1
|
Lee CW, Krüger MT, Akram H, Zrinzo L, Rubin J, Birchall MA, Fishman JM. Central Mechanisms and Pathophysiology of Laryngeal Dystonia: An Up-to-Date Review. J Voice 2024:S0892-1997(24)00217-0. [PMID: 39138040 DOI: 10.1016/j.jvoice.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 08/15/2024]
Abstract
OBJECTIVE Laryngeal dystonia (LD), previously termed spasmodic dysphonia, is an isolated focal dystonia that involves involuntary, uncontrolled contractions of the laryngeal muscles during speech. It is a severely disabling condition affecting patients' work and social lives through prevention of normal speech production. Our understanding of the pathophysiology of LD and available therapeutic options are currently limited. The aim of this short review is to provide an up-to-date summary of what is known about the central mechanisms and the pathophysiology of LD. METHODS A systematic review of the literature was performed searching Embase, CINHAL, Medline, and Cochrane with the cover period January 1990-October 2023 with a search strategy (("Laryngeal dystonia" OR "Spasmodic dysphonia") AND ("Central Mechanism" OR "Pathophysiology")). Original studies involving LD patients that discussed central mechanisms and/or pathophysiology of LD were chosen. RESULTS Two hundred twenty-six articles were identified of which 27 articles were included to formulate this systematic review following the screening inclusion and exclusion criteria. LD is a central neurological disorder involving a multiregional altered neural network. Affected neural circuits not only involve the motor control circuit, but also the feedforward, and the feedback circuits of the normal speech production neural network, involving higher-order planning, somatosensory perception and integration regions of the brain. CONCLUSION Speech production is a complex process, and LD is a central neurological disorder involving multiregional neural network connectivity alteration reflecting this. Neuromodulation targeting the central nervous system could therefore be considered and explored as a new potential therapeutic option for LD in the future, and should assist in elucidating the underlying central mechanisms responsible for causing the condition.
Collapse
Affiliation(s)
- Chang Woo Lee
- Department of Otolaryngology-Head and Neck Surgery, University Hospitals Dorset NHS Foundation Trust, Poole, UK.
| | - Marie T Krüger
- Department of Neurosurgery, UCL Functional Neurosurgery Unit, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London, UK; Department of Neurosurgery, University Medical Centre, Freiburg, Germany
| | - Harith Akram
- Department of Neurosurgery, UCL Functional Neurosurgery Unit, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London, UK
| | - Ludvic Zrinzo
- Department of Neurosurgery, UCL Functional Neurosurgery Unit, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London, UK
| | - John Rubin
- Department of Otolaryngology-Head and Neck Surgery, The Royal National ENT Voice Centre, The Royal National ENT Hospital, University College London Hospitals NHS Trust, London, UK
| | - Martin A Birchall
- Department of Otolaryngology-Head and Neck Surgery, The Royal National ENT Voice Centre, The Royal National ENT Hospital, University College London Hospitals NHS Trust, London, UK
| | - Jonathan M Fishman
- Department of Otolaryngology-Head and Neck Surgery, The Royal National ENT Voice Centre, The Royal National ENT Hospital, University College London Hospitals NHS Trust, London, UK
| |
Collapse
|
2
|
Schill J, Simonyan K, Lang S, Mathys C, Thiel C, Witt K. Parkinson's disease speech production network as determined by graph-theoretical network analysis. Netw Neurosci 2023; 7:712-730. [PMID: 37397896 PMCID: PMC10312286 DOI: 10.1162/netn_a_00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 02/13/2023] [Indexed: 08/04/2023] Open
Abstract
Parkinson's disease (PD) can affect speech as well as emotion processing. We employ whole-brain graph-theoretical network analysis to determine how the speech-processing network (SPN) changes in PD, and assess its susceptibility to emotional distraction. Functional magnetic resonance images of 14 patients (aged 59.6 ± 10.1 years, 5 female) and 23 healthy controls (aged 64.1 ± 6.5 years, 12 female) were obtained during a picture-naming task. Pictures were supraliminally primed by face pictures showing either a neutral or an emotional expression. PD network metrics were significantly decreased (mean nodal degree, p < 0.0001; mean nodal strength, p < 0.0001; global network efficiency, p < 0.002; mean clustering coefficient, p < 0.0001), indicating an impairment of network integration and segregation. There was an absence of connector hubs in PD. Controls exhibited key network hubs located in the associative cortices, of which most were insusceptible to emotional distraction. The PD SPN had more key network hubs, which were more disorganized and shifted into auditory, sensory, and motor cortices after emotional distraction. The whole-brain SPN in PD undergoes changes that result in (a) decreased network integration and segregation, (b) a modularization of information flow within the network, and (c) the inclusion of primary and secondary cortical areas after emotional distraction.
Collapse
Affiliation(s)
- Jana Schill
- Department of Neurology, School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Kristina Simonyan
- Department of Otolaryngology, Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
- Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, USA
| | - Simon Lang
- Department of Neurology, School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Christian Mathys
- Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus, University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
- Department of Diagnostic and Interventional Radiology, University of Düsseldorf, Düsseldorf, Germany
| | - Christiane Thiel
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
- Department of Psychology, School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Karsten Witt
- Department of Neurology, School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
3
|
Vo A, Nguyen N, Fujita K, Schindlbeck KA, Rommal A, Bressman SB, Niethammer M, Eidelberg D. Disordered network structure and function in dystonia: pathological connectivity vs. adaptive responses. Cereb Cortex 2023; 33:6943-6958. [PMID: 36749014 PMCID: PMC10233302 DOI: 10.1093/cercor/bhad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/21/2022] [Accepted: 01/10/2023] [Indexed: 02/08/2023] Open
Abstract
Primary dystonia is thought to emerge through abnormal functional relationships between basal ganglia and cerebellar motor circuits. These interactions may differ across disease subtypes and provide a novel biomarker for diagnosis and treatment. Using a network mapping algorithm based on resting-state functional MRI (rs-fMRI), a method that is readily implemented on conventional MRI scanners, we identified similar disease topographies in hereditary dystonia associated with the DYT1 or DYT6 mutations and in sporadic patients lacking these mutations. Both networks were characterized by contributions from the basal ganglia, cerebellum, thalamus, sensorimotor areas, as well as cortical association regions. Expression levels for the two networks were elevated in hereditary and sporadic dystonia, and in non-manifesting carriers of dystonia mutations. Nonetheless, the distribution of abnormal functional connections differed across groups, as did metrics of network organization and efficiency in key modules. Despite these differences, network expression correlated with dystonia motor ratings, significantly improving the accuracy of predictions based on thalamocortical tract integrity obtained with diffusion tensor MRI (DTI). Thus, in addition to providing unique information regarding the anatomy of abnormal brain circuits, rs-fMRI functional networks may provide a widely accessible method to help in the objective evaluation of new treatments for this disorder.
Collapse
Affiliation(s)
- An Vo
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Nha Nguyen
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Koji Fujita
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Katharina A Schindlbeck
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Andrea Rommal
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Susan B Bressman
- Department of Neurology, Mount Sinai Beth Israel, New York, NY 10003, USA
| | - Martin Niethammer
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - David Eidelberg
- Center for Neurosciences, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| |
Collapse
|
4
|
Corp DT, Morrison-Ham J, Jinnah HA, Joutsa J. The functional anatomy of dystonia: Recent developments. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:105-136. [PMID: 37482390 DOI: 10.1016/bs.irn.2023.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
While dystonia has traditionally been viewed as a disorder of the basal ganglia, the involvement of other key brain structures is now accepted. However, just what these structures are remains to be defined. Neuroimaging has been an especially valuable tool in dystonia, yet traditional cross-sectional designs have not been able to separate causal from compensatory brain activity. Therefore, this chapter discusses recent studies using causal brain lesions, and animal models, to converge upon the brain regions responsible for dystonia with increasing precision. This evidence strongly implicates the basal ganglia, thalamus, brainstem, cerebellum, and somatosensory cortex, yet shows that different types of dystonia involve different nodes of this brain network. Nearly all of these nodes fall within the recently identified two-way networks connecting the basal ganglia and cerebellum, suggesting dysfunction of these specific pathways. Localisation of the functional anatomy of dystonia has strong implications for targeted treatment options, such as deep brain stimulation, and non-invasive brain stimulation.
Collapse
Affiliation(s)
- Daniel T Corp
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA, United States.
| | - Jordan Morrison-Ham
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - H A Jinnah
- Departments of Neurology, Human Genetics, and Pediatrics, Atlanta, GA, United States
| | - Juho Joutsa
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA, United States; Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku, Finland; Turku PET Centre, Neurocenter, Turku University Hospital, Turku, Finland
| |
Collapse
|
5
|
Schill J, Simonyan K, Corsten M, Mathys C, Thiel C, Witt K. Graph-theoretical insights into the effects of aging on the speech production network. Cereb Cortex 2023; 33:2162-2173. [PMID: 35584784 PMCID: PMC9977355 DOI: 10.1093/cercor/bhac198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 11/13/2022] Open
Abstract
Speech production relies on the interplay of different brain regions. Healthy aging leads to complex changes in speech processing and production. Here, we investigated how the whole-brain functional connectivity of healthy elderly individuals differs from that of young individuals. In total, 23 young (aged 24.6 ± 2.2 years) and 23 elderly (aged 64.1 ± 6.5 years) individuals performed a picture naming task during functional magnetic resonance imaging. We determined whole-brain functional connectivity matrices and used them to compute group averaged speech production networks. By including an emotionally neutral and an emotionally charged condition in the task, we characterized the speech production network during normal and emotionally challenged processing. Our data suggest that the speech production network of elderly healthy individuals is as efficient as that of young participants, but that it is more functionally segregated and more modularized. By determining key network regions, we showed that although complex network changes take place during healthy aging, the most important network regions remain stable. Furthermore, emotional distraction had a larger influence on the young group's network than on the elderly's. We demonstrated that, from the neural network perspective, elderly individuals have a higher capacity for emotion regulation based on their age-related network re-organization.
Collapse
Affiliation(s)
- Jana Schill
- Department of Neurology, School of Medicine and Health Sciences, University of Oldenburg, Heiligengeisthöfe 4, 26121 Oldenburg, Germany
| | - Kristina Simonyan
- Department of Otolaryngology - Head & Neck Surgery, Harvard Medical School, Boston, 243 Charles Street, Boston, MA 02114, United States.,Department of Otolaryngology - Head & Neck Surgery, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA 02114, United States
| | - Maximilian Corsten
- Department of Neurology, School of Medicine and Health Sciences, University of Oldenburg, Heiligengeisthöfe 4, 26121 Oldenburg, Germany
| | - Christian Mathys
- Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus, University of Oldenburg, Steinweg 13-17, 26122 Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Carl-von-Ossietzky-Straβe 9, 26129 Oldenburg, Germany.,Department of Diagnostic and Interventional Radiology, University of Düsseldorf, Moorenstraβe 5, 40225 Düsseldorf, Germany
| | - Christiane Thiel
- Research Center Neurosensory Science, University of Oldenburg, Carl-von-Ossietzky-Straβe 9, 26129 Oldenburg, Germany.,Department of Psychology, School of Medicine and Health Sciences, University of Oldenburg, Ammerländer Heerstraβe 114-118, 26129 Oldenburg, Germany
| | - Karsten Witt
- Department of Neurology, School of Medicine and Health Sciences, University of Oldenburg, Heiligengeisthöfe 4, 26121 Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Carl-von-Ossietzky-Straβe 9, 26129 Oldenburg, Germany
| |
Collapse
|
6
|
Battistella G, Simonyan K. Clinical Implications of Dystonia as a Neural Network Disorder. ADVANCES IN NEUROBIOLOGY 2023; 31:223-240. [PMID: 37338705 DOI: 10.1007/978-3-031-26220-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Isolated dystonia is a neurological disorder of diverse etiology, multifactorial pathophysiology, and wide spectrum of clinical presentations. We review the recent neuroimaging advances that led to the conceptualization of dystonia as a neural network disorder and discuss how current knowledge is shaping the identification of biomarkers of dystonia and the development of novel pharmacological therapies.
Collapse
Affiliation(s)
- Giovanni Battistella
- Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, USA
| | - Kristina Simonyan
- Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, USA.
- Department of Neurology, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
O'Flynn LC, Simonyan K. Short- and Long-term Central Action of Botulinum Neurotoxin Treatment in Laryngeal Dystonia. Neurology 2022; 99:e1178-e1190. [PMID: 35764404 PMCID: PMC9536744 DOI: 10.1212/wnl.0000000000200850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/28/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Laryngeal dystonia (LD) is isolated task-specific focal dystonia selectively impairing speech production. The first choice of LD treatment is botulinum neurotoxin (BoNT) injections into the affected laryngeal muscles. However, whether BoNT has a lasting therapeutic effect on disorder pathophysiology is unknown. We investigated short-term and long-term effects of BoNT treatment on brain function in patients with LD. METHODS A total of 161 participants were included in the functional MRI study. Statistical analyses examined central BoNT effects in patients with LD who were stratified based on the effectiveness and duration of treatment. RESULTS Patients with LD who were treated and benefited from BoNT injections had reduced activity in the left precuneus compared with BoNT-naive and treatment nonbenefiting patients. In addition, BoNT-treated patients with adductor LD had decreased activity in the right thalamus, whereas BoNT-treated abductor patients with LD had reduced activity in the left inferior frontal cortex. No statistically significant differences in brain activity were found between patients with shorter (1-5 years) and longer (13-28 years) treatment durations. However, patients with intermediate treatment duration of 6-12 years showed reduced activity in the right cerebellum compared with patients with both shorter and longer treatment durations and reduced activity in the right prefrontal cortex compared with patients with shorter treatment duration. DISCUSSION Our findings suggest that the left precuneus is the site of short-term BoNT central action in patients with LD, whereas the prefrontal-cerebellar axis is engaged in the BoNT response in patients with intermediate treatment duration of 6-12 years. Involvement of these structures points to indirect action of BoNT treatment on the dystonic sensorimotor network through modulation of motor sequence planning and coordination.
Collapse
Affiliation(s)
- Lena C O'Flynn
- From the Department of Otolaryngology-Head and Neck Surgery (L.C.O., K.S.), Massachusetts Eye and Ear and Harvard Medical School; Program in Speech Hearing Bioscience and Technology (L.C.O., K.S.), Harvard University; and Department of Neurology (K.S.), Massachusetts General Hospital, Boston
| | - Kristina Simonyan
- From the Department of Otolaryngology-Head and Neck Surgery (L.C.O., K.S.), Massachusetts Eye and Ear and Harvard Medical School; Program in Speech Hearing Bioscience and Technology (L.C.O., K.S.), Harvard University; and Department of Neurology (K.S.), Massachusetts General Hospital, Boston.
| |
Collapse
|
8
|
Schill J, Zeuner KE, Knutzen A, Tödt I, Simonyan K, Witt K. Functional Neural Networks in Writer's Cramp as Determined by Graph-Theoretical Analysis. Front Neurol 2021; 12:744503. [PMID: 34887826 PMCID: PMC8650489 DOI: 10.3389/fneur.2021.744503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/25/2021] [Indexed: 01/21/2023] Open
Abstract
Dystonia, a debilitating neurological movement disorder, is characterized by involuntary muscle contractions and develops from a complex pathophysiology. Graph theoretical analysis approaches have been employed to investigate functional network changes in patients with different forms of dystonia. In this study, we aimed to characterize the abnormal brain connectivity underlying writer's cramp, a focal hand dystonia. To this end, we examined functional magnetic resonance scans of 20 writer's cramp patients (11 females/nine males) and 26 healthy controls (10 females/16 males) performing a sequential finger tapping task with their non-dominant (and for patients non-dystonic) hand. Functional connectivity matrices were used to determine group averaged brain networks. Our data suggest that in their neuronal network writer's cramp patients recruited fewer regions that were functionally more segregated. However, this did not impair the network's efficiency for information transfer. A hub analysis revealed alterations in communication patterns of the primary motor cortex, the thalamus and the cerebellum. As we did not observe any differences in motor outcome between groups, we assume that these network changes constitute compensatory rerouting within the patient network. In a secondary analysis, we compared patients with simple writer's cramp (only affecting the hand while writing) and those with complex writer's cramp (affecting the hand also during other fine motor tasks). We found abnormal cerebellar connectivity in the simple writer's cramp group, which was less prominent in complex writer's cramp. Our preliminary findings suggest that longitudinal research concerning cerebellar connectivity during WC progression could provide insight on early compensatory mechanisms in WC.
Collapse
Affiliation(s)
- Jana Schill
- Department of Neurology, School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany.,Department of Otolaryngology - Head & Neck Surgery, Harvard Medical School, Boston, MA, United States.,Department of Otolaryngology - Head & Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
| | - Kirsten E Zeuner
- Department of Neurology, Christian Albrechts University, Kiel, Germany
| | - Arne Knutzen
- Department of Neurology, Christian Albrechts University, Kiel, Germany
| | - Inken Tödt
- Department of Neurology, Christian Albrechts University, Kiel, Germany
| | - Kristina Simonyan
- Department of Otolaryngology - Head & Neck Surgery, Harvard Medical School, Boston, MA, United States.,Department of Otolaryngology - Head & Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
| | - Karsten Witt
- Department of Neurology, School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
9
|
Simonyan K, Barkmeier-Kraemer J, Blitzer A, Hallett M, Houde JF, Jacobson Kimberley T, Ozelius LJ, Pitman MJ, Richardson RM, Sharma N, Tanner K. Laryngeal Dystonia: Multidisciplinary Update on Terminology, Pathophysiology, and Research Priorities. Neurology 2021; 96:989-1001. [PMID: 33858994 DOI: 10.1212/wnl.0000000000011922] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE To delineate research priorities for improving clinical management of laryngeal dystonia, the NIH convened a multidisciplinary panel of experts for a 1-day workshop to examine the current progress in understanding its etiopathophysiology and clinical care. METHODS The participants reviewed the current terminology of disorder and discussed advances in understanding its pathophysiology since a similar workshop was held in 2005. Clinical and research gaps were identified, and recommendations for future directions were delineated. RESULTS The panel unanimously agreed to adopt the term "laryngeal dystonia" instead of "spasmodic dysphonia" to reflect the current progress in characterizations of this disorder. Laryngeal dystonia was recognized as a multifactorial, phenotypically heterogeneous form of isolated dystonia. Its etiology remains unknown, whereas the pathophysiology likely involves large-scale functional and structural brain network disorganization. Current challenges include the lack of clinically validated diagnostic markers and outcome measures and the paucity of therapies that address the disorder pathophysiology. CONCLUSION Research priorities should be guided by challenges in clinical management of laryngeal dystonia. Identification of disorder-specific biomarkers would allow the development of novel diagnostic tools and unified measures of treatment outcome. Elucidation of the critical nodes within neural networks that cause or modulate symptoms would allow the development of targeted therapies that address the underlying pathophysiology. Given the rarity of laryngeal dystonia, future rapid research progress may be facilitated by multicenter, national and international collaborations.
Collapse
Affiliation(s)
- Kristina Simonyan
- From the Department of Otolaryngology-Head and Neck Surgery (K.S.), Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, Department of Neurology (K.S., L.J.O., N.S.), Massachusetts General Hospital, Boston, MA; Division of Otolaryngology (J.B.-K.), University of Utah, Salt Lake City, UT; New York Center for Voice and Swallowing Disorders and Department of Neurology (A.B.), Icahn School of Medicine at Mount Sinai, New York, NY; Human Motor Control Section (M.H.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Otolaryngology-Head and Neck Surgery (J.H.), University of California San Francisco, San Francisco, CA; School of Rehabilitation and Health Sciences (T.J.K.), Massachusetts General Hospital Institute of Health Professions, Boston, MA; Department of Otolaryngology-Head and Neck Surgery (M.J.P.), Columbia University Irving Medical Center, New York, NY; Department of Neurosurgery (R.M.R.), Massachusetts General Hospital, Boston, MA; and Department of Communication Disorders (K.T.), Brigham Young University, Provo, UT.
| | - Julie Barkmeier-Kraemer
- From the Department of Otolaryngology-Head and Neck Surgery (K.S.), Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, Department of Neurology (K.S., L.J.O., N.S.), Massachusetts General Hospital, Boston, MA; Division of Otolaryngology (J.B.-K.), University of Utah, Salt Lake City, UT; New York Center for Voice and Swallowing Disorders and Department of Neurology (A.B.), Icahn School of Medicine at Mount Sinai, New York, NY; Human Motor Control Section (M.H.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Otolaryngology-Head and Neck Surgery (J.H.), University of California San Francisco, San Francisco, CA; School of Rehabilitation and Health Sciences (T.J.K.), Massachusetts General Hospital Institute of Health Professions, Boston, MA; Department of Otolaryngology-Head and Neck Surgery (M.J.P.), Columbia University Irving Medical Center, New York, NY; Department of Neurosurgery (R.M.R.), Massachusetts General Hospital, Boston, MA; and Department of Communication Disorders (K.T.), Brigham Young University, Provo, UT
| | - Andrew Blitzer
- From the Department of Otolaryngology-Head and Neck Surgery (K.S.), Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, Department of Neurology (K.S., L.J.O., N.S.), Massachusetts General Hospital, Boston, MA; Division of Otolaryngology (J.B.-K.), University of Utah, Salt Lake City, UT; New York Center for Voice and Swallowing Disorders and Department of Neurology (A.B.), Icahn School of Medicine at Mount Sinai, New York, NY; Human Motor Control Section (M.H.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Otolaryngology-Head and Neck Surgery (J.H.), University of California San Francisco, San Francisco, CA; School of Rehabilitation and Health Sciences (T.J.K.), Massachusetts General Hospital Institute of Health Professions, Boston, MA; Department of Otolaryngology-Head and Neck Surgery (M.J.P.), Columbia University Irving Medical Center, New York, NY; Department of Neurosurgery (R.M.R.), Massachusetts General Hospital, Boston, MA; and Department of Communication Disorders (K.T.), Brigham Young University, Provo, UT
| | - Mark Hallett
- From the Department of Otolaryngology-Head and Neck Surgery (K.S.), Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, Department of Neurology (K.S., L.J.O., N.S.), Massachusetts General Hospital, Boston, MA; Division of Otolaryngology (J.B.-K.), University of Utah, Salt Lake City, UT; New York Center for Voice and Swallowing Disorders and Department of Neurology (A.B.), Icahn School of Medicine at Mount Sinai, New York, NY; Human Motor Control Section (M.H.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Otolaryngology-Head and Neck Surgery (J.H.), University of California San Francisco, San Francisco, CA; School of Rehabilitation and Health Sciences (T.J.K.), Massachusetts General Hospital Institute of Health Professions, Boston, MA; Department of Otolaryngology-Head and Neck Surgery (M.J.P.), Columbia University Irving Medical Center, New York, NY; Department of Neurosurgery (R.M.R.), Massachusetts General Hospital, Boston, MA; and Department of Communication Disorders (K.T.), Brigham Young University, Provo, UT
| | - John F Houde
- From the Department of Otolaryngology-Head and Neck Surgery (K.S.), Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, Department of Neurology (K.S., L.J.O., N.S.), Massachusetts General Hospital, Boston, MA; Division of Otolaryngology (J.B.-K.), University of Utah, Salt Lake City, UT; New York Center for Voice and Swallowing Disorders and Department of Neurology (A.B.), Icahn School of Medicine at Mount Sinai, New York, NY; Human Motor Control Section (M.H.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Otolaryngology-Head and Neck Surgery (J.H.), University of California San Francisco, San Francisco, CA; School of Rehabilitation and Health Sciences (T.J.K.), Massachusetts General Hospital Institute of Health Professions, Boston, MA; Department of Otolaryngology-Head and Neck Surgery (M.J.P.), Columbia University Irving Medical Center, New York, NY; Department of Neurosurgery (R.M.R.), Massachusetts General Hospital, Boston, MA; and Department of Communication Disorders (K.T.), Brigham Young University, Provo, UT
| | - Teresa Jacobson Kimberley
- From the Department of Otolaryngology-Head and Neck Surgery (K.S.), Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, Department of Neurology (K.S., L.J.O., N.S.), Massachusetts General Hospital, Boston, MA; Division of Otolaryngology (J.B.-K.), University of Utah, Salt Lake City, UT; New York Center for Voice and Swallowing Disorders and Department of Neurology (A.B.), Icahn School of Medicine at Mount Sinai, New York, NY; Human Motor Control Section (M.H.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Otolaryngology-Head and Neck Surgery (J.H.), University of California San Francisco, San Francisco, CA; School of Rehabilitation and Health Sciences (T.J.K.), Massachusetts General Hospital Institute of Health Professions, Boston, MA; Department of Otolaryngology-Head and Neck Surgery (M.J.P.), Columbia University Irving Medical Center, New York, NY; Department of Neurosurgery (R.M.R.), Massachusetts General Hospital, Boston, MA; and Department of Communication Disorders (K.T.), Brigham Young University, Provo, UT
| | - Laurie J Ozelius
- From the Department of Otolaryngology-Head and Neck Surgery (K.S.), Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, Department of Neurology (K.S., L.J.O., N.S.), Massachusetts General Hospital, Boston, MA; Division of Otolaryngology (J.B.-K.), University of Utah, Salt Lake City, UT; New York Center for Voice and Swallowing Disorders and Department of Neurology (A.B.), Icahn School of Medicine at Mount Sinai, New York, NY; Human Motor Control Section (M.H.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Otolaryngology-Head and Neck Surgery (J.H.), University of California San Francisco, San Francisco, CA; School of Rehabilitation and Health Sciences (T.J.K.), Massachusetts General Hospital Institute of Health Professions, Boston, MA; Department of Otolaryngology-Head and Neck Surgery (M.J.P.), Columbia University Irving Medical Center, New York, NY; Department of Neurosurgery (R.M.R.), Massachusetts General Hospital, Boston, MA; and Department of Communication Disorders (K.T.), Brigham Young University, Provo, UT
| | - Michael J Pitman
- From the Department of Otolaryngology-Head and Neck Surgery (K.S.), Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, Department of Neurology (K.S., L.J.O., N.S.), Massachusetts General Hospital, Boston, MA; Division of Otolaryngology (J.B.-K.), University of Utah, Salt Lake City, UT; New York Center for Voice and Swallowing Disorders and Department of Neurology (A.B.), Icahn School of Medicine at Mount Sinai, New York, NY; Human Motor Control Section (M.H.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Otolaryngology-Head and Neck Surgery (J.H.), University of California San Francisco, San Francisco, CA; School of Rehabilitation and Health Sciences (T.J.K.), Massachusetts General Hospital Institute of Health Professions, Boston, MA; Department of Otolaryngology-Head and Neck Surgery (M.J.P.), Columbia University Irving Medical Center, New York, NY; Department of Neurosurgery (R.M.R.), Massachusetts General Hospital, Boston, MA; and Department of Communication Disorders (K.T.), Brigham Young University, Provo, UT
| | - Robert Mark Richardson
- From the Department of Otolaryngology-Head and Neck Surgery (K.S.), Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, Department of Neurology (K.S., L.J.O., N.S.), Massachusetts General Hospital, Boston, MA; Division of Otolaryngology (J.B.-K.), University of Utah, Salt Lake City, UT; New York Center for Voice and Swallowing Disorders and Department of Neurology (A.B.), Icahn School of Medicine at Mount Sinai, New York, NY; Human Motor Control Section (M.H.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Otolaryngology-Head and Neck Surgery (J.H.), University of California San Francisco, San Francisco, CA; School of Rehabilitation and Health Sciences (T.J.K.), Massachusetts General Hospital Institute of Health Professions, Boston, MA; Department of Otolaryngology-Head and Neck Surgery (M.J.P.), Columbia University Irving Medical Center, New York, NY; Department of Neurosurgery (R.M.R.), Massachusetts General Hospital, Boston, MA; and Department of Communication Disorders (K.T.), Brigham Young University, Provo, UT
| | - Nutan Sharma
- From the Department of Otolaryngology-Head and Neck Surgery (K.S.), Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, Department of Neurology (K.S., L.J.O., N.S.), Massachusetts General Hospital, Boston, MA; Division of Otolaryngology (J.B.-K.), University of Utah, Salt Lake City, UT; New York Center for Voice and Swallowing Disorders and Department of Neurology (A.B.), Icahn School of Medicine at Mount Sinai, New York, NY; Human Motor Control Section (M.H.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Otolaryngology-Head and Neck Surgery (J.H.), University of California San Francisco, San Francisco, CA; School of Rehabilitation and Health Sciences (T.J.K.), Massachusetts General Hospital Institute of Health Professions, Boston, MA; Department of Otolaryngology-Head and Neck Surgery (M.J.P.), Columbia University Irving Medical Center, New York, NY; Department of Neurosurgery (R.M.R.), Massachusetts General Hospital, Boston, MA; and Department of Communication Disorders (K.T.), Brigham Young University, Provo, UT
| | - Kristine Tanner
- From the Department of Otolaryngology-Head and Neck Surgery (K.S.), Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, Department of Neurology (K.S., L.J.O., N.S.), Massachusetts General Hospital, Boston, MA; Division of Otolaryngology (J.B.-K.), University of Utah, Salt Lake City, UT; New York Center for Voice and Swallowing Disorders and Department of Neurology (A.B.), Icahn School of Medicine at Mount Sinai, New York, NY; Human Motor Control Section (M.H.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Department of Otolaryngology-Head and Neck Surgery (J.H.), University of California San Francisco, San Francisco, CA; School of Rehabilitation and Health Sciences (T.J.K.), Massachusetts General Hospital Institute of Health Professions, Boston, MA; Department of Otolaryngology-Head and Neck Surgery (M.J.P.), Columbia University Irving Medical Center, New York, NY; Department of Neurosurgery (R.M.R.), Massachusetts General Hospital, Boston, MA; and Department of Communication Disorders (K.T.), Brigham Young University, Provo, UT
| | | |
Collapse
|
10
|
Khosravani S, Chen G, Ozelius LJ, Simonyan K. Neural endophenotypes and predictors of laryngeal dystonia penetrance and manifestation. Neurobiol Dis 2020; 148:105223. [PMID: 33316367 PMCID: PMC8284879 DOI: 10.1016/j.nbd.2020.105223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 11/29/2022] Open
Abstract
Focal dystonias are the most common forms of isolated dystonia; however, the etiopathophysiological signatures of disorder penetrance and clinical manifestation remain unclear. Using an imaging genetics approach, we investigated functional and structural representations of neural endophenotypes underlying the penetrance and manifestation of laryngeal dystonia in families, including 21 probands and 21 unaffected relatives, compared to 32 unrelated healthy controls. We further used a supervised machine-learning algorithm to predict the risk for dystonia development in susceptible individuals based on neural features of identified endophenotypes. We found that abnormalities in prefrontal-parietal cortex, thalamus, and caudate nucleus were commonly shared between patients and their unaffected relatives, representing an intermediate endophenotype of laryngeal dystonia. Machine learning classified 95.2% of unaffected relatives as patients rather than healthy controls, substantiating that these neural alterations represent the endophenotypic marker of dystonia penetrance, independent of its symptomatology. Additional abnormalities in premotor-parietal-temporal cortical regions, caudate nucleus, and cerebellum were present only in patients but not their unaffected relatives, likely representing a secondary endophenotype of dystonia manifestation. Based on alterations in the parietal cortex and caudate nucleus, the machine learning categorized 28.6% of unaffected relative as patients, indicating their increased lifetime risk for developing clinical manifestation of dystonia. The identified endophenotypic neural markers may be implemented for screening of at-risk individuals for dystonia development, selection of families for genetic studies of novel variants based on their risk for disease penetrance, or stratification of patients who would respond differently to a particular treatment in clinical trials.
Collapse
Affiliation(s)
- Sanaz Khosravani
- Department of Otolaryngology - Head & Neck Surgery, Massachusetts Eye and Ear, Boston, MA, USA; Department of Otolaryngology - Head & Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Gang Chen
- National Institute of Mental Health, National Institute of Health, Bethesda, MD, USA
| | - Laurie J Ozelius
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Kristina Simonyan
- Department of Otolaryngology - Head & Neck Surgery, Massachusetts Eye and Ear, Boston, MA, USA; Department of Otolaryngology - Head & Neck Surgery, Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
11
|
Teive HA, Chen CC. Isolated focal dystonia. Neurology 2020; 95:711-712. [DOI: 10.1212/wnl.0000000000010818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
12
|
A microstructural neural network biomarker for dystonia diagnosis identified by a DystoniaNet deep learning platform. Proc Natl Acad Sci U S A 2020; 117:26398-26405. [PMID: 33004625 PMCID: PMC7586425 DOI: 10.1073/pnas.2009165117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This research identified a microstructural neural network biomarker for objective and accurate diagnosis of isolated dystonia based on the disorder pathophysiology using an advanced deep learning algorithm, DystoniaNet, and raw structural brain images of large cohorts of patients with isolated focal dystonia and healthy controls. DystoniaNet significantly outperformed shallow machine-learning pipelines and substantially exceeded the current agreement rates between clinicians, reaching an overall accuracy of 98.8% in diagnosing different forms of isolated focal dystonia. These results suggest that DystoniaNet could serve as an objective, robust, and generalizable algorithmic platform of dystonia diagnosis for enhanced clinical decision-making. Implementation of the identified biomarker for objective and accurate diagnosis of dystonia may be transformative for clinical management of this disorder. Isolated dystonia is a neurological disorder of heterogeneous pathophysiology, which causes involuntary muscle contractions leading to abnormal movements and postures. Its diagnosis is remarkably challenging due to the absence of a biomarker or gold standard diagnostic test. This leads to a low agreement between clinicians, with up to 50% of cases being misdiagnosed and diagnostic delays extending up to 10.1 y. We developed a deep learning algorithmic platform, DystoniaNet, to automatically identify and validate a microstructural neural network biomarker for dystonia diagnosis from raw structural brain MRIs of 612 subjects, including 392 patients with three different forms of isolated focal dystonia and 220 healthy controls. DystoniaNet identified clusters in corpus callosum, anterior and posterior thalamic radiations, inferior fronto-occipital fasciculus, and inferior temporal and superior orbital gyri as the biomarker components. These regions are known to contribute to abnormal interhemispheric information transfer, heteromodal sensorimotor processing, and executive control of motor commands in dystonia pathophysiology. The DystoniaNet-based biomarker showed an overall accuracy of 98.8% in diagnosing dystonia, with a referral of 3.5% of cases due to diagnostic uncertainty. The diagnostic decision by DystoniaNet was computed in 0.36 s per subject. DystoniaNet significantly outperformed shallow machine-learning algorithms in benchmark comparisons, showing nearly a 20% increase in its diagnostic performance. Importantly, the microstructural neural network biomarker and its DystoniaNet platform showed substantial improvement over the current 34% agreement on dystonia diagnosis between clinicians. The translational potential of this biomarker is in its highly accurate, interpretable, and generalizable performance for enhanced clinical decision-making.
Collapse
|
13
|
de Lima Xavier L, Simonyan K. Neural Representations of the Voice Tremor Spectrum. Mov Disord 2020; 35:2290-2300. [PMID: 32976662 DOI: 10.1002/mds.28259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Voice tremor is a common movement disorder that manifests as involuntary oscillations of laryngeal muscles, leading to rhythmic alterations in voice pitch and loudness. Differential diagnosis of essential tremor of voice (ETv) is often challenging and includes dystonic tremor of voice (DTv), which is characterized by irregular, isometric contractions of laryngeal muscles during dystonic activity. Although clinical characteristics of voice tremor are well described, the pathophysiology underlying its heterogeneous phenomenology remains limited. METHODS We used a multimodal approach of functional magnetic resonance imaging for assessment of brain activity during symptomatic speech production, high-resolution magnetic resonance imaging for the examination of cortical thickness and gray matter volume, and diffusion-weighted imaging for evaluation of white matter integrity to identify disorder-specific neural alterations and their relationships with the symptomatology of ETv and DTv. RESULTS We found a broad overlap between cortical alterations in ETv and DTv, involving sensorimotor regions responsible for the integration of multisensory information during speech production, such as primary sensorimotor, inferior/superior parietal, and inferior temporal cortices. In addition, ETv and DTv showed unique patterns of abnormalities in regions controlling speech motor preparation, which were localized in the cerebellum in ETv and the premotor cortex, insula, and superior temporal gyrus in DTv. Neural alterations in superior parietal and inferior temporal cortices were correlated with ETv severity, whereas changes in the left premotor cortex were associated with DTv severity. CONCLUSIONS Our findings point to the pathophysiological spectrum underlying ETv and DTv and favor a more heterogeneous rather than dichotomous diagnostic classification of these voice tremor disorders. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Laura de Lima Xavier
- Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Kristina Simonyan
- Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Norris SA, Morris AE, Campbell MC, Karimi M, Adeyemo B, Paniello RC, Snyder AZ, Petersen SE, Mink JW, Perlmutter JS. Regional, not global, functional connectivity contributes to isolated focal dystonia. Neurology 2020; 95:e2246-e2258. [PMID: 32913023 DOI: 10.1212/wnl.0000000000010791] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/13/2020] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE To test the hypothesis that there is shared regional or global functional connectivity dysfunction in a large cohort of patients with isolated focal dystonia affecting different body regions compared to control participants. In this case-control study, we obtained resting-state MRI scans (three or four 7.3-minute runs) with eyes closed in participants with focal dystonia (cranial [17], cervical [13], laryngeal [18], or limb [10]) and age- and sex-matched controls. METHODS Rigorous preprocessing for all analyses was performed to minimize effect of head motion during scan acquisition (dystonia n = 58, control n = 47 analyzed). We assessed regional functional connectivity by computing a seed-correlation map between putamen, pallidum, and sensorimotor cortex and all brain voxels. We assessed significant group differences on a cluster-wise basis. In a separate analysis, we applied 300 seed regions across the cortex, cerebellum, basal ganglia, and thalamus to comprehensively sample the whole brain. We obtained participant whole-brain correlation matrices by computing the correlation between seed average time courses for each seed pair. Weighted object-oriented data analysis assessed group-level whole-brain differences. RESULTS Participants with focal dystonia had decreased functional connectivity at the regional level, within the striatum and between lateral primary sensorimotor cortex and ventral intraparietal area, whereas whole-brain correlation matrices did not differ between focal dystonia and control groups. Rigorous quality control measures eliminated spurious large-scale functional connectivity differences between groups. CONCLUSION Regional functional connectivity differences, not global network level dysfunction, contributes to common pathophysiologic mechanisms in isolated focal dystonia. Rigorous quality control eliminated spurious large-scale network differences between patients with focal dystonia and control participants.
Collapse
Affiliation(s)
- Scott A Norris
- From the Departments of Neurology (S.A.N., M.C.C., M.K., A.B., A.Z.S., S.E.P., J.S.P.), Radiology (S.A.N., M.C.C., A.Z.S., S.E.P., J.S.P.), Otolaryngology (R.C.P.), Neuroscience (S.E.P., J.S.P.), Psychology (S.E.P.), Physical Therapy (J.S.P.), and Occupational Therapy (J.S.P.), Washington University School of Medicine, St. Louis, MO; University of Rochester Medical Scientist Training Program and Neurosciences Graduate Program (A.E.M.); and Departments of Neurology, Neuroscience, and Pediatrics (J.W.M.), University of Rochester, NY.
| | - Aimee E Morris
- From the Departments of Neurology (S.A.N., M.C.C., M.K., A.B., A.Z.S., S.E.P., J.S.P.), Radiology (S.A.N., M.C.C., A.Z.S., S.E.P., J.S.P.), Otolaryngology (R.C.P.), Neuroscience (S.E.P., J.S.P.), Psychology (S.E.P.), Physical Therapy (J.S.P.), and Occupational Therapy (J.S.P.), Washington University School of Medicine, St. Louis, MO; University of Rochester Medical Scientist Training Program and Neurosciences Graduate Program (A.E.M.); and Departments of Neurology, Neuroscience, and Pediatrics (J.W.M.), University of Rochester, NY
| | - Meghan C Campbell
- From the Departments of Neurology (S.A.N., M.C.C., M.K., A.B., A.Z.S., S.E.P., J.S.P.), Radiology (S.A.N., M.C.C., A.Z.S., S.E.P., J.S.P.), Otolaryngology (R.C.P.), Neuroscience (S.E.P., J.S.P.), Psychology (S.E.P.), Physical Therapy (J.S.P.), and Occupational Therapy (J.S.P.), Washington University School of Medicine, St. Louis, MO; University of Rochester Medical Scientist Training Program and Neurosciences Graduate Program (A.E.M.); and Departments of Neurology, Neuroscience, and Pediatrics (J.W.M.), University of Rochester, NY
| | - Morvarid Karimi
- From the Departments of Neurology (S.A.N., M.C.C., M.K., A.B., A.Z.S., S.E.P., J.S.P.), Radiology (S.A.N., M.C.C., A.Z.S., S.E.P., J.S.P.), Otolaryngology (R.C.P.), Neuroscience (S.E.P., J.S.P.), Psychology (S.E.P.), Physical Therapy (J.S.P.), and Occupational Therapy (J.S.P.), Washington University School of Medicine, St. Louis, MO; University of Rochester Medical Scientist Training Program and Neurosciences Graduate Program (A.E.M.); and Departments of Neurology, Neuroscience, and Pediatrics (J.W.M.), University of Rochester, NY
| | - Babatunde Adeyemo
- From the Departments of Neurology (S.A.N., M.C.C., M.K., A.B., A.Z.S., S.E.P., J.S.P.), Radiology (S.A.N., M.C.C., A.Z.S., S.E.P., J.S.P.), Otolaryngology (R.C.P.), Neuroscience (S.E.P., J.S.P.), Psychology (S.E.P.), Physical Therapy (J.S.P.), and Occupational Therapy (J.S.P.), Washington University School of Medicine, St. Louis, MO; University of Rochester Medical Scientist Training Program and Neurosciences Graduate Program (A.E.M.); and Departments of Neurology, Neuroscience, and Pediatrics (J.W.M.), University of Rochester, NY
| | - Randal C Paniello
- From the Departments of Neurology (S.A.N., M.C.C., M.K., A.B., A.Z.S., S.E.P., J.S.P.), Radiology (S.A.N., M.C.C., A.Z.S., S.E.P., J.S.P.), Otolaryngology (R.C.P.), Neuroscience (S.E.P., J.S.P.), Psychology (S.E.P.), Physical Therapy (J.S.P.), and Occupational Therapy (J.S.P.), Washington University School of Medicine, St. Louis, MO; University of Rochester Medical Scientist Training Program and Neurosciences Graduate Program (A.E.M.); and Departments of Neurology, Neuroscience, and Pediatrics (J.W.M.), University of Rochester, NY
| | - Abraham Z Snyder
- From the Departments of Neurology (S.A.N., M.C.C., M.K., A.B., A.Z.S., S.E.P., J.S.P.), Radiology (S.A.N., M.C.C., A.Z.S., S.E.P., J.S.P.), Otolaryngology (R.C.P.), Neuroscience (S.E.P., J.S.P.), Psychology (S.E.P.), Physical Therapy (J.S.P.), and Occupational Therapy (J.S.P.), Washington University School of Medicine, St. Louis, MO; University of Rochester Medical Scientist Training Program and Neurosciences Graduate Program (A.E.M.); and Departments of Neurology, Neuroscience, and Pediatrics (J.W.M.), University of Rochester, NY
| | - Steven E Petersen
- From the Departments of Neurology (S.A.N., M.C.C., M.K., A.B., A.Z.S., S.E.P., J.S.P.), Radiology (S.A.N., M.C.C., A.Z.S., S.E.P., J.S.P.), Otolaryngology (R.C.P.), Neuroscience (S.E.P., J.S.P.), Psychology (S.E.P.), Physical Therapy (J.S.P.), and Occupational Therapy (J.S.P.), Washington University School of Medicine, St. Louis, MO; University of Rochester Medical Scientist Training Program and Neurosciences Graduate Program (A.E.M.); and Departments of Neurology, Neuroscience, and Pediatrics (J.W.M.), University of Rochester, NY
| | - Jonathan W Mink
- From the Departments of Neurology (S.A.N., M.C.C., M.K., A.B., A.Z.S., S.E.P., J.S.P.), Radiology (S.A.N., M.C.C., A.Z.S., S.E.P., J.S.P.), Otolaryngology (R.C.P.), Neuroscience (S.E.P., J.S.P.), Psychology (S.E.P.), Physical Therapy (J.S.P.), and Occupational Therapy (J.S.P.), Washington University School of Medicine, St. Louis, MO; University of Rochester Medical Scientist Training Program and Neurosciences Graduate Program (A.E.M.); and Departments of Neurology, Neuroscience, and Pediatrics (J.W.M.), University of Rochester, NY
| | - Joel S Perlmutter
- From the Departments of Neurology (S.A.N., M.C.C., M.K., A.B., A.Z.S., S.E.P., J.S.P.), Radiology (S.A.N., M.C.C., A.Z.S., S.E.P., J.S.P.), Otolaryngology (R.C.P.), Neuroscience (S.E.P., J.S.P.), Psychology (S.E.P.), Physical Therapy (J.S.P.), and Occupational Therapy (J.S.P.), Washington University School of Medicine, St. Louis, MO; University of Rochester Medical Scientist Training Program and Neurosciences Graduate Program (A.E.M.); and Departments of Neurology, Neuroscience, and Pediatrics (J.W.M.), University of Rochester, NY
| |
Collapse
|
15
|
Human brain connectivity: Clinical applications for clinical neurophysiology. Clin Neurophysiol 2020; 131:1621-1651. [DOI: 10.1016/j.clinph.2020.03.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022]
|
16
|
Hanekamp S, Simonyan K. The large-scale structural connectome of task-specific focal dystonia. Hum Brain Mapp 2020; 41:3253-3265. [PMID: 32311207 PMCID: PMC7375103 DOI: 10.1002/hbm.25012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/27/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022] Open
Abstract
The emerging view of dystonia is that of a large‐scale functional network disorder, in which the communication is disrupted between sensorimotor cortical areas, basal ganglia, thalamus, and cerebellum. The structural underpinnings of functional alterations in dystonia are, however, poorly understood. Notably, it is unclear whether structural changes form a larger‐scale dystonic network or rather remain focal to isolated brain regions, merely underlying their functional abnormalities. Using diffusion‐weighted imaging and graph theoretical analysis, we examined inter‐regional white matter connectivity of the whole‐brain structural network in two different forms of task‐specific focal dystonia, writer's cramp and laryngeal dystonia, compared to healthy individuals. We show that, in addition to profoundly altered functional network in focal dystonia, its structural connectome is characterized by large‐scale aberrations due to abnormal transfer of prefrontal and parietal nodes between neural communities and the reorganization of normal hub architecture, commonly involving the insula and superior frontal gyrus in patients compared to controls. Other prominent common changes involved the basal ganglia, parietal and cingulate cortical regions, whereas premotor and occipital abnormalities distinctly characterized the two forms of dystonia. We propose a revised pathophysiological model of focal dystonia as a disorder of both functional and structural connectomes, where dystonia form‐specific abnormalities underlie the divergent mechanisms in the development of distinct clinical symptomatology. These findings may guide the development of novel therapeutic strategies directed at targeted neuromodulation of pathophysiological brain regions for the restoration of their structural and functional connectivity.
Collapse
Affiliation(s)
- Sandra Hanekamp
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Kristina Simonyan
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Lungu C, Ozelius L, Standaert D, Hallett M, Sieber BA, Swanson-Fisher C, Berman BD, Calakos N, Moore JC, Perlmutter JS, Pirio Richardson SE, Saunders-Pullman R, Scheinfeldt L, Sharma N, Sillitoe R, Simonyan K, Starr PA, Taylor A, Vitek J. Defining research priorities in dystonia. Neurology 2020; 94:526-537. [PMID: 32098856 DOI: 10.1212/wnl.0000000000009140] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/14/2020] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE Dystonia is a complex movement disorder. Research progress has been difficult, particularly in developing widely effective therapies. This is a review of the current state of knowledge, research gaps, and proposed research priorities. METHODS The NIH convened leaders in the field for a 2-day workshop. The participants addressed the natural history of the disease, the underlying etiology, the pathophysiology, relevant research technologies, research resources, and therapeutic approaches and attempted to prioritize dystonia research recommendations. RESULTS The heterogeneity of dystonia poses challenges to research and therapy development. Much can be learned from specific genetic subtypes, and the disorder can be conceptualized along clinical, etiology, and pathophysiology axes. Advances in research technology and pooled resources can accelerate progress. Although etiologically based therapies would be optimal, a focus on circuit abnormalities can provide a convergent common target for symptomatic therapies across dystonia subtypes. The discussions have been integrated into a comprehensive review of all aspects of dystonia. CONCLUSION Overall research priorities include the generation and integration of high-quality phenotypic and genotypic data, reproducing key features in cellular and animal models, both of basic cellular mechanisms and phenotypes, leveraging new research technologies, and targeting circuit-level dysfunction with therapeutic interventions. Collaboration is necessary both for collection of large data sets and integration of different research methods.
Collapse
Affiliation(s)
- Codrin Lungu
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN.
| | - Laurie Ozelius
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - David Standaert
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Mark Hallett
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Beth-Anne Sieber
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Christine Swanson-Fisher
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Brian D Berman
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Nicole Calakos
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Jennifer C Moore
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Joel S Perlmutter
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Sarah E Pirio Richardson
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Rachel Saunders-Pullman
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Laura Scheinfeldt
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Nutan Sharma
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Roy Sillitoe
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Kristina Simonyan
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Philip A Starr
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Anna Taylor
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | - Jerrold Vitek
- From the Division of Clinical Research (C.L.), National Institute of Neurological Disorders and Stroke, National Institutes of Health; Harvard Medical School (L.O., N.S.), Massachusetts General Hospital, Boston, MA; University of Alabama, Birmingham (D.S.), Birmingham, AL; Medical Neurology Branch (M.H.), NINDS, NIH, Bethesda, MD; Division of Neuroscience (B.-A.S., C.S.-F.), NINDS, NIH, Bethesda, MD; Department of Neurology (B.D.B.), University of Colorado Denver, Aurora, CO; Duke University School of Medicine, Durham, NC; RUCDR/Infinite Biologics (J.C.M.), Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ; Washington University School of Medicine (J.S.P.), St Louis, MO; Department of Neurology (S.E.P.R.), University of New Mexico Health Sciences Center, Albuquerque, NM; Department of Neurology (R.S.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; Coriell Institute for Medical Research (L.S.), Camden, NJ; Department of Neuroscience (R.S.), Baylor College of Medicine, Houston, TX; Harvard Medical School (K.S.), Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Institute, Boston, MA; Department of Neurological Surgery (P.A.S.), University of California San Francisco, San Francisco, CA; Division of Extramural Activities (A.T.), NINDS, NIH, Rockville, MD; and Department of Neurology (J.V.), University of Minnesota, Minneapolis, MN
| | | |
Collapse
|
18
|
Battistella G, Simonyan K. Top-down alteration of functional connectivity within the sensorimotor network in focal dystonia. Neurology 2019; 92:e1843-e1851. [PMID: 30918091 DOI: 10.1212/wnl.0000000000007317] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/17/2018] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES To determine the directionality of regional interactions and influences of one region on another within the functionally abnormal sensorimotor network in isolated focal dystonia. METHODS A total of 40 patients with spasmodic dysphonia with and without dystonic tremor of voice and 35 healthy controls participated in the study. Independent component analysis (ICA) of resting-state fMRI was used to identify 4 abnormally coupled brain regions within the functional sensorimotor network in all patients compared to controls. Follow-up spectral dynamic causal modeling (DCM) estimated regional effective connectivity between patients and controls and between patients with spasmodic dysphonia with and without dystonic tremor of voice to expand the understanding of symptomatologic variability associated with this disorder. RESULTS ICA found abnormally reduced functional connectivity of the left inferior parietal cortex, putamen, and bilateral premotor cortex in all patients compared to controls, pointing to a largely overlapping pathophysiology of focal dystonia and dystonic tremor. DCM determined that the disruption of the sensorimotor network was both top-down, involving hyperexcitable parieto-putaminal influence, and interhemispheric, involving right-to-left hyperexcitable premotor coupling in all patients compared to controls. These regional alterations were associated with their abnormal self-inhibitory function when comparing patients with spasmodic dysphonia patients with and without dystonic tremor of voice. CONCLUSIONS Abnormal hyperexcitability of premotor-parietal-putaminal circuitry may be explained by altered information transfer between these regions due to underlying deficient connectivity. Identification of brain regions involved in processing of sensorimotor information in preparation for movement execution suggests that complex network disruption is staged well before the dystonic behavior is produced by the primary motor cortex.
Collapse
Affiliation(s)
- Giovanni Battistella
- From the Memory and Aging Center (G.B.), Department of Neurology, University of California San Francisco; Department of Otolaryngology (K.S.), Massachusetts Eye and Ear; Department of Neurology (K.S.), Massachusetts General Hospital (K.S.); and Harvard Medical School (K.S.), Boston, MA
| | - Kristina Simonyan
- From the Memory and Aging Center (G.B.), Department of Neurology, University of California San Francisco; Department of Otolaryngology (K.S.), Massachusetts Eye and Ear; Department of Neurology (K.S.), Massachusetts General Hospital (K.S.); and Harvard Medical School (K.S.), Boston, MA.
| |
Collapse
|
19
|
Bianchi S, Fuertinger S, Huddleston H, Frucht SJ, Simonyan K. Functional and structural neural bases of task specificity in isolated focal dystonia. Mov Disord 2019; 34:555-563. [PMID: 30840778 DOI: 10.1002/mds.27649] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/31/2018] [Accepted: 01/28/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Task-specific focal dystonias selectively affect movements during the production of highly learned and complex motor behaviors. Manifestation of some task-specific focal dystonias, such as musician's dystonia, has been associated with excessive practice and overuse, whereas the etiology of others remains largely unknown. OBJECTIVES In this study, we aimed to examine the neural correlates of task-specific dystonias in order to determine their disorder-specific pathophysiological traits. METHODS Using multimodal neuroimaging analyses of resting-state functional connectivity, voxel-based morphometry and tract-based spatial statistics, we examined functional and structural abnormalities that are both common to and distinct between four different forms of task-specific focal dystonias. RESULTS Compared to the normal state, all task-specific focal dystonias were characterized by abnormal recruitment of parietal and premotor cortices that are necessary for both modality-specific and heteromodal control of the sensorimotor network. Contrasting the laryngeal and hand forms of focal dystonia revealed distinct patterns of sensorimotor integration and planning, again involving parietal cortex in addition to inferior frontal gyrus and anterior insula. On the other hand, musician's dystonia compared to nonmusician's dystonia was shaped by alterations in primary and secondary sensorimotor cortices together with middle frontal gyrus, pointing to impairments of sensorimotor guidance and executive control. CONCLUSION Collectively, this study outlines a specialized footprint of functional and structural alterations in different forms of task-specific focal dystonia, all of which also share a common pathophysiological framework involving premotor-parietal aberrations. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Serena Bianchi
- Department of Neurology, Mount Sinai School of Medicine, New York, New York, USA
| | - Stefan Fuertinger
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main, Germany
| | - Hailey Huddleston
- Department of Neurology, Mount Sinai School of Medicine, New York, New York, USA
| | - Steven J Frucht
- Department of Neurology, New York University, New York, New York, USA
| | - Kristina Simonyan
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.,Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Abstract
Dystonia is a neurological disorder characterized by involuntary, repetitive movements. Although the precise mechanisms of dystonia development remain unknown, the diversity of its clinical phenotypes is thought to be associated with multifactorial pathophysiology, which is linked not only to alterations of brain organization, but also environmental stressors and gene mutations. This chapter will present an overview of the pathophysiology of isolated dystonia through the lens of applications of major neuroimaging methodologies, with links to genetics and environmental factors that play a prominent role in symptom manifestation.
Collapse
|
21
|
Fuertinger S, Simonyan K. Task-specificity in focal dystonia is shaped by aberrant diversity of a functional network kernel. Mov Disord 2018; 33:1918-1927. [PMID: 30264427 DOI: 10.1002/mds.97] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/19/2018] [Accepted: 06/25/2018] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Task-specific focal dystonia selectively affects the motor control during skilled and highly learned behaviors. Recent data suggest the role of neural network abnormalities in the development of the pathophysiological dystonic cascade. METHODS We used resting-state functional MRI and analytic techniques rooted in network science and graph theory to examine the formation of abnormal subnetwork of highly influential brain regions, the functional network kernel, and its influence on aberrant dystonic connectivity specific to affected body region and skilled motor behavior. RESULTS We found abnormal embedding of sensorimotor cortex and prefrontal thalamus in dystonic network kernel as a hallmark of task-specific focal dystonia. Dependent on the affected body region, aberrant functional specialization of the network kernel included regions of motor control management in focal hand dystonia (writer's cramp, musician's focal hand dystonia) and sensorimotor processing in laryngeal dystonia (spasmodic dysphonia, singer's laryngeal dystonia). Dependent on skilled motor behavior, the network kernel featured altered connectivity between sensory and motor execution circuits in musician's dystonia (musician's focal hand dystonia, singer's laryngeal dystonia) and abnormal integration of sensory feedback into motor planning and executive circuits in non-musician's dystonia (writer's cramp, spasmodic dysphonia). CONCLUSIONS Our study identified specific traits in disorganization of large-scale neural connectivity that underlie the common pathophysiology of task-specific focal dystonia while reflecting distinct symptomatology of its different forms. Identification of specialized regions of information transfer that influence dystonic network activity is an important step for future delineation of targets for neuromodulation as a potential therapeutic option of task-specific focal dystonia. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Stefan Fuertinger
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main, Germany
| | - Kristina Simonyan
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Battistella G, Kumar V, Simonyan K. Connectivity profiles of the insular network for speech control in healthy individuals and patients with spasmodic dysphonia. Brain Struct Funct 2018. [PMID: 29520481 DOI: 10.1007/s00429-018-1644-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The importance of insula in speech control is acknowledged but poorly understood, partly due to a variety of clinical symptoms resulting from insults to this structure. To clarify its structural organization within the speech network in healthy subjects, we used probabilistic diffusion tractography to examine insular connectivity with three cortical regions responsible for sound processing [Brodmann area (BA) 22], motor preparation (BA 44) and motor execution (laryngeal/orofacial primary motor cortex, BA 4). To assess insular reorganization in a speech disorder, we examined its structural connectivity in patients with spasmodic dysphonia (SD), a neurological condition that selectively affects speech production. We demonstrated structural segregation of insula into three non-overlapping regions, which receive distinct connections from BA 44 (anterior insula), BA 4 (mid-insula) and BA 22 (dorsal and posterior insula). There were no significant differences either in the number of streamlines connecting each insular subdivision to the cortical target or hemispheric lateralization of insular clusters and their projections between healthy subjects and SD patients. However, spatial distribution of the insular subdivisions connected to BA 4 and BA 44 was distinctly organized in healthy controls and SD patients, extending ventro-posteriorly in the former group and anterio-dorsally in the latter group. Our findings point to structural segregation of the insular sub-regions, which may be associated with the different aspects of sensorimotor and cognitive control of speech production. We suggest that distinct insular involvement may lead to different clinical manifestations when one or the other insular region and/or its connections undergo spatial reorganization.
Collapse
Affiliation(s)
- Giovanni Battistella
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Veena Kumar
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristina Simonyan
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Suite 421, Boston, MA, 02114, USA.
| |
Collapse
|
23
|
Dynamic causal modeling revealed dysfunctional effective connectivity in both, the cortico-basal-ganglia and the cerebello-cortical motor network in writers' cramp. NEUROIMAGE-CLINICAL 2018; 18:149-159. [PMID: 29868443 PMCID: PMC5984595 DOI: 10.1016/j.nicl.2018.01.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/09/2018] [Accepted: 01/15/2018] [Indexed: 12/25/2022]
Abstract
Writer's cramp (WC) is a focal task-specific dystonia characterized by sustained or intermittent muscle contractions while writing, particularly with the dominant hand. Since structural lesions rarely cause WC, it has been assumed that the disease might be caused by a functional maladaptation within the sensory-motor system. Therefore, our objective was to examine the differences between patients suffering from WC and a healthy control (HC) group with regard to the effective connectivity that describes causal influences one brain region exerts over another within the motor network. The effective connectivity within a network including contralateral motor cortex (M1), supplementary motor area (SMA), globus pallidus (GP), putamen (PU) and ipsilateral cerebellum (CB) was investigated using dynamic causal modeling (DCM) for fMRI. Eight connectivity models of functional motor systems were compared. Fifteen WC patients and 18 age-matched HC performed a sequential, five-element finger-tapping task with the non-dominant and non-affected left hand within a 3 T MRI-scanner as quickly and accurately as possible. The task was conducted in a fixed block design repeated 15 times and included 30 s of tapping followed by 30 s of rest. DCM identified the same model in WC and HC as superior for reflecting basal ganglia and cerebellar motor circuits of healthy subjects. The M1-PU, as well as M1-CB connectivity, was more strongly influenced by tapping in WC, but the intracortical M1-SMA connection was more facilitating in controls. Inhibiting influences originating from GP to M1 were stronger in controls compared to WC patients whereby facilitating influences the PU exerts over CB and CB exerts over M1 were not as strong. Although the same model structure explains the given data best, DCM confirms previous research demonstrating a malfunction in effective connectivity intracortically (M1-SMA) and in the cortico-basal ganglia circuitry in WC. In addition, DCM analysis demonstrates abnormal reciprocal excitatory connectivity in the cortico-cerebellar circuitry. These results highlight the dysfunctional cerebello-cortical as well as basalganglio-cortical interaction in WC. Effective connectivity in writer`s cramp differs under sequential finger movements. We found a deficient inhibitory pallido-cortical connectivity in writer`s cramp. We found a diverging effective connectivity in the cortico-cerebellar loop. We found a diverging effective connectivity in the cortico-basal ganglia pathway. Pathophysiological interaction between the cerebellum and the basal ganglia.
Collapse
|
24
|
Simonyan K, Cho H, Hamzehei Sichani A, Rubien-Thomas E, Hallett M. The direct basal ganglia pathway is hyperfunctional in focal dystonia. Brain 2017; 140:3179-3190. [PMID: 29087445 PMCID: PMC5841143 DOI: 10.1093/brain/awx263] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/16/2017] [Accepted: 08/20/2017] [Indexed: 12/22/2022] Open
Abstract
See Fujita and Eidelberg (doi:10.1093/brain/awx305) for a scientific commentary on this article. Focal dystonias are the most common type of isolated dystonia. Although their causative pathophysiology remains unclear, it is thought to involve abnormal functioning of the basal ganglia-thalamo-cortical circuitry. We used high-resolution research tomography with the radioligand 11C-NNC-112 to examine striatal dopamine D1 receptor function in two independent groups of patients, writer’s cramp and laryngeal dystonia, compared to healthy controls. We found that availability of dopamine D1 receptors was significantly increased in bilateral putamen by 19.6–22.5% in writer’s cramp and in right putamen and caudate nucleus by 24.6–26.8% in laryngeal dystonia (all P ≤ 0.009). This suggests hyperactivity of the direct basal ganglia pathway in focal dystonia. Our findings paralleled abnormally decreased dopaminergic function via the indirect basal ganglia pathway and decreased symptom-induced phasic striatal dopamine release in writer’s cramp and laryngeal dystonia. When examining topological distribution of dopamine D1 and D2 receptor abnormalities in these forms of dystonia, we found abnormal separation of direct and indirect pathways within the striatum, with negligible, if any, overlap between the two pathways and with the regions of phasic dopamine release. However, despite topological disorganization of dopaminergic function, alterations of dopamine D1 and D2 receptors were somatotopically localized within the striatal hand and larynx representations in writer’s cramp and laryngeal dystonia, respectively. This finding points to their direct relevance to disorder-characteristic clinical features. Increased D1 receptor availability showed significant negative correlations with dystonia duration but not its severity, likely representing a developmental endophenotype of this disorder. In conclusion, a comprehensive pathophysiological mechanism of abnormal basal ganglia function in focal dystonia is built upon upregulated dopamine D1 receptors that abnormally increase excitation of the direct pathway, downregulated dopamine D2 receptors that abnormally decrease inhibition within the indirect pathway, and weakened nigro-striatal phasic dopamine release during symptomatic task performance. Collectively, these aberrations of striatal dopaminergic function underlie imbalance between direct and indirect basal ganglia pathways and lead to abnormal thalamo-motor-cortical hyperexcitability in dystonia.
Collapse
Affiliation(s)
- Kristina Simonyan
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hyun Cho
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Azadeh Hamzehei Sichani
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Estee Rubien-Thomas
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|