RGCs under different pressure culture conditions. We also explored the pressure effect on TRPV4 expression and the role and mechanism behind the functional regulation of RGCs. Immunofluorescence staining, western blotting, and TUNEL were utilized in this study. Our results established that TRPV4 was expressed in RGCs. TRPV4 expression was decreased at 40 mmHg and 60 mmHg, and the expression of BAX at 40 mmHg, 60 mmHg. Additionally, the expression of caspase 9 protein increased at 40 mmHg with the pressure increase compared with the conventional culture group. TUNEL staining revealed that the apoptosis rate of RGCs was elevated at 40 mmHg and 60 mmHg, compared with the traditional culture group. Therefore, the expression of BAX and caspase 9 increased, along with the apoptosis rate of RGCs compared with the control group. However, after TRPV4 antagonist treatment, the expression of BAX and caspase 9 decreased, and the apoptosis rate of RGCs decreased. Thus, TRPV4 may affect the mitochondrial apoptosis pathway, such as BAX and caspase 9, leading to the apoptosis of RGCs. The antagonists of TRPV4 could provide a new idea for clinically treating acute glaucoma.
Collapse
Affiliation(s)
- Yi Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, 271000, China
| | - Wei Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Guozheng Xu
- Department of Physiology and Neurobiology, Functional Laboratory, Shandong First Medical University, Jinan, Shandong, 250117, China
| | - Changwei Shi
- Department of Physiology and Neurobiology, Functional Laboratory, Shandong First Medical University, Jinan, Shandong, 250117, China
| | - Xiang Wang
- School of Clinical Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, China
| | - Jianfeng Qu
- Medical Engineering and Technology Research Center, Shandong First Medical University, Taian, Shandong, 271000, China
| | - Hongmei Wang
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Chunhua Liu
- Department of Physiology and Neurobiology, Functional Laboratory, Shandong First Medical University, Jinan, Shandong, 250117, China
| |
Collapse
|
26
|
Luo ZH, Ma JX, Zhang W, Tian AX, Gong SW, Li Y, Lai YX, Ma XL. Alterations in the microenvironment and the effects produced of TRPV5 in osteoporosis. J Transl Med 2023; 21:327. [PMID: 37198647 DOI: 10.1186/s12967-023-04182-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/05/2023] [Indexed: 05/19/2023] Open
Abstract
The pathogenesis of osteoporosis involves multiple factors, among which alterations in the bone microenvironment play a crucial role in disrupting normal bone metabolic balance. Transient receptor potential vanilloid 5 (TRPV5), a member of the TRPV family, is an essential determinant of the bone microenvironment, acting at multiple levels to influence its properties. TRPV5 exerts a pivotal influence on bone through the regulation of calcium reabsorption and transportation while also responding to steroid hormones and agonists. Although the metabolic consequences of osteoporosis, such as loss of bone calcium, reduced mineralization capacity, and active osteoclasts, have received significant attention, this review focuses on the changes in the osteoporotic microenvironment and the specific effects of TRPV5 at various levels.
Collapse
Affiliation(s)
- Zhi-Heng Luo
- Tianjin Hospital, Tianjin University, Jie Fang Nan Road 406, Tianjin, 300211, People's Republic of China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin Hospital, Tianjin, 300050, People's Republic of China
| | - Jian-Xiong Ma
- Tianjin Hospital, Tianjin University, Jie Fang Nan Road 406, Tianjin, 300211, People's Republic of China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin Hospital, Tianjin, 300050, People's Republic of China
| | - Wei Zhang
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xue Yuan Avenue, Shenzhen University Town, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Ai-Xian Tian
- Tianjin Hospital, Tianjin University, Jie Fang Nan Road 406, Tianjin, 300211, People's Republic of China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin Hospital, Tianjin, 300050, People's Republic of China
| | - Shu-Wei Gong
- Tianjin Hospital, Tianjin University, Jie Fang Nan Road 406, Tianjin, 300211, People's Republic of China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin Hospital, Tianjin, 300050, People's Republic of China
| | - Yan Li
- Tianjin Hospital, Tianjin University, Jie Fang Nan Road 406, Tianjin, 300211, People's Republic of China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin Hospital, Tianjin, 300050, People's Republic of China
| | - Yu-Xiao Lai
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xue Yuan Avenue, Shenzhen University Town, Shenzhen, 518055, Guangdong, People's Republic of China.
| | - Xin-Long Ma
- Tianjin Hospital, Tianjin University, Jie Fang Nan Road 406, Tianjin, 300211, People's Republic of China.
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin Hospital, Tianjin, 300050, People's Republic of China.
| |
Collapse
|
27
|
Križaj D, Cordeiro S, Strauß O. Retinal TRP channels: Cell-type-specific regulators of retinal homeostasis and multimodal integration. Prog Retin Eye Res 2023; 92:101114. [PMID: 36163161 PMCID: PMC9897210 DOI: 10.1016/j.preteyeres.2022.101114] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 02/05/2023]
Abstract
Transient receptor potential (TRP) channels are a widely expressed family of 28 evolutionarily conserved cationic ion channels that operate as primary detectors of chemical and physical stimuli and secondary effectors of metabotropic and ionotropic receptors. In vertebrates, the channels are grouped into six related families: TRPC, TRPV, TRPM, TRPA, TRPML, and TRPP. As sensory transducers, TRP channels are ubiquitously expressed across the body and the CNS, mediating critical functions in mechanosensation, nociception, chemosensing, thermosensing, and phototransduction. This article surveys current knowledge about the expression and function of the TRP family in vertebrate retinas, which, while dedicated to transduction and transmission of visual information, are highly susceptible to non-visual stimuli. Every retinal cell expresses multiple TRP subunits, with recent evidence establishing their critical roles in paradigmatic aspects of vertebrate vision that include TRPM1-dependent transduction of ON bipolar signaling, TRPC6/7-mediated ganglion cell phototransduction, TRP/TRPL phototransduction in Drosophila and TRPV4-dependent osmoregulation, mechanotransduction, and regulation of inner and outer blood-retina barriers. TRP channels tune light-dependent and independent functions of retinal circuits by modulating the intracellular concentration of the 2nd messenger calcium, with emerging evidence implicating specific subunits in the pathogenesis of debilitating diseases such as glaucoma, ocular trauma, diabetic retinopathy, and ischemia. Elucidation of TRP channel involvement in retinal biology will yield rewards in terms of fundamental understanding of vertebrate vision and therapeutic targeting to treat diseases caused by channel dysfunction or over-activation.
Collapse
Affiliation(s)
- David Križaj
- Departments of Ophthalmology, Neurobiology, and Bioengineering, University of Utah, Salt Lake City, USA
| | - Soenke Cordeiro
- Institute of Physiology, Faculty of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Olaf Strauß
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität, Humboldt-University, The Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
28
|
Lu G, Qian X, Gong C, Ji J, Thomas BB, Humayun MS, Zhou Q. Ultrasound Retinal Stimulation: A Mini-Review of Recent Developments. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:3224-3231. [PMID: 36343006 PMCID: PMC10424795 DOI: 10.1109/tuffc.2022.3220568] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ultrasound neuromodulation is an emerging technology. A significant amount of effort has been devoted to investigating the feasibility of noninvasive ultrasound retinal stimulation. Recent studies have shown that ultrasound can activate neurons in healthy and degenerated retinas. Specifically, high-frequency ultrasound can evoke localized neuron responses and generate patterns in visual circuits. In this review, we recapitulate pilot studies on ultrasound retinal stimulation, compare it with other neuromodulation technologies, and discuss its advantages and limitations. An overview of the opportunities and challenges to develop a noninvasive retinal prosthesis using high-frequency ultrasound is also provided.
Collapse
|
29
|
Lapajne L, Rudzitis CN, Cullimore B, Ryskamp D, Lakk M, Redmon SN, Yarishkin O, Krizaj D. TRPV4: Cell type-specific activation, regulation and function in the vertebrate eye. CURRENT TOPICS IN MEMBRANES 2022; 89:189-219. [PMID: 36210149 PMCID: PMC9879314 DOI: 10.1016/bs.ctm.2022.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The architecture of the vertebrate eye is optimized for efficient delivery and transduction of photons and processing of signaling cascades downstream from phototransduction. The cornea, lens, retina, vasculature, ciliary body, ciliary muscle, iris and sclera have specialized functions in ocular protection, transparency, accommodation, fluid regulation, metabolism and inflammatory signaling, which are required to enable function of the retina-light sensitive tissue in the posterior eye that transmits visual signals to relay centers in the midbrain. This process can be profoundly impacted by non-visual stimuli such as mechanical (tension, compression, shear), thermal, nociceptive, immune and chemical stimuli, which target these eye regions to induce pain and precipitate vision loss in glaucoma, diabetic retinopathy, retinal dystrophies, retinal detachment, cataract, corneal dysfunction, ocular trauma and dry eye disease. TRPV4, a polymodal nonselective cation channel, integrate non-visual inputs with homeostatic and signaling functions of the eye. The TRPV4 gene is expressed in most if not all ocular tissues, which vary widely with respect to the mechanisms of TRPV4 channel activation, modulation, oligomerization, and participation in protein- and lipid interactions. Under- and overactivation of TRPV4 may affect intraocular pressure, maintenance of blood-retina barriers, lens accommodation, neuronal function and neuroinflammation. Because TRPV4 dysregulation precipitates many pathologies across the anterior and posterior eye, the channel could be targeted to mitigate vision loss.
Collapse
Affiliation(s)
- Luka Lapajne
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States; Department of Ophthalmology, University Medical Centre, University of Ljubljana, Ljubljana, Slovenia
| | - Christopher N Rudzitis
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Brenan Cullimore
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Daniel Ryskamp
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Monika Lakk
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Sarah N Redmon
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Oleg Yarishkin
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - David Krizaj
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States; Department of Neurobiology, University of Utah, Salt Lake City, UT, United States; Department of Bioengineering, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
30
|
Chen Y, Su Y, Wang F. The Piezo1 ion channel in glaucoma: a new perspective on mechanical stress. Hum Cell 2022; 35:1307-1322. [PMID: 35767143 DOI: 10.1007/s13577-022-00738-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022]
Abstract
Glaucomatous optic nerve damage caused by pathological intraocular pressure elevation is irreversible, and its course is often difficult to control. This group of eye diseases is closely related to biomechanics, and the correlation between glaucoma pathogenesis and mechanical stimulation has been studied in recent decades. The nonselective cation channel Piezo1, the most important known mechanical stress sensor, is a transmembrane protein widely expressed in various cell types. Piezo1 has been detected throughout the eye, and the close relationship between Piezo1 and glaucoma is being confirmed. Pathological changes in glaucoma occur in both the anterior and posterior segments of the eye, and it is of great interest for researchers to determine whether Piezo1 plays a role in these changes and how it functions. The elucidation of the mechanisms of Piezo1 action in nonocular tissues and the reported roles of similar mechanically activated ion channels in glaucoma will provide an appropriate basis for further investigation. From a new perspective, this review provides a detailed description of the current progress in elucidating the role of Piezo1 in glaucoma, including relevant questions and assumptions, the remaining challenging research directions and mechanism-related therapeutic potential.
Collapse
Affiliation(s)
- Yidan Chen
- Department of Ophthalmology, Fourth Affiliated Hospital, Harbin Medical University, Yiyuan Road, Harbin, 150001, China
| | - Ying Su
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Yiman Road, Harbin, 150007, China.
| | - Feng Wang
- Department of Ophthalmology, Fourth Affiliated Hospital, Harbin Medical University, Yiyuan Road, Harbin, 150001, China.
| |
Collapse
|
31
|
Statins Inhibit the Gliosis of MIO-M1, a Müller Glial Cell Line Induced by TRPV4 Activation. Int J Mol Sci 2022; 23:ijms23095190. [PMID: 35563594 PMCID: PMC9100994 DOI: 10.3390/ijms23095190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/17/2022] Open
Abstract
We characterized Müller cell gliosis induced by the activation of transient receptor potential vanilloid-type 4 (TRPV4) and assessed whether statins could modulate the gliosis. The human Müller cell line, MIO-M1, was used to analyze the gliosis caused by glaucomatous stimulation. To induce Müller gliosis in MIO-M1 cells, GSK101 was used to activate TRPV4, and Müller gliosis was evaluated by analyzing vimentin, nestin, and glial fibrillary acidic protein (GFAP) expression. The expression level of TNF-α was determined by ELISA. To evaluate the GSK101 activation of the NF-κB pathway, p65 phosphorylation was measured by Western blotting, and the nuclear translocation of p65 and IκBα phosphorylation were assessed by immunostaining. To assess the effect of statins on MIO-M1 gliosis, cells were pretreated for 24 h with statins before GSK101 treatment. Vimentin, nestin, and GFAP expression were upregulated by GSK101, while statins effectively inhibited them. The expression of TNF-α was increased by GSK101. The phosphorylation and nuclear translocation of p65 and IκBα phosphorylation, which occurs prior to p65 activation, were induced. Statins suppressed the GSK101-mediated phosphorylation of IκBα and p65 translocation. Statins can mitigate gliosis in the human Müller cell line. Because TRPV4 activation in Müller cells reflects glaucoma pathophysiology, statins may have the potential to prevent RGC death.
Collapse
|
32
|
Combined drug triads for synergic neuroprotection in retinal degeneration. Biomed Pharmacother 2022; 149:112911. [DOI: 10.1016/j.biopha.2022.112911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/23/2022] Open
|
33
|
Aisenberg WH, McCray BA, Sullivan JM, Diehl E, DeVine LR, Alevy J, Bagnell AM, Carr P, Donohue JK, Goretzki B, Cole RN, Hellmich UA, Sumner CJ. Multiubiquitination of TRPV4 reduces channel activity independent of surface localization. J Biol Chem 2022; 298:101826. [PMID: 35300980 PMCID: PMC9010760 DOI: 10.1016/j.jbc.2022.101826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Ubiquitin (Ub)-mediated regulation of plasmalemmal ion channel activity canonically occurs via stimulation of endocytosis. Whether ubiquitination can modulate channel activity by alternative mechanisms remains unknown. Here, we show that the transient receptor potential vanilloid 4 (TRPV4) cation channel is multiubiquitinated within its cytosolic N-terminal and C-terminal intrinsically disordered regions (IDRs). Mutagenizing select lysine residues to block ubiquitination of the N-terminal but not C-terminal IDR resulted in a marked elevation of TRPV4-mediated intracellular calcium influx, without increasing cell surface expression levels. Conversely, enhancing TRPV4 ubiquitination via expression of an E3 Ub ligase reduced TRPV4 channel activity but did not decrease plasma membrane abundance. These results demonstrate Ub-dependent regulation of TRPV4 channel function independent of effects on plasma membrane localization. Consistent with ubiquitination playing a key negative modulatory role of the channel, gain-of-function neuropathy-causing mutations in the TRPV4 gene led to reduced channel ubiquitination in both cellular and Drosophila models of TRPV4 neuropathy, whereas increasing mutant TRPV4 ubiquitination partially suppressed channel overactivity. Together, these data reveal a novel mechanism via which ubiquitination of an intracellular flexible IDR domain modulates ion channel function independently of endocytic trafficking and identify a contributory role for this pathway in the dysregulation of TRPV4 channel activity by neuropathy-causing mutations.
Collapse
Affiliation(s)
- William H Aisenberg
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Brett A McCray
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeremy M Sullivan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Erika Diehl
- Department of Chemistry, Biochemistry Section, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Lauren R DeVine
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jonathan Alevy
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anna M Bagnell
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Patrice Carr
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jack K Donohue
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Benedikt Goretzki
- Institute of Organic Chemistry and Macromolecular Chemistry, Cluster of Excellence 'Balance of the Microverse', Friedrich-Schiller-Universität, Jena, Germany; Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-Universität, Frankfurt am Main, Germany
| | - Robert N Cole
- Institute of Organic Chemistry and Macromolecular Chemistry, Cluster of Excellence 'Balance of the Microverse', Friedrich-Schiller-Universität, Jena, Germany
| | - Ute A Hellmich
- Institute of Organic Chemistry and Macromolecular Chemistry, Cluster of Excellence 'Balance of the Microverse', Friedrich-Schiller-Universität, Jena, Germany; Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-Universität, Frankfurt am Main, Germany
| | - Charlotte J Sumner
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
34
|
Donau J, Luo H, Virta I, Skupin A, Pushina M, Loeffler J, Haertel FV, Das A, Kurth T, Gerlach M, Lindemann D, Reinach PS, Mergler S, Valtink M. TRPV4 Stimulation Level Regulates Ca2+-Dependent Control of Human Corneal Endothelial Cell Viability and Survival. MEMBRANES 2022; 12:membranes12030281. [PMID: 35323756 PMCID: PMC8952823 DOI: 10.3390/membranes12030281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023]
Abstract
The functional contribution of transient receptor potential vanilloid 4 (TRPV4) expression in maintaining human corneal endothelial cells (HCEC) homeostasis is unclear. Accordingly, we determined the effects of TRPV4 gene and protein overexpression on responses modulating the viability and survival of HCEC. Q-PCR, Western blot, FACS analyses and fluorescence single-cell calcium imaging confirmed TRPV4 gene and protein overexpression in lentivirally transduced 12V4 cells derived from their parent HCEC-12 line. Although TRPV4 overexpression did not alter the baseline transendothelial electrical resistance (TEER), its cellular capacitance (Ccl) was larger than that in its parent. Scanning electron microscopy revealed that only the 12V4 cells developed densely packed villus-like protrusions. Stimulation of TRPV4 activity with GSK1016790A (GSK101, 10 µmol/L) induced larger Ca2+ transients in the 12V4 cells than those in the parental HCEC-12. One to ten nmol/L GSK101 decreased 12V4 viability, increased cell death rates and reduced the TEER, whereas 1 µmol/L GSK101 was required to induce similar effects in the HCEC-12. However, the TRPV4 channel blocker RN1734 (1 to 30 µmol/L) failed to alter HCEC-12 and 12V4 morphology, cell viability and metabolic activity. Taken together, TRPV4 overexpression altered both the HCEC morphology and markedly lowered the GSK101 dosages required to stimulate its channel activity.
Collapse
Affiliation(s)
- Jennifer Donau
- Institute of Anatomy, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; (J.D.); (A.S.); (M.P.); (J.L.)
- Institute of Medical Microbiology and Virology, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany;
| | - Huan Luo
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany; (H.L.); (I.V.)
| | - Iiris Virta
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany; (H.L.); (I.V.)
| | - Annett Skupin
- Institute of Anatomy, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; (J.D.); (A.S.); (M.P.); (J.L.)
- Institute of Medical Microbiology and Virology, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany;
| | - Margarita Pushina
- Institute of Anatomy, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; (J.D.); (A.S.); (M.P.); (J.L.)
| | - Jana Loeffler
- Institute of Anatomy, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; (J.D.); (A.S.); (M.P.); (J.L.)
| | - Frauke V. Haertel
- Institute of Physiology, Faculty of Medicine, University Giessen, 35392 Giessen, Germany;
- Institute of Physiology, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany;
| | - Anupam Das
- Institute of Physiology, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany;
| | - Thomas Kurth
- Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform, TU Dresden, 01307 Dresden, Germany;
| | - Michael Gerlach
- Core Facility Cellular Imaging, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany;
| | - Dirk Lindemann
- Institute of Medical Microbiology and Virology, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany;
| | - Peter S. Reinach
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, China;
| | - Stefan Mergler
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany; (H.L.); (I.V.)
- Correspondence: (S.M.); (M.V.)
| | - Monika Valtink
- Institute of Anatomy, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; (J.D.); (A.S.); (M.P.); (J.L.)
- Equality and Diversity Unit, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
- Correspondence: (S.M.); (M.V.)
| |
Collapse
|
35
|
Qian X, Lu G, Thomas BB, Li R, Chen X, Shung KK, Humayun M, Zhou Q. Noninvasive Ultrasound Retinal Stimulation for Vision Restoration at High Spatiotemporal Resolution. BME FRONTIERS 2022; 2022:9829316. [PMID: 37850175 PMCID: PMC10521738 DOI: 10.34133/2022/9829316] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/05/2022] [Indexed: 10/19/2023] Open
Abstract
Objective. Retinal degeneration involving progressive deterioration and loss of function of photoreceptors is a major cause of permanent vision loss worldwide. Strategies to treat these incurable conditions incorporate retinal prostheses via electrically stimulating surviving retinal neurons with implanted devices in the eye, optogenetic therapy, and sonogenetic therapy. Existing challenges of these strategies include invasive manner, complex implantation surgeries, and risky gene therapy. Methods and Results. Here, we show that direct ultrasound stimulation on the retina can evoke neuron activities from the visual centers including the superior colliculus and the primary visual cortex (V1), in either normal-sighted or retinal degenerated blind rats in vivo. The neuron activities induced by the customized spherically focused 3.1 MHz ultrasound transducer have shown both good spatial resolution of 250 μm and temporal resolution of 5 Hz in the rat visual centers. An additional customized 4.4 MHz helical transducer was further implemented to generate a static stimulation pattern of letter forms. Conclusion. Our findings demonstrate that ultrasound stimulation of the retina in vivo is a safe and effective approach with high spatiotemporal resolution, indicating a promising future of ultrasound stimulation as a novel and noninvasive visual prosthesis for translational applications in blind patients.
Collapse
Affiliation(s)
- Xuejun Qian
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Ophthalmology, University of Southern California, Los Angeles, CA 90033, USA
| | - Gengxi Lu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Ophthalmology, University of Southern California, Los Angeles, CA 90033, USA
| | - Biju B. Thomas
- Department of Ophthalmology, University of Southern California, Los Angeles, CA 90033, USA
| | - Runze Li
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Ophthalmology, University of Southern California, Los Angeles, CA 90033, USA
| | - Xiaoyang Chen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - K. Kirk Shung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Mark Humayun
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Ophthalmology, University of Southern California, Los Angeles, CA 90033, USA
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Ophthalmology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
36
|
Ma L, Liu X, Liu Q, Jin S, Chang H, Liu H. The Roles of Transient Receptor Potential Ion Channels in Pathologies of Glaucoma. Front Physiol 2022; 13:806786. [PMID: 35185615 PMCID: PMC8850928 DOI: 10.3389/fphys.2022.806786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Transient receptor ion potential (TRP) channels are a cluster of non-selective cation channels present on cell membranes. They are important mediators of sensory signals to regulate cellular functions and signaling pathways. Alterations and dysfunction of these channels could disrupt physiological processes, thus leading to a broad array of disorders, such as cardiovascular, renal and nervous system diseases. These effects position them as potential targets for drug design and treatment. Because TRP channels can mediate processes such as mechanical conduction, osmotic pressure, and oxidative stress, they have been studied in the context of glaucoma. Glaucoma is an irreversible blinding eye disease caused by an intermittent or sustained increase in intraocular pressure (IOP), which results in the apoptosis of retinal ganglion cells (RGCs), optic nerve atrophy and eventually visual field defects. An increasing number of studies have documented that various TRP subfamilies are abundantly expressed in ocular structures, including the cornea, lens, ciliary body (CB), trabecular meshwork (TM) and retina. In alignment with these findings, there is also mounting evidence supporting the potential role of the TRP family in glaucoma progression. Therefore, it is of great interest and clinical significance to gain an increased understanding of these channels, which in turn could shed more light on the identification of new therapeutic targets for glaucoma. Moreover, this role is not understood completely to date, and whether the activation of TRP channels contributes to glaucoma, or instead aggravates progression, needs to be explored. In this manuscript, we aim to provide a comprehensive overview of recent research on TRP channels in glaucoma and to suggest novel targets for future therapeutic interventions in glaucoma.
Collapse
Affiliation(s)
- Lin Ma
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Liu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Liu
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, The Brain Cognition and Brain Disease Institute, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sen Jin
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, The Brain Cognition and Brain Disease Institute, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Heng Chang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haixia Liu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Haixia Liu,
| |
Collapse
|
37
|
Sundberg CA, Lakk M, Paul S, Figueroa KP, Scoles DR, Pulst SM, Križaj D. The RNA-binding protein and stress granule component ATAXIN-2 is expressed in mouse and human tissues associated with glaucoma pathogenesis. J Comp Neurol 2022; 530:537-552. [PMID: 34350994 PMCID: PMC8716417 DOI: 10.1002/cne.25228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/06/2021] [Indexed: 02/03/2023]
Abstract
Polyglutamine repeat expansions in the Ataxin-2 (ATXN2) gene were first implicated in Spinocerebellar Ataxia Type 2, a disease associated with degeneration of motor neurons and Purkinje cells. Recent studies linked single nucleotide polymorphisms in the gene to elevated intraocular pressure in primary open angle glaucoma (POAG); yet, the localization of ATXN2 across glaucoma-relevant tissues of the vertebrate eye has not been thoroughly examined. This study characterizes ATXN2 expression in the mouse and human retina, and anterior eye, using an antibody validated in ATXN2-/- retinas. ATXN2-ir was localized to cytosolic sub compartments in retinal ganglion cell (RGC) somata and proximal dendrites in addition to GABAergic, glycinergic, and cholinergic amacrine cells in the inner plexiform layer (IPL) and displaced amacrine cells. Human, but not mouse retinas showed modest immunolabeling of bipolar cells. ATXN2 immunofluorescence was prominent in the trabecular meshwork and pigmented and nonpigmented cells of the ciliary body, with analyses of primary human trabecular meshwork cells confirming the finding. The expression of ATXN2 in key POAG-relevant ocular tissues supports the potential role in autophagy and stress granule formation in response to ocular hypertension.
Collapse
Affiliation(s)
- Chad A. Sundberg
- Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, Utah, USA
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Monika Lakk
- Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Sharan Paul
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Karla P. Figueroa
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Daniel R. Scoles
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Stefan M. Pulst
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - David Križaj
- Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, Utah, USA
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, USA
- Department of Neurobiology & Anatomy, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
38
|
Nisembaum LG, Loentgen G, L’Honoré T, Martin P, Paulin CH, Fuentès M, Escoubeyrou K, Delgado MJ, Besseau L, Falcón J. Transient Receptor Potential-Vanilloid (TRPV1-TRPV4) Channels in the Atlantic Salmon, Salmo salar. A Focus on the Pineal Gland and Melatonin Production. Front Physiol 2022; 12:784416. [PMID: 35069244 PMCID: PMC8782258 DOI: 10.3389/fphys.2021.784416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Fish are ectotherm, which rely on the external temperature to regulate their internal body temperature, although some may perform partial endothermy. Together with photoperiod, temperature oscillations, contribute to synchronizing the daily and seasonal variations of fish metabolism, physiology and behavior. Recent studies are shedding light on the mechanisms of temperature sensing and behavioral thermoregulation in fish. In particular, the role of some members of the transient receptor potential channels (TRP) is being gradually unraveled. The present study in the migratory Atlantic salmon, Salmo salar, aims at identifying the tissue distribution and abundance in mRNA corresponding to the TRP of the vanilloid subfamilies, TRPV1 and TRPV4, and at characterizing their putative role in the control of the temperature-dependent modulation of melatonin production-the time-keeping hormone-by the pineal gland. In Salmo salar, TRPV1 and TRPV4 mRNA tissue distribution appeared ubiquitous; mRNA abundance varied as a function of the month investigated. In situ hybridization and immunohistochemistry indicated specific labeling located in the photoreceptor cells of the pineal gland and the retina. Additionally, TRPV analogs modulated the production of melatonin by isolated pineal glands in culture. The TRPV1 agonist induced an inhibitory response at high concentrations, while evoking a bell-shaped response (stimulatory at low, and inhibitory at high, concentrations) when added with an antagonist. The TRPV4 agonist was stimulatory at the highest concentration used. Altogether, the present results agree with the known widespread distribution and role of TRPV1 and TRPV4 channels, and with published data on trout (Oncorhynchus mykiss), leading to suggest these channels mediate the effects of temperature on S. salar pineal melatonin production. We discuss their involvement in controlling the timing of daily and seasonal events in this migratory species, in the context of an increasing warming of water temperatures.
Collapse
Affiliation(s)
- Laura Gabriela Nisembaum
- Sorbonne Université (SU), CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| | - Guillaume Loentgen
- Sorbonne Université (SU), CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| | - Thibaut L’Honoré
- Sorbonne Université (SU), CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| | - Patrick Martin
- Conservatoire National du Saumon Sauvage, Chanteuges, France
| | - Charles-Hubert Paulin
- Sorbonne Université (SU), CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| | - Michael Fuentès
- Sorbonne Université (SU), CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| | - Karine Escoubeyrou
- SU, CNRS Fédération 3724, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - María Jesús Delgado
- Departamento de Genética, Fisiología y Microbiologia, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Laurence Besseau
- Sorbonne Université (SU), CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| | - Jack Falcón
- Sorbonne Université (SU), CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| |
Collapse
|
39
|
Thébault S. Minireview: Insights into the role of TRP channels in the retinal circulation and function. Neurosci Lett 2021; 765:136285. [PMID: 34634394 DOI: 10.1016/j.neulet.2021.136285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 12/17/2022]
Abstract
Consistent with their wide distribution throughout the CNS, transcripts of all transient receptor potential (TRP) cation channel superfamily members have been detected in both neuronal and non-neuronal cells of the mammalian retina. Evidence shows that members of the TRPC (canonical, TRPC1/4/5/6), TRPV (vanilloid, TRPV1/2/4), TRPM (melastatin, TRPM1/2/3/5), TRPA (ankyrin, TRPA1), and TRPP (polycystin, TRPP2) subfamilies contribute to retinal function and circulation in health and disease, but the relevance of most TRPs has yet to be determined. Their principal role in light detection is far better understood than their participation in the control of intraocular pressure, retinal blood flow, oxidative stress, ion homeostasis, and transmitter signaling for retinal information processing. Moreover, if the therapeutic potential of targeting some TRPs to treat various retinal diseases remains speculative, recent studies highlight that vision restoration strategies are very likely to benefit from the thermo- and mechanosensitive properties of TRPs. This minireview focuses on the evidence of the past 5 years about the role of TRPs in the retina and retinal circulation, raises some possibilities about the function of TRPs in the retina, and discusses the potential sources of endogenous stimuli for TRPs in this tissue, as a reflection for future studies.
Collapse
Affiliation(s)
- Stéphanie Thébault
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico.
| |
Collapse
|
40
|
Li Q, Cheng Y, Zhang S, Sun X, Wu J. TRPV4-induced Müller cell gliosis and TNF-α elevation-mediated retinal ganglion cell apoptosis in glaucomatous rats via JAK2/STAT3/NF-κB pathway. J Neuroinflammation 2021; 18:271. [PMID: 34789280 PMCID: PMC8596927 DOI: 10.1186/s12974-021-02315-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/01/2021] [Indexed: 01/22/2023] Open
Abstract
Background Glaucoma, the leading cause of irreversible blindness worldwide, is a type of retinal disease characterized by the selective death of retinal ganglion cells (RGCs). However, the pathogenesis of glaucoma has not been fully elucidated. Transient receptor potential vanilloid 4 (TRPV4) is a pressure-sensitive and calcium-permeable cation channel. TRPV4 is widely distributed in the retina and its sustained activation leads to RGC death; indicating that TRPV4 may be a possible target for glaucoma treatment. Here, we investigated the effects of TRPV4 on RGC apoptosis in a rat model of chronic ocular hypertension (COH), then examined the mechanism underlying these effects. Methods The COH model was established by injection of micro-magnetic beads into the anterior chamber of adult male rats. The expression levels of TRPV4, glial fibrillary acidic protein, and inflammatory factors were assessed by immunohistochemistry and immunoblotting. RGC apoptosis and visual dysfunction were evaluated by TUNEL assay and photopic negative response. Functional expression of TRPV4 was examined by electrophysiology and calcium imaging. Real-time polymerase chain reaction and immunoblotting were employed to investigate the molecular mechanism underlying the effects of TRPV4 on tumor necrosis factor-α (TNF-α) release. Results We found that TRPV4 played an essential role in glaucoma, such that high levels of TRPV4 expression were associated with elevated intraocular pressure. Furthermore, TRPV4 activation was involved in glaucoma-induced RGC apoptosis and RGC-related reductions in visual function. Mechanistic investigation demonstrated that TRPV4 activation led to enhanced Müller cell gliosis and TNF-α release via the JAK2/STAT3/NF-kB pathway, while TRPV4 inhibition could reverse these effects. Finally, TRPV4 activation could lead to elevated expression of TNF receptor 1 in RGCs, while inhibition of TNF-α could reduce TRPV4-mediated RGC apoptosis. Conclusions TRPV4 activation induces Müller cell gliosis and TNF-α elevation via the JAK2/STAT3/NF-κB pathway, which may exacerbate RGC apoptosis in glaucoma; these results suggest that TRPV4 can serve as a therapeutic target in glaucoma treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02315-8.
Collapse
Affiliation(s)
- Qian Li
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, National Health Commission, #83 Fenyang Road, 200031, Shanghai, China
| | - Yun Cheng
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, National Health Commission, #83 Fenyang Road, 200031, Shanghai, China
| | - Shenghai Zhang
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, National Health Commission, #83 Fenyang Road, 200031, Shanghai, China
| | - Xinghuai Sun
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China. .,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China. .,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China. .,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, National Health Commission, #83 Fenyang Road, 200031, Shanghai, China.
| | - Jihong Wu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China. .,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China. .,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China. .,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, National Health Commission, #83 Fenyang Road, 200031, Shanghai, China.
| |
Collapse
|
41
|
Lakk M, Hoffmann GF, Gorusupudi A, Enyong E, Lin A, Bernstein PS, Toft-Bertelsen T, MacAulay N, Elliott MH, Križaj D. Membrane cholesterol regulates TRPV4 function, cytoskeletal expression, and the cellular response to tension. J Lipid Res 2021; 62:100145. [PMID: 34710431 PMCID: PMC8633027 DOI: 10.1016/j.jlr.2021.100145] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Despite the association of cholesterol with debilitating pressure-related diseases such as glaucoma, heart disease, and diabetes, its role in mechanotransduction is not well understood. We investigated the relationship between mechanical strain, free membrane cholesterol, actin cytoskeleton, and the stretch-activated transient receptor potential vanilloid isoform 4 (TRPV4) channel in human trabecular meshwork (TM) cells. Physiological levels of cyclic stretch resulted in time-dependent decreases in membrane cholesterol/phosphatidylcholine ratio and upregulation of stress fibers. Depleting free membrane cholesterol with m-β-cyclodextrin (MβCD) augmented TRPV4 activation by the agonist GSK1016790A, swelling and strain, with the effects reversed by cholesterol supplementation. MβCD increased membrane expression of TRPV4, caveolin-1, and flotillin. TRPV4 did not colocalize or interact with caveolae or lipid rafts, apart from a truncated ∼75 kDa variant partially precipitated by a caveolin-1 antibody. MβCD induced currents in TRPV4-expressing Xenopus laevis oocytes. Thus, membrane cholesterol regulates trabecular transduction of mechanical information, with TRPV4 channels mainly located outside the cholesterol-enriched membrane domains. Moreover, the biomechanical milieu itself shapes the lipid content of TM membranes. Diet, cholesterol metabolism, and mechanical stress might modulate the conventional outflow pathway and intraocular pressure in glaucoma and diabetes in part by modulating TM mechanosensing.
Collapse
Affiliation(s)
- Monika Lakk
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Grace F Hoffmann
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Aruna Gorusupudi
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Eric Enyong
- Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Amy Lin
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Paul S Bernstein
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | - Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Michael H Elliott
- Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - David Križaj
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT, USA; Department of Neurobiology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
42
|
Kirschner A, Strat AN, Yablonski J, Yoo H, Bagué T, Li H, Zhao J, Bollinger KE, Herberg S, Ganapathy PS. Mechanosensitive channel inhibition attenuates TGFβ2-induced actin cytoskeletal remodeling and reactivity in mouse optic nerve head astrocytes. Exp Eye Res 2021; 212:108791. [PMID: 34656548 DOI: 10.1016/j.exer.2021.108791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/22/2021] [Accepted: 10/11/2021] [Indexed: 11/27/2022]
Abstract
Astrocytes within the optic nerve head undergo actin cytoskeletal rearrangement early in glaucoma, which coincides with astrocyte reactivity and extracellular matrix (ECM) deposition. Elevated transforming growth factor beta 2 (TGFβ2) levels within astrocytes have been described in glaucoma, and TGFβ signaling induces actin cytoskeletal remodeling and ECM deposition in many tissues. A key mechanism by which astrocytes sense and respond to external stimuli is via mechanosensitive ion channels. Here, we tested the hypothesis that inhibition of mechanosensitive channels will attenuate TGFβ2-mediated optic nerve head astrocyte actin cytoskeletal remodeling, reactivity, and ECM deposition. Primary optic nerve head astrocytes were isolated from C57BL/6J mice and cell purity was confirmed by immunostaining. Astrocytes were treated with vehicle control, TGFβ2 (5 ng/ml), GsMTx4 (a mechanosensitive channel inhibitor; 500 nM), or TGFβ2 (5 ng/ml) + GsMTx4 (500 nM) for 48 h. FITC-phalloidin staining was used to assess the formation of f-actin stress fibers and to quantify the presence of crosslinked actin networks (CLANs). Cell reactivity was determined by immunostaining and immunoblotting for GFAP. Levels of fibronectin and collagen IV deposition were also quantified. Primary optic nerve head astrocytes were positive for the astrocyte marker GFAP and negative for markers for microglia (F4/80) and oligodendrocytes (OSP1). Significantly increased %CLAN-positive cells were observed after 48-h treatment with TGFβ2 vs. control in a dose-dependent manner. Co-treatment with GsMTx4 significantly decreased %CLAN-positive cells vs. TGFβ2 treatment and the presence of f-actin stress fibers. TGFβ2 treatment significantly increased GFAP, fibronectin, and collagen IV levels, and GsMTx4 co-treatment ameliorated GFAP immunoreactivity. Our data suggest inhibition of mechanosensitive channel activity as a potential therapeutic strategy to modulate actin cytoskeletal remodeling within the optic nerve head in glaucoma.
Collapse
Affiliation(s)
- Alexander Kirschner
- Department of Ophthalmology & Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Ana N Strat
- Department of Ophthalmology & Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - John Yablonski
- Department of Ophthalmology & Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Hannah Yoo
- Department of Ophthalmology & Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Tyler Bagué
- Department of Ophthalmology & Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Haiyan Li
- Department of Ophthalmology & Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA
| | - Jing Zhao
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA; Culver Vision Discovery Institute, Augusta, GA, 30912, USA
| | - Kathryn E Bollinger
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA; Culver Vision Discovery Institute, Augusta, GA, 30912, USA
| | - Samuel Herberg
- Department of Ophthalmology & Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, USA
| | - Preethi S Ganapathy
- Department of Ophthalmology & Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
43
|
Zhang S, Lu K, Yang S, Wu Y, Liao J, Lu Y, Wu Q, Zhao N, Dong Q, Chen L, Du Y. Activation of transient receptor potential vanilloid 4 exacerbates myocardial ischemia-reperfusion injury via JNK-CaMKII phosphorylation pathway in isolated mice hearts. Cell Calcium 2021; 100:102483. [PMID: 34628110 DOI: 10.1016/j.ceca.2021.102483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 01/08/2023]
Abstract
Previous studies, including our own, have demonstrated that transient receptor potential vanilloid 4 (TRPV4) is involved in myocardial ischemia-reperfusion (IR) injury, yet its underlying molecular mechanism remains unclear. In this study, we isolated mice hearts for a Langendorff perfusion test and used HL-1 myocytes for in vitro assessments. We first confirmed that TRPV4 agonist (GSK101) enhanced myocardial IR injury, as demonstrated by the reduced recovery of cardiac function, larger myocardial infarct size, and more apoptotic cells. We also found that GSK101 could further increase the phosphorylation of JNK and CaMKII in isolated hearts during IR. Notably, GSK101 dose-dependently evoked the phosphorylation of JNK and CaMKII in isolated normal hearts. All above GSK101-induced effects could be significantly blocked by the pharmacological inhibition or genetic ablation of TRPV4. More importantly, JNK inhibition (with SP600125) or CaMKII inhibition (with KN93 or in transgenic AC3-I mice) could prevent GSK101-induced myocardial injury during IR. In HL-1 myocytes, GSK101 triggered Ca2+ influx and evoked the phosphorylation of JNK and CaMKII but these effects were abolished by removing extracellular Ca2+ or in the presence of a TRPV4 antagonist. Finally, we showed that in HL-1 myocytes and isolated hearts during IR, JNK inhibition significantly inhibited the phosphorylation of CaMKII induced by GSK101 but CaMKII inhibition had no effect on JNK activation induced by GSK101. Our data suggest that TRPV4 activation exacerbates myocardial IR injury via the JNK-CaMKII phosphorylation pathway.
Collapse
Affiliation(s)
- Shaoshao Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kai Lu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuaitao Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuwei Wu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yang Lu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiongfeng Wu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ning Zhao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian Dong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Chen
- Department of Physiology, Nanjing Medical University, Nanjing, China.
| | - Yimei Du
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
44
|
Deng Y, Li W, Niu L, Luo X, Li J, Zhang Y, Liu H, He J, Wan W. Amelioration of Scopolamine-induced Learning and Memory Impairment by the TRPV4 Inhibitor HC067047 in ICR Mice. Neurosci Lett 2021; 767:136209. [PMID: 34480999 DOI: 10.1016/j.neulet.2021.136209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Alzheimer's disease (AD) is one of the most common causes of neurodegenerative diseases in the elderly. Cholinergic dysfunction is one of the pathological hallmarks of AD and leads to learning and memory impairment. Transient receptor potential vanilloid 4(TRPV4), a nonselective cation channel, is involved in learning and memory functions. HC067047, a TRPV4 specific inhibitor, has been reported to protect neurons against cerebral ischemic injury and amyloid-β -(Aβ) 40-induced hippocampal cell death. However, whether HC067047 could improve scopolamine (SCP)-induced cognitive dysfunction in mice is still unknown. The aims of this study were to verify whether HC067047 could ameliorate the SCP-induced learning and memory impairments in mice and to elucidate its underlying mechanisms of action. In this study, we examined the neuroprotective effect of the HC067047 against cognitive dysfunction induced by SCP (5 mg/kg, i.p.), a muscarinic receptor antagonist. The results showed that administration of HC067047(10 mg/kg, i.p.) significantly ameliorated SCP-induced cognitive dysfunction as assessed by the novel place recognition test (NPRT) and novel object recognition test (NORT). In the Y-maze test, HC067047 significantly enhanced the time spent in the novel arm in SCP mice. To further investigate the molecular mechanisms underlying the neuroprotective effect of HC067047, expression of several proteins involved in apoptosis was examined. The results demonstrated that HC067047 treatment decreased the protein levels of proapoptotic proteins such as Bax and caspase-3 in the hippocampus of SCP mice. In addition, HC067047 enhanced expression of the neurogenesis marker DCX and improved levels of the mature neuronal marker NeuN in SCP mice. These findings suggest the neuroprotective potential of the TRPV4 inhibitor HC067047 for the management of dementia with learning and memory loss.
Collapse
Affiliation(s)
- Yingcheng Deng
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, 421001 Hengyang, Hunan, China
| | - Wei Li
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, 421001 Hengyang, Hunan, China
| | - Lei Niu
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, 421001 Hengyang, Hunan, China; Liuyang Traditional Chinese Medicine Hospital, 410300, Liuyang, Hunan, China
| | - Xianglin Luo
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, 421001 Hengyang, Hunan, China
| | - Jing Li
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, 421001 Hengyang, Hunan, China
| | - Yuan Zhang
- Department of Pathology, Hengyang Medical College, University of South China, 421001 Hengyang, Hunan, China
| | - Hong Liu
- Department of Orthopedics, 922Hospital of PLA Joint Logistics Support Force
| | - Jie He
- Department of Pathology, Hengyang Medical College, University of South China, 421001 Hengyang, Hunan, China
| | - Wei Wan
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, 421001 Hengyang, Hunan, China; China Key Laboratory Of Brain Science Research & Transformation In Tropical Environment Of Hainan Province, Hainan Medical University, 571199, Haikou, Hai nan China.
| |
Collapse
|
45
|
Multifactorial Pathogenic Processes of Retinal Ganglion Cell Degeneration in Glaucoma towards Multi-Target Strategies for Broader Treatment Effects. Cells 2021; 10:cells10061372. [PMID: 34199494 PMCID: PMC8228726 DOI: 10.3390/cells10061372] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/14/2021] [Accepted: 05/29/2021] [Indexed: 02/06/2023] Open
Abstract
Glaucoma is a chronic neurodegenerative disease characterized by apoptosis of retinal ganglion cell (RGC) somas, degeneration of axons, and loss of synapses at dendrites and axon terminals. Glaucomatous neurodegeneration encompasses multiple triggers, multiple cell types, and multiple molecular pathways through the etiological paths with biomechanical, vascular, metabolic, oxidative, and inflammatory components. As much as intrinsic responses of RGCs themselves, divergent responses and intricate interactions of the surrounding glia also play decisive roles for the cell fate. Seen from a broad perspective, multitarget treatment strategies have a compelling pathophysiological basis to more efficiently manipulate multiple pathogenic processes at multiple injury sites in such a multifactorial neurodegenerative disease. Despite distinct molecular programs for somatic and axonal degeneration, mitochondrial dysfunction and glia-driven neuroinflammation present interdependent processes with widespread impacts in the glaucomatous retina and optic nerve. Since dysfunctional mitochondria stimulate inflammatory responses and proinflammatory mediators impair mitochondria, mitochondrial restoration may be immunomodulatory, while anti-inflammatory treatments protect mitochondria. Manipulation of these converging routes may thus allow a unified treatment strategy to protect RGC axons, somas, and synapses. This review presents an overview of recent research advancements with emphasis on potential treatment targets to achieve the best treatment efficacy to preserve visual function in glaucoma.
Collapse
|
46
|
Redmon SN, Yarishkin O, Lakk M, Jo A, Mustafic E, Tvrdik P, Križaj D. TRPV4 channels mediate the mechanoresponse in retinal microglia. Glia 2021; 69:1563-1582. [PMID: 33624376 PMCID: PMC8989051 DOI: 10.1002/glia.23979] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022]
Abstract
The physiological and neurological correlates of plummeting brain osmolality during edema, traumatic CNS injury, and severe ischemia are compounded by neuroinflammation. Using multiple approaches, we investigated how retinal microglia respond to challenges mediated by increases in strain, osmotic gradients, and agonists of the stretch-activated cation channel TRPV4. Dissociated and intact microglia were TRPV4-immunoreactive and responded to the selective agonist GSK1016790A and substrate stretch with altered motility and elevations in intracellular calcium ([Ca2+ ]i ). Agonist- and hypotonicity-induced swelling was associated with a nonselective outwardly rectifying cation current, increased [Ca2+ ]i , and retraction of higher-order processes. The antagonist HC067047 reduced the extent of hypotonicity-induced microglial swelling and inhibited the suppressive effects of GSK1016790A and hypotonicity on microglial branching. Microglial TRPV4 signaling required intermediary activation of phospholipase A2 (PLA2), cytochrome P450, and epoxyeicosatrienoic acid production (EETs). The expression pattern of vanilloid thermoTrp genes in retinal microglia was markedly different from retinal neurons, astrocytes, and cortical microglia. These results suggest that TRPV4 represents a primary retinal microglial sensor of osmochallenges under physiological and pathological conditions. Its activation, associated with PLA2, modulates calcium signaling and cell architecture. TRPV4 inhibition might be a useful strategy to suppress microglial overactivation in the swollen and edematous CNS.
Collapse
Affiliation(s)
- Sarah N. Redmon
- Department of Ophthalmology & Visual Sciences, Moran Eye Institute, Salt Lake City, UT 84132
| | - Oleg Yarishkin
- Department of Ophthalmology & Visual Sciences, Moran Eye Institute, Salt Lake City, UT 84132
| | - Monika Lakk
- Department of Ophthalmology & Visual Sciences, Moran Eye Institute, Salt Lake City, UT 84132
| | - Andrew Jo
- Department of Ophthalmology & Visual Sciences, Moran Eye Institute, Salt Lake City, UT 84132
| | - Edin Mustafic
- Department of Ophthalmology & Visual Sciences, Moran Eye Institute, Salt Lake City, UT 84132
| | - Peter Tvrdik
- Department of Neurological Surgery, University of Virginia School of Medicine, Charlottesville VA 22908
| | - David Križaj
- Department of Ophthalmology & Visual Sciences, Moran Eye Institute, Salt Lake City, UT 84132
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT 84132
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84132
- Department of Neurobiology & Anatomy, University of Utah, Salt Lake City, UT 84132
| |
Collapse
|
47
|
Yoneshige A, Hagiyama M, Takashima Y, Ueno S, Inoue T, Kimura R, Koriyama Y, Ito A. Elevated Hydrostatic Pressure Causes Retinal Degeneration Through Upregulating Lipocalin-2. Front Cell Dev Biol 2021; 9:664327. [PMID: 34136483 PMCID: PMC8201777 DOI: 10.3389/fcell.2021.664327] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
Elevation of intraocular pressure is a major risk factor for glaucoma development, which causes the loss of retinal ganglion cells (RGCs). Lipocalin 2 (Lcn2) is upregulated in glaucomatous retinae; however, whether Lcn2 is directly involved in glaucoma is debated. In this study, retinal explant cultures were subjected to increased water pressure using a two-chamber culture device, and Lcn2 protein levels were examined by immunoblotting. In situ TdT-mediated dUTP nick and labeling (TUNEL) and glial fibrillary acidic protein (GFAP) immunohistochemical assays were performed to assess apoptosis and gliosis, respectively. The neurotoxicity of Lcn2 in the retinal explant culture was determined with exogenous administration of recombinant Lcn2. The Lcn2 protein levels, percentage of TUNEL-positive cells, and GFAP-positive area were significantly higher in retinae cultured under 50 cm H2O pressure loads compared to those cultured under 20 cm H2O. We found that Lcn2 exhibited neurotoxicity in retinae at dose of 1 μg/ml. The negative effects of increased hydrostatic pressure were attenuated by the iron chelator deferoxamine. This is the first report demonstrating the direct upregulation of Lcn2 by elevating hydrostatic pressure. Modulating Lcn2 and iron levels may be a promising therapeutic approach for retinal degeneration.
Collapse
Affiliation(s)
- Azusa Yoneshige
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Man Hagiyama
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Yasutoshi Takashima
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Satoru Ueno
- Department of Ophthalmology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Takao Inoue
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Ryuichiro Kimura
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Yoshiki Koriyama
- Graduate School and Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan
| | - Akihiko Ito
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka, Japan
| |
Collapse
|
48
|
Pang JJ, Gao F, Wu SM. Generators of Pressure-Evoked Currents in Vertebrate Outer Retinal Neurons. Cells 2021; 10:cells10061288. [PMID: 34067375 PMCID: PMC8224636 DOI: 10.3390/cells10061288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022] Open
Abstract
(1) Background: High-tension glaucoma damages the peripheral vision dominated by rods. How mechanosensitive channels (MSCs) in the outer retina mediate pressure responses is unclear. (2) Methods: Immunocytochemistry, patch clamp, and channel fluorescence were used to study MSCs in salamander photoreceptors. (3) Results: Immunoreactivity of transient receptor potential channel vanilloid 4 (TRPV4) was revealed in the outer plexiform layer, K+ channel TRAAK in the photoreceptor outer segment (OS), and TRPV2 in some rod OS disks. Pressure on the rod inner segment evoked sustained currents of three components: (A) the inward current at <-50 mV (Ipi), sensitive to Co2+; (B) leak outward current at ≥-80 mV (Ipo), sensitive to intracellular Cs+ and ruthenium red; and (C) cation current reversed at ~10 mV (Ipc). Hypotonicity induced slow currents like Ipc. Environmental pressure and light increased the FM 1-43-identified open MSCs in the OS membrane, while pressure on the OS with internal Cs+ closed a Ca2+-dependent current reversed at ~0 mV. Rod photocurrents were thermosensitive and affected by MSC blockers. (4) Conclusions: Rods possess depolarizing (TRPV) and hyperpolarizing (K+) MSCs, which mediate mutually compensating currents between -50 mV and 10 mV, serve as an electrical cushion to minimize the impact of ocular mechanical stress.
Collapse
|
49
|
Cappelli HC, Guarino BD, Kanugula AK, Adapala RK, Perera V, Smith MA, Paruchuri S, Thodeti CK. Transient receptor potential vanilloid 4 channel deletion regulates pathological but not developmental retinal angiogenesis. J Cell Physiol 2021; 236:3770-3779. [PMID: 33078410 PMCID: PMC7920906 DOI: 10.1002/jcp.30116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 01/08/2023]
Abstract
Transient receptor potential vanilloid 4 (TRPV4) channels are mechanosensitive ion channels that regulate systemic endothelial cell (EC) functions such as vasodilation, permeability, and angiogenesis. TRPV4 is expressed in retinal ganglion cells, Müller glia, pigment epithelium, microvascular ECs, and modulates cell volume regulation, calcium homeostasis, and survival. TRPV4-mediated physiological or pathological retinal angiogenesis remains poorly understood. Here, we demonstrate that TRPV4 is expressed, functional, and mechanosensitive in retinal ECs. The genetic deletion of TRPV4 did not affect postnatal developmental angiogenesis but increased pathological neovascularization in response to oxygen-induced retinopathy (OIR). Retinal vessels from TRPV4 knockout mice subjected to OIR exhibited neovascular tufts that projected into the vitreous humor and displayed reduced pericyte coverage compared with wild-type mice. These results suggest that TRPV4 is a regulator of retinal angiogenesis, its deletion augments pathological retinal angiogenesis, and that TRPV4 could be a novel target for the development of therapies against neovascular ocular diseases.
Collapse
Affiliation(s)
- Holly C. Cappelli
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272
- School of Biomedical Sciences, Kent State University, Kent, OH 44240
| | - Brianna D. Guarino
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272
| | - Anantha K. Kanugula
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272
| | - Ravi K. Adapala
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272
- School of Biomedical Sciences, Kent State University, Kent, OH 44240
| | - Vidushani Perera
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272
| | - Matthew A. Smith
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272
- Rebbeca D. Considine Research Institute, Akron Children’s Hospital, Akron, OH 44302
| | | | - Charles K. Thodeti
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272
- School of Biomedical Sciences, Kent State University, Kent, OH 44240
| |
Collapse
|
50
|
Lakk M, Križaj D. TRPV4-Rho signaling drives cytoskeletal and focal adhesion remodeling in trabecular meshwork cells. Am J Physiol Cell Physiol 2021; 320:C1013-C1030. [PMID: 33788628 PMCID: PMC8285634 DOI: 10.1152/ajpcell.00599.2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Intraocular pressure (IOP) is dynamically regulated by the trabecular meshwork (TM), a mechanosensitive tissue that protects the eye from injury through dynamic regulation of aqueous humor flow. TM compensates for mechanical stress impelled by chronic IOP elevations through increased actin polymerization, tissue stiffness, and contractility. This process has been associated with open angle glaucoma; however, the mechanisms that link mechanical stress to pathological cytoskeletal remodeling downstream from the mechanotransducers remain poorly understood. We used fluorescence imaging and biochemical analyses to investigate cytoskeletal and focal adhesion remodeling in human TM cells stimulated with physiological strains. Mechanical stretch promoted F-actin polymerization, increased the number and size of focal adhesions, and stimulated the activation of the Rho-associated protein kinase (ROCK). Stretch-induced activation of the small GTPase Ras homolog family member A (RhoA), and tyrosine phosphorylations of focal adhesion proteins paxillin, focal adhesion kinase (FAK), vinculin, and zyxin were time dependently inhibited by ROCK inhibitor trans-4-[(1R)-1-aminoethyl]-N-4-pyridinylcyclohexanecarboxamide dihydrochloride (Y-27632), and by HC-067047, an antagonist of transient receptor potential vanilloid 4 (TRPV4) channels. Both TRPV4 and ROCK activation were required for zyxin translocation and increase in the number/size of focal adhesions in stretched cells. Y-27632 blocked actin polymerization without affecting calcium influx induced by membrane stretch and the TRPV4 agonist GSK1016790A. These results reveal that mechanical tuning of TM cells requires parallel activation of TRPV4, integrins, and ROCK, with chronic stress leading to sustained remodeling of the cytoskeleton and focal complexes.
Collapse
Affiliation(s)
- Monika Lakk
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah
| | - David Križaj
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah.,Department of Bioengineering, University of Utah, Salt Lake City, Utah.,Department of Neurobiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|