1
|
Ho JC, Grigsby EM, Damiani A, Liang L, Balaguer JM, Kallakuri S, Tang LW, Barrios-Martinez J, Karapetyan V, Fields D, Gerszten PC, Hitchens TK, Constantine T, Adams GM, Crammond DJ, Capogrosso M, Gonzalez-Martinez JA, Pirondini E. Potentiation of cortico-spinal output via targeted electrical stimulation of the motor thalamus. Nat Commun 2024; 15:8461. [PMID: 39353911 PMCID: PMC11445460 DOI: 10.1038/s41467-024-52477-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/05/2024] [Indexed: 10/03/2024] Open
Abstract
Cerebral white matter lesions prevent cortico-spinal descending inputs from effectively activating spinal motoneurons, leading to loss of motor control. However, in most cases, the damage to cortico-spinal axons is incomplete offering a potential target for therapies aimed at improving volitional muscle activation. Here we hypothesize that, by engaging direct excitatory connections to cortico-spinal motoneurons, stimulation of the motor thalamus could facilitate activation of surviving cortico-spinal fibers thereby immediately potentiating motor output. To test this hypothesis, we identify optimal thalamic targets and stimulation parameters that enhance upper-limb motor-evoked potentials and grip forces in anesthetized monkeys. This potentiation persists after white matter lesions. We replicate these results in humans during intra-operative testing. We then design a stimulation protocol that immediately improves strength and force control in a patient with a chronic white matter lesion. Our results show that electrical stimulation targeting surviving neural pathways can improve motor control after white matter lesions.
Collapse
Affiliation(s)
- Jonathan C Ho
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
| | - Erinn M Grigsby
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Arianna Damiani
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lucy Liang
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Josep-Maria Balaguer
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Sridula Kallakuri
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lilly W Tang
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Vahagn Karapetyan
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Daryl Fields
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter C Gerszten
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - T Kevin Hitchens
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Theodora Constantine
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gregory M Adams
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Donald J Crammond
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marco Capogrosso
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jorge A Gonzalez-Martinez
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elvira Pirondini
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA.
- University of Pittsburgh Clinical and Translational Science Institute (CTSI), Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Seusing N, Strauss S, Fleischmann R, Nafz C, Groppa S, Muthuraman M, Ding H, Byblow WD, Lotze M, Grothe M. The excitability of ipsilateral motor evoked potentials is not task-specific and spatially distinct from the contralateral motor hotspot. Exp Brain Res 2024; 242:1851-1859. [PMID: 38842754 PMCID: PMC11252234 DOI: 10.1007/s00221-024-06851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/10/2024] [Indexed: 06/07/2024]
Abstract
OBJECTIVE The role of ipsilateral descending motor pathways in voluntary movement of humans is still a matter of debate, with partly contradictory results. The aim of our study therefore was to examine the excitability of ipsilateral motor evoked potentials (iMEPs) regarding site and the specificity for unilateral and bilateral elbow flexion extension tasks. METHODS MR-navigated transcranial magnetic stimulation mapping of the dominant hemisphere was performed in twenty healthy participants during tonic unilateral (iBB), bilateral homologous (bBB) or bilateral antagonistic elbow flexion-extension (iBB-cAE), the map center of gravity (CoG) and iMEP area from BB were obtained. RESULTS The map CoG of the ipsilateral BB was located more anterior-laterally than the hotspot of the contralateral BB within the primary motor cortex, with a significant difference in CoG in iBB and iBB-cAE, but not bBB compared to the hotspot for the contralateral BB (each p < 0.05). However, different tasks had no effect on the size of the iMEPs. CONCLUSION Our data demonstrated that excitability of ipsilateral and contralateral MEP differ spatially in a task-specific manner suggesting the involvement of different motor networks within the motor cortex.
Collapse
Affiliation(s)
- Nelly Seusing
- Department of Neurology, University Medicine of Greifswald, Greifswald, Germany
| | - Sebastian Strauss
- Department of Neurology, University Medicine of Greifswald, Greifswald, Germany
| | - Robert Fleischmann
- Department of Neurology, University Medicine of Greifswald, Greifswald, Germany
| | - Christina Nafz
- Department of Neurology, University Medicine of Greifswald, Greifswald, Germany
| | - Sergiu Groppa
- Imaging and Neurostimulation, Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Muthuraman Muthuraman
- Imaging and Neurostimulation, Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Neural Engineering with Signal Analytics and Artificial Intelligence (NESA-AI), Department of Neurology, University Medicine of Würzburg, Würzburg, Germany
| | - Hao Ding
- Imaging and Neurostimulation, Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Neural Engineering with Signal Analytics and Artificial Intelligence (NESA-AI), Department of Neurology, University Medicine of Würzburg, Würzburg, Germany
| | - Winston D Byblow
- Movement Neuroscience Laboratory, Department of Exercise Sciences, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Martin Lotze
- Functional Imaging Unit, Center for Diagnostic Radiology, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Grothe
- Department of Neurology, University Medicine of Greifswald, Greifswald, Germany.
| |
Collapse
|
3
|
Herring EZ, Graczyk EL, Memberg WD, Adams R, Fernandez Baca-Vaca G, Hutchison BC, Krall JT, Alexander BJ, Conlan EC, Alfaro KE, Bhat P, Ketting-Olivier AB, Haddix CA, Taylor DM, Tyler DJ, Sweet JA, Kirsch RF, Ajiboye AB, Miller JP. Reconnecting the Hand and Arm to the Brain: Efficacy of Neural Interfaces for Sensorimotor Restoration After Tetraplegia. Neurosurgery 2024; 94:864-874. [PMID: 37982637 DOI: 10.1227/neu.0000000000002769] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/01/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Paralysis after spinal cord injury involves damage to pathways that connect neurons in the brain to peripheral nerves in the limbs. Re-establishing this communication using neural interfaces has the potential to bridge the gap and restore upper extremity function to people with high tetraplegia. We report a novel approach for restoring upper extremity function using selective peripheral nerve stimulation controlled by intracortical microelectrode recordings from sensorimotor networks, along with restoration of tactile sensation of the hand using intracortical microstimulation. METHODS A 27-year-old right-handed man with AIS-B (motor-complete, sensory-incomplete) C3-C4 tetraplegia was enrolled into the clinical trial. Six 64-channel intracortical microelectrode arrays were implanted into left hemisphere regions involved in upper extremity function, including primary motor and sensory cortices, inferior frontal gyrus, and anterior intraparietal area. Nine 16-channel extraneural peripheral nerve electrodes were implanted to allow targeted stimulation of right median, ulnar (2), radial, axillary, musculocutaneous, suprascapular, lateral pectoral, and long thoracic nerves, to produce selective muscle contractions on demand. Proof-of-concept studies were performed to demonstrate feasibility of using a brain-machine interface to read from and write to the brain for restoring motor and sensory functions of the participant's own arm and hand. RESULTS Multiunit neural activity that correlated with intended motor action was successfully recorded from intracortical arrays. Microstimulation of electrodes in somatosensory cortex produced repeatable sensory percepts of individual fingers for restoration of touch sensation. Selective electrical activation of peripheral nerves produced antigravity muscle contractions, resulting in functional movements that the participant was able to command under brain control to perform virtual and actual arm and hand movements. The system was well tolerated with no operative complications. CONCLUSION The combination of implanted cortical electrodes and nerve cuff electrodes has the potential to create bidirectional restoration of motor and sensory functions of the arm and hand after neurological injury.
Collapse
Affiliation(s)
- Eric Z Herring
- School of Medicine, Case Western Reserve University, Cleveland , Ohio , USA
- Department of Neurosurgery, The Neurological Institute, University Hospital Cleveland Medical Center, Cleveland , Ohio , USA
| | - Emily L Graczyk
- School of Medicine, Case Western Reserve University, Cleveland , Ohio , USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland , Ohio , USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland , Ohio , USA
| | - William D Memberg
- School of Medicine, Case Western Reserve University, Cleveland , Ohio , USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland , Ohio , USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland , Ohio , USA
| | - Robert Adams
- School of Medicine, Case Western Reserve University, Cleveland , Ohio , USA
- Department of Neurosurgery, The Neurological Institute, University Hospital Cleveland Medical Center, Cleveland , Ohio , USA
| | - Gaudalupe Fernandez Baca-Vaca
- School of Medicine, Case Western Reserve University, Cleveland , Ohio , USA
- Department of Neurosurgery, The Neurological Institute, University Hospital Cleveland Medical Center, Cleveland , Ohio , USA
| | - Brianna C Hutchison
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland , Ohio , USA
| | - John T Krall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland , Ohio , USA
| | - Benjamin J Alexander
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland , Ohio , USA
| | - Emily C Conlan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland , Ohio , USA
| | - Kenya E Alfaro
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland , Ohio , USA
| | - Preethisiri Bhat
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland , Ohio , USA
| | - Aaron B Ketting-Olivier
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland , Ohio , USA
| | - Chase A Haddix
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland , Ohio , USA
- Department of Neuroscience, The Cleveland Clinic, Cleveland , Ohio , USA
| | - Dawn M Taylor
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland , Ohio , USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland , Ohio , USA
- Department of Neuroscience, The Cleveland Clinic, Cleveland , Ohio , USA
| | - Dustin J Tyler
- School of Medicine, Case Western Reserve University, Cleveland , Ohio , USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland , Ohio , USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland , Ohio , USA
| | - Jennifer A Sweet
- School of Medicine, Case Western Reserve University, Cleveland , Ohio , USA
- Department of Neurosurgery, The Neurological Institute, University Hospital Cleveland Medical Center, Cleveland , Ohio , USA
| | - Robert F Kirsch
- School of Medicine, Case Western Reserve University, Cleveland , Ohio , USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland , Ohio , USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland , Ohio , USA
| | - A Bolu Ajiboye
- School of Medicine, Case Western Reserve University, Cleveland , Ohio , USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland , Ohio , USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland , Ohio , USA
| | - Jonathan P Miller
- School of Medicine, Case Western Reserve University, Cleveland , Ohio , USA
- Department of Neurosurgery, The Neurological Institute, University Hospital Cleveland Medical Center, Cleveland , Ohio , USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland , Ohio , USA
| |
Collapse
|
4
|
Song Y, Pi Y, Tan X, Xia X, Liu Y, Zhang J. Approach-avoidance behavior and motor-specific modulation towards smoking-related cues in smokers. Addiction 2023; 118:1895-1907. [PMID: 37400937 DOI: 10.1111/add.16285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/26/2023] [Indexed: 07/05/2023]
Abstract
AIMS By performing three transcranial magnetic stimulation (TMS) experiments, we measured the motor-specific modulatory mechanisms in the primary motor cortex (M1) at both the intercortical and intracortical levels when smokers actively approach or avoid smoking-related cues. DESIGN, SETTING AND PARTICIPANTS For all experiments, the design was group (smokers versus non-smokers) × action (approach versus avoidance) × image type (neutral versus smoking-related). The study was conducted at the Shanghai University of Sport, CHN, TMS Laboratory. For experiment 1, 30 non-smokers and 30 smokers; for experiment 2, 16 non-smokers and 16 smokers; for experiment 3, 16 non-smokers and 16 smokers. MEASUREMENTS For all experiments, the reaction times were measured using the smoking stimulus-response compatibility task. While performing the task, single-pulse TMS was applied to the M1 in experiment 1 to measure the excitability of the corticospinal pathways, and paired-pulse TMS was applied to the M1 in experiments 2 and 3 to measure the activity of intracortical facilitation (ICF) and short-interval intracortical inhibition (SICI) circuits, respectively. FINDINGS Smokers had faster responses when approaching smoking-related cues (F1,58 = 36.660, P < 0.001, η p 2 = 0.387), accompanied by higher excitability of the corticospinal pathways (F1,58 = 10.980, P = 0.002, η p 2 = 0.159) and ICF circuits (F1,30 = 22.187, P < 0.001, η p 2 = 0.425), while stronger SICI effects were observed when they avoided these cues (F1,30 = 10.672, P = 0.003, η p 2 = 0.262). CONCLUSIONS Smokers appear to have shorter reaction times, higher motor-evoked potentials and stronger intracortical facilitation effects when performing approach responses to smoking-related cues and longer reaction times, a lower primary motor cortex descending pathway excitability and a stronger short-interval intracortical inhibition effect when avoiding them.
Collapse
Affiliation(s)
- Yuyu Song
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Yanling Pi
- Shanghai Punan Hospital, Shanghai, China
| | - Xiaoying Tan
- School of Health Sciences and Sports, Macao Polytechnic University, Macao, China
| | - Xue Xia
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, China
- School of Social Development and Health Management, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Yu Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jian Zhang
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
5
|
Herring EZ, Graczyk EL, Memberg WD, Adams RD, Baca-Vaca GF, Hutchison BC, Krall JT, Alexander BJ, Conlan EC, Alfaro KE, Bhat PR, Ketting-Olivier AB, Haddix CA, Taylor DM, Tyler DJ, Kirsch RF, Ajiboye AB, Miller JP. Reconnecting the Hand and Arm to the Brain: Efficacy of Neural Interfaces for Sensorimotor Restoration after Tetraplegia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.24.23288977. [PMID: 37162904 PMCID: PMC10168522 DOI: 10.1101/2023.04.24.23288977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Background Paralysis after spinal cord injury involves damage to pathways that connect neurons in the brain to peripheral nerves in the limbs. Re-establishing this communication using neural interfaces has the potential to bridge the gap and restore upper extremity function to people with high tetraplegia. Objective We report a novel approach for restoring upper extremity function using selective peripheral nerve stimulation controlled by intracortical microelectrode recordings from sensorimotor networks, along with restoration of tactile sensation of the hand using intracortical microstimulation. Methods A right-handed man with motor-complete C3-C4 tetraplegia was enrolled into the clinical trial. Six 64-channel intracortical microelectrode arrays were implanted into left hemisphere regions involved in upper extremity function, including primary motor and sensory cortices, inferior frontal gyrus, and anterior intraparietal area. Nine 16-channel extraneural peripheral nerve electrodes were implanted to allow targeted stimulation of right median, ulnar (2), radial, axillary, musculocutaneous, suprascapular, lateral pectoral, and long thoracic nerves, to produce selective muscle contractions on demand. Proof-of-concept studies were performed to demonstrate feasibility of a bidirectional brain-machine interface to restore function of the participant's own arm and hand. Results Multi-unit neural activity that correlated with intended motor action was successfully recorded from intracortical arrays. Microstimulation of electrodes in somatosensory cortex produced repeatable sensory percepts of individual fingers for restoration of touch sensation. Selective electrical activation of peripheral nerves produced antigravity muscle contractions. The system was well tolerated with no operative complications. Conclusion The combination of implanted cortical electrodes and nerve cuff electrodes has the potential to allow restoration of motor and sensory functions of the arm and hand after neurological injury.
Collapse
Affiliation(s)
- Eric Z Herring
- School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- The Neurological Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Emily L Graczyk
- School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, FES Center of Excellence, Cleveland, Ohio, USA
| | - William D Memberg
- School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, FES Center of Excellence, Cleveland, Ohio, USA
| | - Robert D Adams
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, FES Center of Excellence, Cleveland, Ohio, USA
| | | | - Brianna C Hutchison
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - John T Krall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Benjamin J Alexander
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Emily C Conlan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Kenya E Alfaro
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Preethi R Bhat
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Chase A Haddix
- Department of Neuroscience, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA
| | - Dawn M Taylor
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, FES Center of Excellence, Cleveland, Ohio, USA
- Department of Neuroscience, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA
| | - Dustin J Tyler
- School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Robert F Kirsch
- School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, FES Center of Excellence, Cleveland, Ohio, USA
| | - A Bolu Ajiboye
- School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, FES Center of Excellence, Cleveland, Ohio, USA
| | - Jonathan P Miller
- School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- The Neurological Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, FES Center of Excellence, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Tian D, Izumi SI. Transcranial Magnetic Stimulation and Neocortical Neurons: The Micro-Macro Connection. Front Neurosci 2022; 16:866245. [PMID: 35495053 PMCID: PMC9039343 DOI: 10.3389/fnins.2022.866245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/28/2022] [Indexed: 12/20/2022] Open
Abstract
Understanding the operation of cortical circuits is an important and necessary task in both neuroscience and neurorehabilitation. The functioning of the neocortex results from integrative neuronal activity, which can be probed non-invasively by transcranial magnetic stimulation (TMS). Despite a clear indication of the direct involvement of cortical neurons in TMS, no explicit connection model has been made between the microscopic neuronal landscape and the macroscopic TMS outcome. Here we have performed an integrative review of multidisciplinary evidence regarding motor cortex neurocytology and TMS-related neurophysiology with the aim of elucidating the micro–macro connections underlying TMS. Neurocytological evidence from animal and human studies has been reviewed to describe the landscape of the cortical neurons covering the taxonomy, morphology, circuit wiring, and excitatory–inhibitory balance. Evidence from TMS studies in healthy humans is discussed, with emphasis on the TMS pulse and paradigm selectivity that reflect the underlying neural circuitry constitution. As a result, we propose a preliminary neuronal model of the human motor cortex and then link the TMS mechanisms with the neuronal model by stimulus intensity, direction of induced current, and paired-pulse timing. As TMS bears great developmental potential for both a probe and modulator of neural network activity and neurotransmission, the connection model will act as a foundation for future combined studies of neurocytology and neurophysiology, as well as the technical advances and application of TMS.
Collapse
Affiliation(s)
- Dongting Tian
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduates School of Medicine, Sendai, Japan
- *Correspondence: Dongting Tian,
| | - Shin-Ichi Izumi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduates School of Medicine, Sendai, Japan
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Shin-Ichi Izumi,
| |
Collapse
|
7
|
Hildesheim FE, Silver AN, Dominguez-Vargas AU, Andrushko JW, Edwards JD, Dancause N, Thiel A. Predicting Individual Treatment Response to rTMS for Motor Recovery After Stroke: A Review and the CanStim Perspective. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:795335. [PMID: 36188894 PMCID: PMC9397689 DOI: 10.3389/fresc.2022.795335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022]
Abstract
Background Rehabilitation is critical for reducing stroke-related disability and improving quality-of-life post-stroke. Repetitive transcranial magnetic stimulation (rTMS), a non-invasive neuromodulation technique used as stand-alone or adjunct treatment to physiotherapy, may be of benefit for motor recovery in subgroups of stroke patients. The Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim) seeks to advance the use of these techniques to improve post-stroke recovery through clinical trials and pre-clinical studies using standardized research protocols. Here, we review existing clinical trials for demographic, clinical, and neurobiological factors which may predict treatment response to identify knowledge gaps which need to be addressed before implementing these parameters for patient stratification in clinical trial protocols. Objective To provide a review of clinical rTMS trials of stroke recovery identifying factors associated with rTMS response in stroke patients with motor deficits and develop research perspectives for pre-clinical and clinical studies. Methods A literature search was performed in PubMed, using the Boolean search terms stroke AND repetitive transcranial magnetic stimulation OR rTMS AND motor for studies investigating the use of rTMS for motor recovery in stroke patients at any recovery phase. A total of 1,676 articles were screened by two blinded raters, with 26 papers identified for inclusion in this review. Results Multiple possible factors associated with rTMS response were identified, including stroke location, cortical thickness, brain-derived neurotrophic factor (BDNF) genotype, initial stroke severity, and several imaging and clinical factors associated with a relatively preserved functional motor network of the ipsilesional hemisphere. Age, sex, and time post-stroke were generally not related to rTMS response. Factors associated with greater response were identified in studies of both excitatory ipsilesional and inhibitory contralesional rTMS. Heterogeneous study designs and contradictory data exemplify the need for greater protocol standardization and high-quality controlled trials. Conclusion Clinical, brain structural and neurobiological factors have been identified as potential predictors for rTMS response in stroke patients with motor impairment. These factors can inform the design of future clinical trials, before being considered for optimization of individual rehabilitation therapy for stroke patients. Pre-clinical models for stroke recovery, specifically developed in a clinical context, may accelerate this process.
Collapse
Affiliation(s)
- Franziska E. Hildesheim
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Alexander N. Silver
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Adan-Ulises Dominguez-Vargas
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, QC, Canada
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Justin W. Andrushko
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jodi D. Edwards
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- School of Epidemiology and Public Health, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Numa Dancause
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, QC, Canada
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Alexander Thiel
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- *Correspondence: Alexander Thiel
| |
Collapse
|
8
|
Fornia L, Rossi M, Rabuffetti M, Bellacicca A, Viganò L, Simone L, Howells H, Puglisi G, Leonetti A, Callipo V, Bello L, Cerri G. Motor impairment evoked by direct electrical stimulation of human parietal cortex during object manipulation. Neuroimage 2021; 248:118839. [PMID: 34963652 DOI: 10.1016/j.neuroimage.2021.118839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/03/2021] [Accepted: 12/18/2021] [Indexed: 10/19/2022] Open
Abstract
In primates, the parietal cortex plays a crucial role in hand-object manipulation. However, its involvement in object manipulation and related hand-muscle control has never been investigated in humans with a direct and focal electrophysiological approach. To this aim, during awake surgery for brain tumors, we studied the impact of direct electrical stimulation (DES) of parietal lobe on hand-muscles during a hand-manipulation task (HMt). Results showed that DES applied to fingers-representation of postcentral gyrus (PCG) and anterior intraparietal cortex (aIPC) impaired HMt execution. Different types of EMG-interference patterns were observed ranging from a partial (task-clumsy) or complete (task-arrest) impairment of muscles activity. Within PCG both patterns coexisted along a medio (arrest)-lateral (clumsy) distribution, while aIPC hosted preferentially the task-arrest. The interference patterns were mainly associated to muscles suppression, more pronounced in aIPC with respect to PCG. Moreover, within PCG were observed patterns with different level of muscle recruitment, not reported in the aIPC. Overall, EMG-interference patterns and their probabilistic distribution suggested the presence of different functional parietal sectors, possibly playing different roles in hand-muscle control during manipulation. We hypothesized that task-arrest, compared to clumsy patterns, might suggest the existence of parietal sectors more closely implicated in shaping the motor output.
Collapse
Affiliation(s)
- Luca Fornia
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Italy; IRCCS Fondazione Don Carlo Gnocchi, Milano, Italy
| | - Marco Rossi
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Italy
| | | | - Andrea Bellacicca
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Italy
| | - Luca Viganò
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Italy
| | - Luciano Simone
- Cognition, Motion & Neuroscience, Center for Human Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Henrietta Howells
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Italy
| | - Guglielmo Puglisi
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Italy
| | - Antonella Leonetti
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Italy
| | - Vincenzo Callipo
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Humanitas Research Hospital IRCSS, Rozzano, Milano, Italy
| | - Lorenzo Bello
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Italy
| | - Gabriella Cerri
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Humanitas Research Hospital IRCSS, Rozzano, Milano, Italy.
| |
Collapse
|
9
|
Viganò L, Howells H, Rossi M, Rabuffetti M, Puglisi G, Leonetti A, Bellacicca A, Conti Nibali M, Gay L, Sciortino T, Cerri G, Bello L, Fornia L. Stimulation of frontal pathways disrupts hand muscle control during object manipulation. Brain 2021; 145:1535-1550. [PMID: 34623420 PMCID: PMC9128819 DOI: 10.1093/brain/awab379] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/20/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
The activity of frontal motor areas during hand-object interaction is coordinated by dense communication along specific white matter pathways. This architecture allows the continuous shaping of voluntary motor output and, despite extensively investigated in non-human primate studies, remains poorly understood in humans. Disclosure of this system is crucial for predicting and treatment of motor deficits after brain lesions. For this purpose, we investigated the effect of direct electrical stimulation on white matter pathways within the frontal lobe on hand-object manipulation. This was tested in thirty-four patients (15 left hemisphere, mean age 42 years, 17 male, 15 with tractography) undergoing awake neurosurgery for frontal lobe tumour removal with the aid of the brain mapping technique. The stimulation outcome was quantified based on hand-muscle activity required by task execution. The white matter pathways responsive to stimulation with an interference on muscles were identified by means of probabilistic density estimation of stimulated sites, tract-based lesion-symptom (disconnectome) analysis and diffusion tractography on the single patient level. Finally, we assessed the effect of permanent tracts disconnection on motor outcome in the immediate postoperative period using a multivariate lesion-symptom mapping approach. The analysis showed that stimulation disrupted hand-muscle activity during task execution in 66 sites within the white matter below dorsal and ventral premotor regions. Two different EMG interference patterns associated with different structural architectures emerged: 1) an arrest pattern, characterised by complete impairment of muscle activity associated with an abrupt task interruption, occurred when stimulating a white matter area below the dorsal premotor region. Local mid-U-shaped fibres, superior fronto-striatal, corticospinal and dorsal fronto-parietal fibres intersected with this region. 2) a clumsy pattern, characterised by partial disruption of muscle activity associated with movement slowdown and/or uncoordinated finger movements, occurred when stimulating a white matter area below the ventral premotor region. Ventral fronto-parietal and inferior fronto-striatal tracts intersected with this region. Finally, only resections partially including the dorsal white matter region surrounding the supplementary motor area were associated with transient upper-limb deficit (p = 0.05; 5000 permutations). Overall, the results identify two distinct frontal white matter regions possibly mediating different aspects of hand-object interaction via distinct sets of structural connectivity. We suggest the dorsal region, associated with arrest pattern and post-operative immediate motor deficits, to be functionally proximal to motor output implementation, while the ventral region may be involved in sensorimotor integration required for task execution.
Collapse
Affiliation(s)
- Luca Viganò
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano
| | - Henrietta Howells
- MoCA Laboratory, Department of Medical Biotechnology and Translational Medicine, Universita`degli Studi di Milano
| | - Marco Rossi
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano
| | - Marco Rabuffetti
- Biomedical Technology Department, IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milano, Italy
| | - Guglielmo Puglisi
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano.,MoCA Laboratory, Department of Medical Biotechnology and Translational Medicine, Universita`degli Studi di Milano
| | - Antonella Leonetti
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano
| | - Andrea Bellacicca
- MoCA Laboratory, Department of Medical Biotechnology and Translational Medicine, Universita`degli Studi di Milano
| | - Marco Conti Nibali
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano
| | - Lorenzo Gay
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano
| | - Tommaso Sciortino
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano
| | - Gabriella Cerri
- MoCA Laboratory, Department of Medical Biotechnology and Translational Medicine, Universita`degli Studi di Milano
| | - Lorenzo Bello
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano
| | - Luca Fornia
- MoCA Laboratory, Department of Medical Biotechnology and Translational Medicine, Universita`degli Studi di Milano
| |
Collapse
|
10
|
Si X, Li S, Xiang S, Yu J, Ming D. Imagined speech increases the hemodynamic response and functional connectivity of the dorsal motor cortex. J Neural Eng 2021; 18. [PMID: 34507311 DOI: 10.1088/1741-2552/ac25d9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/10/2021] [Indexed: 11/12/2022]
Abstract
Objective. Decoding imagined speech from brain signals could provide a more natural, user-friendly way for developing the next generation of the brain-computer interface (BCI). With the advantages of non-invasive, portable, relatively high spatial resolution and insensitivity to motion artifacts, the functional near-infrared spectroscopy (fNIRS) shows great potential for developing the non-invasive speech BCI. However, there is a lack of fNIRS evidence in uncovering the neural mechanism of imagined speech. Our goal is to investigate the specific brain regions and the corresponding cortico-cortical functional connectivity features during imagined speech with fNIRS.Approach. fNIRS signals were recorded from 13 subjects' bilateral motor and prefrontal cortex during overtly and covertly repeating words. Cortical activation was determined through the mean oxygen-hemoglobin concentration changes, and functional connectivity was calculated by Pearson's correlation coefficient.Main results. (a) The bilateral dorsal motor cortex was significantly activated during the covert speech, whereas the bilateral ventral motor cortex was significantly activated during the overt speech. (b) As a subregion of the motor cortex, sensorimotor cortex (SMC) showed a dominant dorsal response to covert speech condition, whereas a dominant ventral response to overt speech condition. (c) Broca's area was deactivated during the covert speech but activated during the overt speech. (d) Compared to overt speech, dorsal SMC(dSMC)-related functional connections were enhanced during the covert speech.Significance. We provide fNIRS evidence for the involvement of dSMC in speech imagery. dSMC is the speech imagery network's key hub and is probably involved in the sensorimotor information processing during the covert speech. This study could inspire the BCI community to focus on the potential contribution of dSMC during speech imagery.
Collapse
Affiliation(s)
- Xiaopeng Si
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China.,Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, People's Republic of China.,Tianjin International Engineering Institute, Tianjin University, Tianjin 300072, People's Republic of China.,Institute of Applied Psychology, Tianjin University, Tianjin 300350, People's Republic of China
| | - Sicheng Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China.,Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Shaoxin Xiang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, People's Republic of China.,Tianjin International Engineering Institute, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jiayue Yu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, People's Republic of China.,Tianjin International Engineering Institute, Tianjin University, Tianjin 300072, People's Republic of China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China.,Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
11
|
A cortical injury model in a non-human primate to assess execution of reach and grasp actions: implications for recovery after traumatic brain injury. J Neurosci Methods 2021; 361:109283. [PMID: 34237383 PMCID: PMC9969347 DOI: 10.1016/j.jneumeth.2021.109283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND Technological advances in developing experimentally controlled models of traumatic brain injury (TBI) are prevalent in rodent models and these models have proven invaluable in characterizing temporal changes in brain and behavior after trauma. To date no long-term studies in non-human primates (NHPs) have been published using an experimentally controlled impact device to follow behavioral performance over time. NEW METHOD We have employed a controlled cortical impact (CCI) device to create a focal contusion to the hand area in primary motor cortex (M1) of three New World monkeys to characterize changes in reach and grasp function assessed for 3 months after the injury. RESULTS The CCI destroyed most of M1 hand representation reducing grey matter by 9.6 mm3, 12.9 mm3, and 15.5 mm3 and underlying corona radiata by 7.4 mm3, 6.9 mm3, and 5.6 mm3 respectively. Impaired motor function was confined to the hand contralateral to the injury. Gross hand-use was only mildly affected during the first few days of observation after injury while activity requiring skilled use of the hand was impaired over three months. COMPARISON WITH EXISTING METHOD(S) This study is unique in establishing a CCI model of TBI in an NHP resulting in persistent impairments in motor function evident in volitional use of the hand. CONCLUSIONS Establishing an NHP model of TBI is essential to extend current rodent models to the complex neural architecture of the primate brain. Moving forward this model can be used to investigate novel therapeutic interventions to improve or restore impaired motor function after trauma.
Collapse
|
12
|
Fortier-Lebel N, Nakajima T, Yahiaoui N, Drew T. Microstimulation of the Premotor Cortex of the Cat Produces Phase-Dependent Changes in Locomotor Activity. Cereb Cortex 2021; 31:5411-5434. [PMID: 34289039 DOI: 10.1093/cercor/bhab167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 11/14/2022] Open
Abstract
To determine the functional organization of premotor areas in the cat pericruciate cortex we applied intracortical microstimulation (ICMS) within multiple cytoarchitectonically identified subregions of areas 4 and 6 in the awake cat, both at rest and during treadmill walking. ICMS in most premotor areas evoked clear twitch responses in the limbs and/or head at rest. During locomotion, these same areas produced phase-dependent modifications of muscle activity. ICMS in the primary motor cortex (area 4γ) produced large phase-dependent responses, mostly restricted to the contralateral forelimb or hindlimb. Stimulation in premotor areas also produced phase-dependent responses that, in some cases, were as large as those evoked from area 4γ. However, responses from premotor areas had more widespread effects on multiple limbs, including the ipsilateral limbs, than did stimulation in 4γ. During locomotion, responses in both forelimb and hindlimb muscles were evoked from cytoarchitectonic areas 4γ, 4δ, 6aα, and 6aγ. However, the prevalence of effects in a given limb varied from one area to another. The results suggest that premotor areas may contribute to the production, modification, and coordination of activity in the limbs during locomotion and may be particularly pertinent during modifications of gait.
Collapse
Affiliation(s)
- Nicolas Fortier-Lebel
- Département de Neurosciences, Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage (CIRCA) Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Québec H3C 3J7, Canada
| | - Toshi Nakajima
- Department of Integrative Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Nabiha Yahiaoui
- Département de Neurosciences, Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage (CIRCA) Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Québec H3C 3J7, Canada
| | - Trevor Drew
- Département de Neurosciences, Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage (CIRCA) Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
13
|
Fornia L, Rossi M, Rabuffetti M, Leonetti A, Puglisi G, Viganò L, Simone L, Howells H, Bellacicca A, Bello L, Cerri G. Direct Electrical Stimulation of Premotor Areas: Different Effects on Hand Muscle Activity during Object Manipulation. Cereb Cortex 2021; 30:391-405. [PMID: 31504261 PMCID: PMC7029688 DOI: 10.1093/cercor/bhz139] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 12/25/2022] Open
Abstract
Dorsal and ventral premotor (dPM and vPM) areas are crucial in control of hand muscles during object manipulation, although their respective role in humans is still debated. In patients undergoing awake surgery for brain tumors, we studied the effect of direct electrical stimulation (DES) of the premotor cortex on the execution of a hand manipulation task (HMt). A quantitative analysis of the activity of extrinsic and intrinsic hand muscles recorded during and in absence of DES was performed. Results showed that DES applied to premotor areas significantly impaired HMt execution, affecting task-related muscle activity with specific features related to the stimulated area. Stimulation of dorsal vPM induced both a complete task arrest and clumsy task execution, characterized by general muscle suppression. Stimulation of ventrocaudal dPM evoked a complete task arrest mainly due to a dysfunctional recruitment of hand muscles engaged in task execution. These results suggest that vPM and dPM contribute differently to the control of hand muscles during object manipulation. Stimulation of both areas showed a significant impact on motor output, although the different effects suggest a stronger relationship of dPM with the corticomotoneuronal circuit promoting muscle recruitment and a role for vPM in supporting sensorimotor integration.
Collapse
Affiliation(s)
- Luca Fornia
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Humanitas Reasearch Hospital, IRCCS, Milano, Italy
| | - Marco Rossi
- Unit of Neurosurgical Oncology, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Humanitas Reasearch Hospital, IRCCS, Milano, Italy
| | - Marco Rabuffetti
- Biomedical Technology Department, IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milano, Italy
| | - Antonella Leonetti
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Humanitas Reasearch Hospital, IRCCS, Milano, Italy
| | - Guglielmo Puglisi
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Humanitas Reasearch Hospital, IRCCS, Milano, Italy
| | - Luca Viganò
- Unit of Neurosurgical Oncology, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Humanitas Reasearch Hospital, IRCCS, Milano, Italy
| | - Luciano Simone
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Humanitas Reasearch Hospital, IRCCS, Milano, Italy
| | - Henrietta Howells
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Humanitas Reasearch Hospital, IRCCS, Milano, Italy
| | - Andrea Bellacicca
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Humanitas Reasearch Hospital, IRCCS, Milano, Italy
| | - Lorenzo Bello
- Unit of Neurosurgical Oncology, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Humanitas Reasearch Hospital, IRCCS, Milano, Italy
| | - Gabriella Cerri
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Humanitas Reasearch Hospital, IRCCS, Milano, Italy
| |
Collapse
|
14
|
Wang X, Li L, Wei W, Zhu T, Huang GF, Li X, Ma HB, Lv Y. Altered activation in sensorimotor network after applying rTMS over the primary motor cortex at different frequencies. Brain Behav 2020; 10:e01670. [PMID: 32506744 PMCID: PMC7375128 DOI: 10.1002/brb3.1670] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/20/2020] [Accepted: 05/07/2020] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Repetitive transcranial magnetic stimulation (rTMS) over the primary motor cortex (M1) can modulate brain activity both in the stimulated site and remote brain areas of the sensorimotor network. However, the modulatory effects of rTMS at different frequencies remain unclear. Here, we employed finger-tapping task-based fMRI to investigate alterations in activation of the sensorimotor network after the application of rTMS over the left M1 at different frequencies. MATERIALS AND METHODS Forty-five right-handed healthy participants were randomly divided into three groups by rTMS frequency (HF, high-frequency, 3 Hz; LF, low-frequency, 1 Hz; and SHAM) and underwent two task-fMRI sessions (RH, finger-tapping with right index finger; LH, finger-tapping with left index finger) before and after applying rTMS over the left M1. We defined regions of interest (ROIs) in the sensorimotor network based on group-level activation maps (pre-rTMS) from RH and LH tasks and calculated the percentage signal change (PSC) for each ROI. We then assessed the differences of PSC within HF or LF groups and between groups. RESULTS Application of rTMS at different frequencies resulted in a change in activation of several areas of the sensorimotor network. We observed the increased PSC in M1 after high-frequency stimulation, while we detected the reduced PSC in the primary sensory cortex (S1), ventral premotor cortex (PMv), supplementary motor cortex (SMA), and putamen after low-frequency stimulation. Moreover, the PSC in the SMA, dorsal premotor cortex (PMd), and putamen in the HF group was higher than in the LF group after stimulation. CONCLUSION Our findings suggested that activation alterations within sensorimotor network are dependent on the frequency of rTMS. Therefore, our findings contribute to understanding the effects of rTMS on brain activation in healthy individuals and ultimately may further help to suggest mechanisms of how rTMS could be employed as a therapeutic tool.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Lingyu Li
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China.,Shandong Huayu University of Technology, Dezhou, China
| | - Wei Wei
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Tingting Zhu
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Guo-Feng Huang
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Xue Li
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Hui-Bin Ma
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China.,Integrated Medical Research School, Jiamusi University, Jiamusi, China
| | - Yating Lv
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| |
Collapse
|
15
|
Touvykine B, Elgbeili G, Quessy S, Dancause N. Interhemispheric modulations of motor outputs by the rostral and caudal forelimb areas in rats. J Neurophysiol 2020; 123:1355-1368. [PMID: 32130080 PMCID: PMC7191520 DOI: 10.1152/jn.00591.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In rats, forelimb movements are evoked from two cortical regions, the caudal and rostral forelimb areas (CFA and RFA, respectively). These areas are densely interconnected and RFA induces complex and powerful modulations of CFA outputs. CFA and RFA also have interhemispheric connections, and these areas from both hemispheres send projections to common targets along the motor axis, providing multiple potential sites of interactions for movement production. Our objective was to characterize how CFA and RFA in one hemisphere can modulate motor outputs of the opposite hemisphere. To do so, we used paired-pulse protocols with intracortical microstimulation techniques (ICMS), while recording electromyographic (EMG) activity of forelimb muscles in sedated rats. A subthreshold conditioning stimulation was applied in either CFA or RFA in one hemisphere simultaneously or before a suprathreshold test stimulation in either CFA or RFA in the opposite hemisphere. Both CFA and RFA tended to facilitate motor outputs with short (0–2.5 ms) or long (20–35 ms) delays between the conditioning and test stimuli. In contrast, they tended to inhibit motor outputs with intermediate delays, in particular 10 ms. When comparing the two areas, we found that facilitatory effects from RFA were more frequent and powerful than the ones from CFA. In contrast, inhibitory effects from CFA on its homolog were more frequent and powerful than the ones from RFA. Our results demonstrate that interhemispheric modulations from CFA and RFA share some similarities but also have clear differences that could sustain specific functions these cortical areas carry for the generation of forelimb movements. NEW & NOTEWORTHY We show that caudal and rostral forelimb areas (CFA and RFA) have distinct effects on motor outputs from the opposite hemisphere, supporting that they are distinct nodes in the motor network of rats. However, the pattern of interhemispheric modulations from RFA has no clear equivalent among premotor areas in nonhuman primates, suggesting they contribute differently to the generation of ipsilateral hand movements. Understanding these interspecies differences is important given the common use of rodent models in motor control and recovery studies.
Collapse
Affiliation(s)
- Boris Touvykine
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Québec, Canada
| | - Guillaume Elgbeili
- Psychosocial Research Division, Douglas Institute Research Centre, Verdun, Québec, Canada
| | - Stephan Quessy
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Québec, Canada
| | - Numa Dancause
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Québec, Canada
| |
Collapse
|
16
|
Côté SL, Elgbeili G, Quessy S, Dancause N. Modulatory effects of the supplementary motor area on primary motor cortex outputs. J Neurophysiol 2019; 123:407-419. [PMID: 31774345 DOI: 10.1152/jn.00391.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Premotor areas of primates are specialized cortical regions that can contribute to hand movements by modulating the outputs of the primary motor cortex (M1). The goal of the present work was to study how the supplementary motor area (SMA) located within the same hemisphere [i.e., ipsilateral SMA (iSMA)] or the opposite hemisphere [i.e., contralateral (cSMA)] modulate the outputs of M1. We used paired-pulse protocols with intracortical stimulations in sedated capuchin monkeys. A conditioning stimulus in iSMA or cSMA was delivered simultaneously or before a test stimulus in M1 with different interstimulus intervals (ISIs) while electromyographic activity was recorded in hand and forearm muscles. The pattern of modulation from iSMA and cSMA shared some clear similarities. In particular, both areas predominantly induced facilitatory effects on M1 outputs with shorter ISIs and inhibitory effects with longer ISIs. However, the incidence and strength of facilitatory effects were greater for iSMA than cSMA. We then compared the pattern of modulatory effects from SMA to the ones from the dorsal and ventral premotor cortexes (PMd and PMv) collected in the same series of experiments. Among premotor areas, the impact of SMA on M1 outputs was always weaker than the one of either PMd or PMv, and this was regardless of the hemisphere, or the ISI, tested. These results show that SMA exerts a unique set of modulations on M1 outputs, which could support its specific function for the production of hand movements.NEW & NOTEWORTHY We unequivocally isolated stimulation to either the ipsilateral or contralateral supplementary motor area (SMA) using invasive techniques and compared their modulatory effects on the outputs of primary motor cortex (M1). Modulations from both SMAs shared many similarities. However, facilitatory effects evoked from ipsilateral SMA were more common and more powerful. This pattern differs from the ones of other premotor areas, which suggests that each premotor area makes unique contributions to the production of motor outputs.
Collapse
Affiliation(s)
- Sandrine L Côté
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Québec, Canada
| | - Guillaume Elgbeili
- Psychosocial Research Division, Douglas Institute Research Center, Verdun, Québec, Canada
| | - Stephan Quessy
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Québec, Canada
| | - Numa Dancause
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Québec, Canada
| |
Collapse
|
17
|
Mayer A, Baldwin MKL, Cooke DF, Lima BR, Padberg J, Lewenfus G, Franca JG, Krubitzer L. The Multiple Representations of Complex Digit Movements in Primary Motor Cortex Form the Building Blocks for Complex Grip Types in Capuchin Monkeys. J Neurosci 2019; 39:6684-6695. [PMID: 31235643 PMCID: PMC6703879 DOI: 10.1523/jneurosci.0556-19.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/17/2019] [Accepted: 06/12/2019] [Indexed: 11/21/2022] Open
Abstract
In the present study, we investigated motor cortex (M1) and a small portion of premotor and parietal cortex using intracortical microstimulation in anesthetized capuchin monkeys. Capuchins are the only New World monkeys that have evolved an opposable thumb and use tools in the wild. Like most Old World monkeys and humans, capuchin monkeys have highly dexterous hands. We surveyed a large extent of M1 and found that ~22% of all evoked movements in M1 involved the digits, and the majority of these consisted of finger flexions and extensions. Different subtypes of movements could be identified, including opposable movements of digits 1 and 2 (D1 and D2). Interestingly, the pattern of such movements varied between animals. In one case, movements involved the adduction of the medial surface of D1 toward the lateral surface of D2, whereas in the other case, the tips of D1 and D2 came in contact. Unlike other primates examined, we also found extensive representations of the prehensile foot and tail. We propose that the manual behavioral repertoire of capuchin monkeys, which includes the use of tools in the wild, is well represented within the motor cortex in the form of muscle synergies between different body parts that compose these larger, complex behaviors.SIGNIFICANCE STATEMENT The ability to use tools is a milestone in human evolution. Capuchin monkeys are one of the few non-human primates that use tools in the wild. The present study is the first detailed exploration of the motor cortex of these primates using long-train intracortical microstimulation. Within primary motor cortex, we evoked finger movements involving flexions and extensions of multiple digits, or of the first and second digits alone. Interestingly, flexion of tail and toes could also be evoked. Together, these results suggest that the functional organization of the motor cortex represents not just muscles of the body, but muscle synergies that form the building blocks of the complex behavioral repertoire of these animals.
Collapse
Affiliation(s)
- Andrei Mayer
- Department of Physiological Science, Federal University of Santa Catarina, Florianopolis, SC 88040-900, Brazil
| | - Mary K L Baldwin
- Center for Neuroscience, University of California Davis, Davis, California 95616
| | - Dylan F Cooke
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Bruss R Lima
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil, and
| | - Jeffrey Padberg
- Department of Biology, University of Central Arkansas, Conway, Arkansas 72035
| | - Gabriela Lewenfus
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil, and
| | - João G Franca
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil, and
| | - Leah Krubitzer
- Center for Neuroscience, University of California Davis, Davis, California 95616,
| |
Collapse
|
18
|
Not all brain regions are created equal for improving bimanual coordination in individuals with chronic stroke. Clin Neurophysiol 2019; 130:1218-1230. [DOI: 10.1016/j.clinph.2019.04.711] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/05/2019] [Accepted: 04/09/2019] [Indexed: 12/11/2022]
|
19
|
Vieira JB, Pierzchajlo SR, Mitchell DGV. Neural correlates of social and non-social personal space intrusions: Role of defensive and peripersonal space systems in interpersonal distance regulation. Soc Neurosci 2019; 15:36-51. [PMID: 31151372 DOI: 10.1080/17470919.2019.1626763] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Personal space regulation ensures the maintenance of a margin of safety between the individual and the surrounding world. However, little is known about the specific neural mechanisms implicated in regulating the distance from conspecifics versus non-social stimuli. Here, we investigated the neural correlates of personal space intrusions by social versus non-social stimuli. Thirty volunteers underwent fMRI scanning while viewing approaching or withdrawing faces (Social) and insects/arachnids (Non-social). Preferred distance to the stimuli was assessed behaviourally in a computerized task, and in real life. Results showed that approaching social and non-social stimuli of varying threat levels elicited activation of frontoparietal regions previously linked to peripersonal space, as well as of the midbrain periaqueductal gray, suggesting the engagement of defensive mechanisms by personal space intrusions. However, functional connectivity patterns of the midbrain differed for social and non-social stimuli, with enhanced coupling with the premotor cortex to approaching social stimuli. Additionally, connectivity strength between the midbrain and the premotor cortex was associated with preferred interpersonal distance. These findings highlight a common defensive architecture implicated in personal space regulation to social and non-social stimuli, and the specific neural mechanisms involved in regulating the distance from conspecifics.
Collapse
Affiliation(s)
- Joana B Vieira
- Brain and Mind Institute, The University of Western Ontario, London, ON, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Stephen R Pierzchajlo
- Brain and Mind Institute, The University of Western Ontario, London, ON, Canada.,Graduate Program in Neuroscience, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Derek G V Mitchell
- Brain and Mind Institute, The University of Western Ontario, London, ON, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada.,Department of Psychiatry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada.,Department of Psychology, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
20
|
Rosa MGP, Soares JGM, Chaplin TA, Majka P, Bakola S, Phillips KA, Reser DH, Gattass R. Cortical Afferents of Area 10 in Cebus Monkeys: Implications for the Evolution of the Frontal Pole. Cereb Cortex 2019; 29:1473-1495. [PMID: 29697775 PMCID: PMC6676977 DOI: 10.1093/cercor/bhy044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/12/2018] [Accepted: 02/07/2018] [Indexed: 01/26/2023] Open
Abstract
Area 10, located in the frontal pole, is a unique specialization of the primate cortex. We studied the cortical connections of area 10 in the New World Cebus monkey, using injections of retrograde tracers in different parts of this area. We found that injections throughout area 10 labeled neurons in a consistent set of areas in the dorsolateral, ventrolateral, orbital, and medial parts of the frontal cortex, superior temporal association cortex, and posterior cingulate/retrosplenial region. However, sites on the midline surface of area 10 received more substantial projections from the temporal lobe, including clear auditory connections, whereas those in more lateral parts received >90% of their afferents from other frontal areas. This difference in anatomical connectivity reflects functional connectivity findings in the human brain. The pattern of connections in Cebus is very similar to that observed in the Old World macaque monkey, despite >40 million years of evolutionary separation, but lacks some of the connections reported in the more closely related but smaller marmoset monkey. These findings suggest that the clearer segregation observed in the human frontal pole reflects regional differences already present in early simian primates, and that overall brain mass influences the pattern of cortico-cortical connectivity.
Collapse
Affiliation(s)
- Marcello G P Rosa
- Department of Physiology, Monash University, Clayton, VIC, Australia
- Neuroscience Program, Biomedicine Research Institute, Monash University, Clayton, VIC, Australia
- Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia
| | - Juliana G M Soares
- Programa de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tristan A Chaplin
- Department of Physiology, Monash University, Clayton, VIC, Australia
- Neuroscience Program, Biomedicine Research Institute, Monash University, Clayton, VIC, Australia
- Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia
| | - Piotr Majka
- Department of Physiology, Monash University, Clayton, VIC, Australia
- Neuroscience Program, Biomedicine Research Institute, Monash University, Clayton, VIC, Australia
- Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia
- Laboratory of Neuroinformatics, Department of Neurophysiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, Warsaw, Poland
| | - Sophia Bakola
- Department of Physiology, Monash University, Clayton, VIC, Australia
- Neuroscience Program, Biomedicine Research Institute, Monash University, Clayton, VIC, Australia
- Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Kimberley A Phillips
- Department of Psychology, Trinity University, San Antonio, TX, USA
- USA Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - David H Reser
- Department of Physiology, Monash University, Clayton, VIC, Australia
- Neuroscience Program, Biomedicine Research Institute, Monash University, Clayton, VIC, Australia
- Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia
- Monash Rural Health, Monash University, Churchill, VIC, Australia
| | - Ricardo Gattass
- Programa de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|