1
|
Jaime Tobón LM, Moser T. Bridging the gap between presynaptic hair cell function and neural sound encoding. eLife 2024; 12:RP93749. [PMID: 39718472 DOI: 10.7554/elife.93749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
Neural diversity can expand the encoding capacity of a circuitry. A striking example of diverse structure and function is presented by the afferent synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) in the cochlea. Presynaptic active zones at the pillar IHC side activate at lower IHC potentials than those of the modiolar side that have more presynaptic Ca2+ channels. The postsynaptic SGNs differ in their spontaneous firing rates, sound thresholds, and operating ranges. While a causal relationship between synaptic heterogeneity and neural response diversity seems likely, experimental evidence linking synaptic and SGN physiology has remained difficult to obtain. Here, we aimed at bridging this gap by ex vivo paired recordings of murine IHCs and postsynaptic SGN boutons with stimuli and conditions aimed to mimic those of in vivo SGN characterization. Synapses with high spontaneous rate of release (SR) were found predominantly on the pillar side of the IHC. These high SR synapses had larger and more temporally compact spontaneous EPSCs, lower voltage thresholds, tighter coupling of Ca2+ channels and vesicular release sites, shorter response latencies, and higher initial release rates. This study indicates that synaptic heterogeneity in IHCs directly contributes to the diversity of spontaneous and sound-evoked firing of SGNs.
Collapse
Affiliation(s)
- Lina María Jaime Tobón
- Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
- Collaborative Research Center, University of Göttingen, Göttingen, Germany
- Cluster of Excellence 'Multiscale Bioimaging of Excitable Cells', Göttingen, Germany
| | - Tobias Moser
- Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
- Collaborative Research Center, University of Göttingen, Göttingen, Germany
- Cluster of Excellence 'Multiscale Bioimaging of Excitable Cells', Göttingen, Germany
| |
Collapse
|
2
|
Smith KE, Lezmy J, Arancibia-Cárcamo IL, Bullen A, Jagger DJ, Attwell D. Developmental shaping of node of Ranvier geometry contributes to spike timing maturation in primary auditory afferents. Cell Rep 2024; 43:114651. [PMID: 39178117 DOI: 10.1016/j.celrep.2024.114651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 06/06/2024] [Accepted: 08/01/2024] [Indexed: 08/25/2024] Open
Abstract
Sound is encoded by action potentials in spiral ganglion neurons (SGNs), the auditory afferents from the cochlea. Rapid action potential transmission along SGNs is crucial for quick reactions to sounds, and binaural differences in action potential arrival time at the SGN output synapses enable sound localization based on interaural time or phase differences. SGN myelination increases conduction speed but other cellular changes may contribute. We show that nodes of Ranvier along peripherally and centrally directed SGN neurites form around hearing onset, but peri-somatic nodes mature later. There follows an adjustment of nodal geometry, notably a decrease in length and increase in diameter. Computational modeling predicts this increases conduction speed by >4%, and that four additional myelin wraps would be required on internodes to achieve the same conduction speed increase. We propose that nodal geometry changes optimize signal conduction for mature sound coding and decrease the energy needed for myelination.
Collapse
Affiliation(s)
- Katie E Smith
- UCL Ear Institute, University College London, 332 Gray's Inn Road, London WC1X 8EE, UK.
| | - Jonathan Lezmy
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower St., London WC1E 6BT, UK
| | - I Lorena Arancibia-Cárcamo
- UK Dementia Research Institute, Institute of Neurology, London WC1N 3BG, UK; Francis Crick Institute, London NW1 1AT, UK
| | - Anwen Bullen
- UCL Ear Institute, University College London, 332 Gray's Inn Road, London WC1X 8EE, UK
| | - Daniel J Jagger
- UCL Ear Institute, University College London, 332 Gray's Inn Road, London WC1X 8EE, UK
| | - David Attwell
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower St., London WC1E 6BT, UK.
| |
Collapse
|
3
|
Moser T, Karagulyan N, Neef J, Jaime Tobón LM. Diversity matters - extending sound intensity coding by inner hair cells via heterogeneous synapses. EMBO J 2023; 42:e114587. [PMID: 37800695 PMCID: PMC10690447 DOI: 10.15252/embj.2023114587] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/26/2023] [Accepted: 08/07/2023] [Indexed: 10/07/2023] Open
Abstract
Our sense of hearing enables the processing of stimuli that differ in sound pressure by more than six orders of magnitude. How to process a wide range of stimulus intensities with temporal precision is an enigmatic phenomenon of the auditory system. Downstream of dynamic range compression by active cochlear micromechanics, the inner hair cells (IHCs) cover the full intensity range of sound input. Yet, the firing rate in each of their postsynaptic spiral ganglion neurons (SGNs) encodes only a fraction of it. As a population, spiral ganglion neurons with their respective individual coding fractions cover the entire audible range. How such "dynamic range fractionation" arises is a topic of current research and the focus of this review. Here, we discuss mechanisms for generating the diverse functional properties of SGNs and formulate testable hypotheses. We postulate that an interplay of synaptic heterogeneity, molecularly distinct subtypes of SGNs, and efferent modulation serves the neural decomposition of sound information and thus contributes to a population code for sound intensity.
Collapse
Affiliation(s)
- Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Auditory Neuroscience and Synaptic Nanophysiology GroupMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Cluster of Excellence “Multiscale Bioimaging of Excitable Cells”GöttingenGermany
| | - Nare Karagulyan
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Auditory Neuroscience and Synaptic Nanophysiology GroupMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Hertha Sponer CollegeCluster of Excellence “Multiscale Bioimaging of Excitable Cells” Cluster of ExcellenceGöttingenGermany
| | - Jakob Neef
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Auditory Neuroscience and Synaptic Nanophysiology GroupMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Lina María Jaime Tobón
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Auditory Neuroscience and Synaptic Nanophysiology GroupMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Hertha Sponer CollegeCluster of Excellence “Multiscale Bioimaging of Excitable Cells” Cluster of ExcellenceGöttingenGermany
| |
Collapse
|
4
|
Partouche E, Adenis V, Stahl P, Huetz C, Edeline JM. What Is the Benefit of Ramped Pulse Shapes for Activating Auditory Cortex Neurons? An Electrophysiological Study in an Animal Model of Cochlear Implant. Brain Sci 2023; 13:brainsci13020250. [PMID: 36831793 PMCID: PMC9954719 DOI: 10.3390/brainsci13020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
In all commercial cochlear implant (CI) devices, the activation of auditory nerve fibers is performed with rectangular pulses that have two phases of opposite polarity. Recently, several papers proposed that ramped pulse shapes could be an alternative shape for efficiently activating auditory nerve fibers. Here, we investigate whether ramped pulse shapes can activate auditory cortex (ACx) neurons in a more efficient way than the classical rectangular pulses. Guinea pigs were implanted with CI devices and responses of ACx neurons were tested with rectangular pulses and with four ramped pulse shapes, with a first-phase being either cathodic or anodic. The thresholds, i.e., the charge level necessary for obtaining significant cortical responses, were almost systematically lower with ramped pulses than with rectangular pulses. The maximal firing rate (FR) elicited by the ramped pulses was higher than with rectangular pulses. As the maximal FR occurred with lower charge levels, the dynamic range (between threshold and the maximal FR) was not modified. These effects were obtained with cathodic and anodic ramped pulses. By reducing the charge levels required to activate ACx neurons, the ramped pulse shapes should reduce charge consumption and should contribute to more battery-efficient CI devices in the future.
Collapse
Affiliation(s)
- Elie Partouche
- Jean-Marc Edeline Paris-Saclay Institute of Neurosciences (Neuro-PSI), CNRS UMR 9197, Universite Paris-Saclay, Campus CEA Saclay, Route de la Rotonde Bâtiment 151, 91400 Saclay, France
| | - Victor Adenis
- Jean-Marc Edeline Paris-Saclay Institute of Neurosciences (Neuro-PSI), CNRS UMR 9197, Universite Paris-Saclay, Campus CEA Saclay, Route de la Rotonde Bâtiment 151, 91400 Saclay, France
| | - Pierre Stahl
- Departement of Scientific and Clinical Research, Oticon Medical, 06220 Vallauris, France
| | - Chloé Huetz
- Jean-Marc Edeline Paris-Saclay Institute of Neurosciences (Neuro-PSI), CNRS UMR 9197, Universite Paris-Saclay, Campus CEA Saclay, Route de la Rotonde Bâtiment 151, 91400 Saclay, France
| | - Jean-Marc Edeline
- Jean-Marc Edeline Paris-Saclay Institute of Neurosciences (Neuro-PSI), CNRS UMR 9197, Universite Paris-Saclay, Campus CEA Saclay, Route de la Rotonde Bâtiment 151, 91400 Saclay, France
- Correspondence:
| |
Collapse
|
5
|
Mittring A, Moser T, Huet AT. Graded optogenetic activation of the auditory pathway for hearing restoration. Brain Stimul 2023; 16:466-483. [PMID: 36702442 PMCID: PMC10159867 DOI: 10.1016/j.brs.2023.01.1671] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Optogenetic control of neural activity enables innovative approaches to improve functional restoration of diseased sensory and motor systems. For clinical translation to succeed, optogenetic stimulation needs to closely match the coding properties of the targeted neuronal population and employ optimally operating emitters. This requires the customization of channelrhodopsins, emitters and coding strategies. Here, we provide a framework to parametrize optogenetic neural control and apply it to the auditory pathway that requires high temporal fidelity of stimulation. We used a viral gene transfer of ultrafast targeting-optimized Chronos into spiral ganglion neurons (SGNs) of the cochlea of mice. We characterized the light-evoked response by in vivo recordings from individual SGNs and neurons of the anteroventral cochlear nucleus (AVCN) that detect coincident SGN inputs. Our recordings from single SGNs demonstrated that their spike probability can be graded by adjusting the duration of light pulses at constant intensity, which optimally serves efficient laser diode operation. We identified an effective pulse width of 1.6 ms to maximize encoding in SGNs at the maximal light intensity employed here (∼35 mW). Alternatively, SGNs were activated at lower energy thresholds using short light pulses (<1 ms). An upper boundary of optical stimulation rates was identified at 316 Hz, inducing a robust spike rate adaptation that required a few tens of milliseconds to recover. We developed a semi-stochastic stimulation paradigm to rapidly (within minutes) estimate the input/output function from light to SGN firing and approximate the time constant of neuronal integration in the AVCN. By that, our data pave the way to design the sound coding strategies of future optical cochlear implants.
Collapse
Affiliation(s)
- Artur Mittring
- Auditory Circuit Lab, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany; Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany; Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Antoine Tarquin Huet
- Auditory Circuit Lab, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany; Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany.
| |
Collapse
|
6
|
Sharma K, Kang KW, Seo YW, Glowatzki E, Yi E. Low-voltage Activating K + Channels in Cochlear Afferent Nerve Fiber Dendrites. Exp Neurobiol 2022; 31:243-259. [PMID: 36050224 PMCID: PMC9471414 DOI: 10.5607/en22013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/18/2022] [Accepted: 07/29/2022] [Indexed: 11/19/2022] Open
Abstract
Cochlear afferent nerve fibers (ANF) are the first neurons in the ascending auditory pathway. We investigated the low-voltage activating K+ channels expressed in ANF dendrites using isolated rat cochlear segments. Whole cell patch clamp recordings were made from the dendritic terminals of ANFs. Outward currents activating at membrane potentials as low as -64 mV were observed in all dendrites studied. These currents were inhibited by 4-aminopyridine (4-AP), a blocker known to preferentially inhibit low-voltage activating K+ currents (IKL) in CNS auditory neurons and spiral ganglion neurons. When the dendritic IKL was blocked by 4-AP, the EPSP decay time was significantly prolonged, suggesting that dendritic IKL speeds up the decay of EPSPs and likely modulates action potentials of ANFs. To reveal molecular subtype of dendritic IKL, α-dendrotoxin (α-DTX), a selective inhibitor for Kv1.1, Kv1.2, and Kv1.6 containing channels, was tested. α-DTX inhibited 23±9% of dendritic IKL. To identify the α-DTXsensitive and α-DTX-insensitive components of IKL, immunofluorescence labeling was performed. Strong Kv1.1- and Kv1.2-immunoreactivity was found at unmyelinated dendritic segments, nodes of Ranvier, and cell bodies of most ANFs. A small fraction of ANF dendrites showed Kv7.2- immunoreactivity. These data suggest that dendritic IKL is conducted through Kv1.1and Kv1.2 channels, with a minor contribution from Kv7.2 and other as yet unidentified channels.
Collapse
Affiliation(s)
- Kushal Sharma
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Korea
| | - Kwon Woo Kang
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Korea
| | - Young-Woo Seo
- KBSI Gwangju Center, Korea Basic Science Institute, Gwangju 61186, Korea
| | - Elisabeth Glowatzki
- Department of Otolaryngology-Head and Neck Surgery and Neuroscience, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Eunyoung Yi
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Korea
| |
Collapse
|
7
|
Navntoft CA, Landsberger DM, Barkat TR, Marozeau J. The Perception of Ramped Pulse Shapes in Cochlear Implant Users. Trends Hear 2021; 25:23312165211061116. [PMID: 34935552 PMCID: PMC8724057 DOI: 10.1177/23312165211061116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The electric stimulation provided by current cochlear implants (CI) is not power
efficient. One underlying problem is the poor efficiency by which information
from electric pulses is transformed into auditory nerve responses. A novel
stimulation paradigm using ramped pulse shapes has recently been proposed to
remedy this inefficiency. The primary motivation is a better biophysical fit to
spiral ganglion neurons with ramped pulses compared to the rectangular pulses
used in most contemporary CIs. Here, we tested the hypotheses that ramped pulses
provide more efficient stimulation compared to rectangular pulses and that a
rising ramp is more efficient than a declining ramp. Rectangular, rising ramped
and declining ramped pulse shapes were compared in terms of charge efficiency
and discriminability, and threshold variability in seven CI listeners. The tasks
included single-channel threshold detection, loudness-balancing, discrimination
of pulse shapes, and threshold measurement across the electrode array. Results
showed that reduced charge, but increased peak current amplitudes, was required
at threshold and most comfortable levels with ramped pulses relative to
rectangular pulses. Furthermore, only one subject could reliably discriminate
between equally-loud ramped and rectangular pulses, suggesting variations in
neural activation patterns between pulse shapes in that participant. No
significant difference was found between rising and declining ramped pulses
across all tests. In summary, the present findings show some benefits of charge
efficiency with ramped pulses relative to rectangular pulses, that the direction
of a ramped slope is of less importance, and that most participants could not
perceive a difference between pulse shapes.
Collapse
Affiliation(s)
- Charlotte Amalie Navntoft
- Hearing Systems Group, Department of Health Technology, 5205Technical University of Denmark, Kgs. Lyngby, Denmark.,Brain and Sound Lab, Department of Biomedicine, 27209Basel University, Basel, Switzerland
| | - David M Landsberger
- Department of Otolaryngology, 12296New York University School of Medicine, New York, USA
| | - Tania Rinaldi Barkat
- Brain and Sound Lab, Department of Biomedicine, 27209Basel University, Basel, Switzerland
| | - Jeremy Marozeau
- Hearing Systems Group, Department of Health Technology, 5205Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
8
|
Rutherford MA, von Gersdorff H, Goutman JD. Encoding sound in the cochlea: from receptor potential to afferent discharge. J Physiol 2021; 599:2527-2557. [PMID: 33644871 PMCID: PMC8127127 DOI: 10.1113/jp279189] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
Ribbon-class synapses in the ear achieve analog to digital transformation of a continuously graded membrane potential to all-or-none spikes. In mammals, several auditory nerve fibres (ANFs) carry information from each inner hair cell (IHC) to the brain in parallel. Heterogeneity of transmission among synapses contributes to the diversity of ANF sound-response properties. In addition to the place code for sound frequency and the rate code for sound level, there is also a temporal code. In series with cochlear amplification and frequency tuning, neural representation of temporal cues over a broad range of sound levels enables auditory comprehension in noisy multi-speaker settings. The IHC membrane time constant introduces a low-pass filter that attenuates fluctuations of the receptor potential above 1-2 kHz. The ANF spike generator adds a high-pass filter via its depolarization-rate threshold that rejects slow changes in the postsynaptic potential and its phasic response property that ensures one spike per depolarization. Synaptic transmission involves several stochastic subcellular processes between IHC depolarization and ANF spike generation, introducing delay and jitter that limits the speed and precision of spike timing. ANFs spike at a preferred phase of periodic sounds in a process called phase-locking that is limited to frequencies below a few kilohertz by both the IHC receptor potential and the jitter in synaptic transmission. During phase-locking to periodic sounds of increasing intensity, faster and facilitated activation of synaptic transmission and spike generation may be offset by presynaptic depletion of synaptic vesicles, resulting in relatively small changes in response phase. Here we review encoding of spike-timing at cochlear ribbon synapses.
Collapse
Affiliation(s)
- Mark A. Rutherford
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Henrique von Gersdorff
- Vollum Institute, Oregon Hearing Research Center, Oregon Health and Sciences University, Portland, Oregon 97239
| | | |
Collapse
|
9
|
Functional P2X 7 Receptors in the Auditory Nerve of Hearing Rodents Localize Exclusively to Peripheral Glia. J Neurosci 2021; 41:2615-2629. [PMID: 33563723 DOI: 10.1523/jneurosci.2240-20.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/03/2020] [Accepted: 01/09/2021] [Indexed: 11/21/2022] Open
Abstract
P2X7 receptors (P2X7Rs) are associated with numerous pathophysiological mechanisms, and this promotes them as therapeutic targets for certain neurodegenerative conditions. However, the identity of P2X7R-expressing cells in the nervous system remains contentious. Here, we examined P2X7R functionality in auditory nerve cells from rodents of either sex, and determined their functional and anatomic expression pattern. In whole-cell recordings from rat spiral ganglion cultures, the purinergic agonist 2',3'-O-(4-benzoylbenzoyl)-ATP (BzATP) activated desensitizing currents in spiral ganglion neurons (SGNs) but non-desensitizing currents in glia that were blocked by P2X7R-specific antagonists. In imaging experiments, BzATP gated sustained Ca2+ entry into glial cells. BzATP-gated uptake of the fluorescent dye YO-PRO-1 was reduced and slowed by P2X7R-specific antagonists. In rats, P2X7Rs were immuno-localized predominantly within satellite glial cells (SGCs) and Schwann cells (SCs). P2X7R expression was not detected in the portion of the auditory nerve within the central nervous system. Mouse models allowed further exploration of the distribution of cochlear P2X7Rs. In GENSAT reporter mice, EGFP expression driven via the P2rx7 promoter was evident in SGCs and SCs but was undetectable in SGNs. A second transgenic model showed a comparable cellular distribution of EGFP-tagged P2X7Rs. In wild-type mice the discrete glial expression was confirmed using a P2X7-specific nanobody construct. Our study shows that P2X7Rs are expressed by peripheral glial cells, rather than by afferent neurons. Description of functional signatures and cellular distributions of these enigmatic proteins in the peripheral nervous system (PNS) will help our understanding of ATP-dependent effects contributing to hearing loss and other sensory neuropathies.SIGNIFICANCE STATEMENT P2X7 receptors (P2X7Rs) have been the subject of much scrutiny in recent years. They have been promoted as therapeutic targets in a number of diseases of the nervous system, yet the specific cellular location of these receptors remains the subject of intense debate. In the auditory nerve, connecting the inner ear to the brainstem, we show these multimodal ATP-gated channels localize exclusively to peripheral glial cells rather than the sensory neurons, and are not evident in central glia. Physiologic responses in the peripheral glia display classical hallmarks of P2X7R activation, including the formation of ion-permeable and also macromolecule-permeable pores. These qualities suggest these proteins could contribute to glial-mediated inflammatory processes in the auditory periphery under pathologic disease states.
Collapse
|
10
|
Liu W, Luque M, Li H, Schrott-Fischer A, Glueckert R, Tylstedt S, Rajan G, Ladak H, Agrawal S, Rask-Andersen H. Spike Generators and Cell Signaling in the Human Auditory Nerve: An Ultrastructural, Super-Resolution, and Gene Hybridization Study. Front Cell Neurosci 2021; 15:642211. [PMID: 33796009 PMCID: PMC8008129 DOI: 10.3389/fncel.2021.642211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/22/2021] [Indexed: 11/23/2022] Open
Abstract
Background: The human auditory nerve contains 30,000 nerve fibers (NFs) that relay complex speech information to the brain with spectacular acuity. How speech is coded and influenced by various conditions is not known. It is also uncertain whether human nerve signaling involves exclusive proteins and gene manifestations compared with that of other species. Such information is difficult to determine due to the vulnerable, "esoteric," and encapsulated human ear surrounded by the hardest bone in the body. We collected human inner ear material for nanoscale visualization combining transmission electron microscopy (TEM), super-resolution structured illumination microscopy (SR-SIM), and RNA-scope analysis for the first time. Our aim was to gain information about the molecular instruments in human auditory nerve processing and deviations, and ways to perform electric modeling of prosthetic devices. Material and Methods: Human tissue was collected during trans-cochlear procedures to remove petro-clival meningioma after ethical permission. Cochlear neurons were processed for electron microscopy, confocal microscopy (CM), SR-SIM, and high-sensitive in situ hybridization for labeling single mRNA transcripts to detect ion channel and transporter proteins associated with nerve signal initiation and conductance. Results: Transport proteins and RNA transcripts were localized at the subcellular level. Hemi-nodal proteins were identified beneath the inner hair cells (IHCs). Voltage-gated ion channels (VGICs) were expressed in the spiral ganglion (SG) and axonal initial segments (AISs). Nodes of Ranvier (NR) expressed Nav1.6 proteins, and encoding genes critical for inter-cellular coupling were disclosed. Discussion: Our results suggest that initial spike generators are located beneath the IHCs in humans. The first NRs appear at different places. Additional spike generators and transcellular communication may boost, sharpen, and synchronize afferent signals by cell clusters at different frequency bands. These instruments may be essential for the filtering of complex sounds and may be challenged by various pathological conditions.
Collapse
Affiliation(s)
- Wei Liu
- Section of Otolaryngology, Department of Surgical Sciences, Head and Neck Surgery, Uppsala University Hospital, Uppsala, Sweden
| | - Maria Luque
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hao Li
- Section of Otolaryngology, Department of Surgical Sciences, Head and Neck Surgery, Uppsala University Hospital, Uppsala, Sweden
| | | | - Rudolf Glueckert
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sven Tylstedt
- Department of Olaryngology, Västerviks Hospital, Västervik, Sweden
| | - Gunesh Rajan
- Department of Otolaryngology, Head & Neck Surgery, Luzerner Kantonsspital, Luzern, Switzerland
- Department of Otolaryngology, Head & Neck Surgery, Division of Surgery, Medical School, University of Western Australia, Perth, WA, Australia
| | - Hanif Ladak
- Department of Otolaryngology-Head and Neck Surgery, Department of Medical Biophysics and Department of Electrical and Computer Engineering, Western University, London, ON, Canada
| | - Sumit Agrawal
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, ON, Canada
| | - Helge Rask-Andersen
- Section of Otolaryngology, Department of Surgical Sciences, Head and Neck Surgery, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
11
|
Kim WB, Kang KW, Sharma K, Yi E. Distribution of K v3 Subunits in Cochlear Afferent and Efferent Nerve Fibers Implies Distinct Role in Auditory Processing. Exp Neurobiol 2020; 29:344-355. [PMID: 33154197 PMCID: PMC7649084 DOI: 10.5607/en20043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 11/19/2022] Open
Abstract
Kv3 family K+ channels, by ensuring speedy repolarization of action potential, enable rapid and high frequency neuronal firing and high precision temporal coding of auditory information in various auditory synapses in the brain. Expression of different Kv3 subtypes within the auditory end organ has been reported. Yet, their precise role at the hair cell synaptic transmission has not been fully elucidated. Using immunolabeling and confocal microscopy we examined the expression pattern of different Kv3 family K+ channel subunits in the nerve fibers innervating the cochlear hair cells. Kv3.1b was found in NKA-positive type 1 afferent fibers, exhibiting high signal intensity at the cell body, the unmyelinated dendritic segment, first heminode and nodes of Ranvier. Kv3.3 signal was detected in the cell body and the unmyelinated dendritic segment of NKA-positive type 1 afferent fibers but not in peripherin-positive type 2 afferent. Kv3.4 was found in ChAT-positive LOC and MOC efferent fibers as well as peripherin-positive type 2 afferent fibers. Such segregated expression pattern implies that each Kv3 subunits participate in different auditory tasks, for example, Kv3.1b and Kv3.3 in ascending signaling while Kv3.4 in feedback upon loud noise exposure.
Collapse
Affiliation(s)
- Woo Bin Kim
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Korea
| | - Kwon-Woo Kang
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Korea
| | - Kushal Sharma
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Korea
| | - Eunyoung Yi
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Korea
| |
Collapse
|
12
|
Martelletti E, Ingham NJ, Houston O, Pass JC, Chen J, Marcotti W, Steel KP. Synaptojanin2 Mutation Causes Progressive High-frequency Hearing Loss in Mice. Front Cell Neurosci 2020; 14:561857. [PMID: 33100973 PMCID: PMC7546894 DOI: 10.3389/fncel.2020.561857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/14/2020] [Indexed: 12/04/2022] Open
Abstract
Progressive hearing loss is very common in the human population but we know little about the underlying molecular mechanisms. Synaptojanin2 (Synj2) has been reported to be involved, as a mouse mutation led to a progressive increase in auditory thresholds with age. Synaptojanin2 is a phosphatidylinositol (PI) phosphatase that removes the five-position phosphates from phosphoinositides, such as PIP2 and PIP3, and is a key enzyme in clathrin-mediated endocytosis. To investigate the mechanisms underlying progressive hearing loss, we have studied a different mutation of mouse Synj2 to look for any evidence of involvement of vesicle trafficking particularly affecting the synapses of sensory hair cells. Auditory brainstem responses (ABR) developed normally at first but started to decline between 3 and 4 weeks of age in Synj2tm1b mutants. At 6 weeks old, some evidence of outer hair cell (OHC) stereocilia fusion and degeneration was observed, but this was only seen in the extreme basal turn so cannot explain the raised ABR thresholds that correspond to more apical regions of the cochlear duct. We found no evidence of any defect in inner hair cell (IHC) exocytosis or endocytosis using single hair cell recordings, nor any sign of hair cell synaptic abnormalities. Endocochlear potentials (EP) were normal. The mechanism underlying progressive hearing loss in these mutants remains elusive, but our findings of raised distortion product otoacoustic emission (DPOAE) thresholds and signs of OHC degeneration both suggest an OHC origin for the hearing loss. Synaptojanin2 is not required for normal development of hearing but it is important for its maintenance.
Collapse
Affiliation(s)
- Elisa Martelletti
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Neil J Ingham
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Oliver Houston
- Department of Biomedical Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Johanna C Pass
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Jing Chen
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Walter Marcotti
- Department of Biomedical Sciences, University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Karen P Steel
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| |
Collapse
|
13
|
Smith KE, Murphy P, Jagger DJ. Divergent membrane properties of mouse cochlear glial cells around hearing onset. J Neurosci Res 2020; 99:679-698. [PMID: 33099767 DOI: 10.1002/jnr.24744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/21/2020] [Accepted: 10/05/2020] [Indexed: 11/11/2022]
Abstract
Spiral ganglion neurons (SGNs) are the primary afferent neurons of the auditory system, and together with their attendant glia, form the auditory nerve. Within the cochlea, satellite glial cells (SGCs) encapsulate the cell body of SGNs, whereas Schwann cells (SCs) wrap their peripherally- and centrally-directed neurites. Despite their likely importance in auditory nerve function and homeostasis, the physiological properties of auditory glial cells have evaded description. Here, we characterized the voltage-activated membrane currents of glial cells from the mouse cochlea. We identified a prominent weak inwardly rectifying current in SGCs within cochlear slice preparations (postnatal day P5-P6), which was also present in presumptive SGCs within dissociated cultures prepared from the cochleae of hearing mice (P14-P15). Pharmacological block by Ba2+ and desipramine suggested that channels belonging to the Kir4 family mediated the weak inwardly rectifying current, and post hoc immunofluorescence implicated the involvement of Kir4.1 subunits. Additional electrophysiological profiles were identified for glial cells within dissociated cultures, suggesting that glial subtypes may have specific membrane properties to support distinct physiological roles. Immunofluorescence using fixed cochlear sections revealed that although Kir4.1 is restricted to SGCs after the onset of hearing, these channels are more widely distributed within the glial population earlier in postnatal development (i.e., within both SGCs and SCs). The decrease in Kir4.1 immunofluorescence during SC maturation was coincident with a reduction of Sox2 expression and advancing neurite myelination. The data suggest a diversification of glial properties occurs in preparation for sound-driven activity in the auditory nerve.
Collapse
Affiliation(s)
- Katie E Smith
- UCL Ear Institute, University College London, London, UK
| | - Phoebe Murphy
- UCL Ear Institute, University College London, London, UK
| | | |
Collapse
|
14
|
Ramped pulse shapes are more efficient for cochlear implant stimulation in an animal model. Sci Rep 2020; 10:3288. [PMID: 32094368 PMCID: PMC7039949 DOI: 10.1038/s41598-020-60181-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/03/2020] [Indexed: 01/20/2023] Open
Abstract
In all commercial cochlear implant (CI) devices, the electric stimulation is performed with a rectangular pulse that generally has two phases of opposite polarity. To date, developing new stimulation strategies has relied on the efficacy of this shape. Here, we investigate the potential of a novel stimulation paradigm that uses biophysically-inspired electrical ramped pulses. Using electrically-evoked auditory brainstem response (eABR) recordings in mice, we found that less charge, but higher current level amplitude, is needed to evoke responses with ramped shapes that are similar in amplitude to responses obtained with rectangular shapes. The most charge-efficient pulse shape had a rising ramp over both phases, supporting findings from previous in vitro studies. This was also true for longer phase durations. Our study presents the first physiological data on CI-stimulation with ramped pulse shapes. By reducing charge consumption ramped pulses have the potential to produce more battery-efficient CIs and may open new perspectives for designing other efficient neural implants in the future.
Collapse
|
15
|
Meng L, Zhao Y, Qu D, Xie Z, Guo X, Zhu Z, Chen Z, Zhang L, Li W, Cao Z, Tian C, Wu Y. Ion channel modulation by scorpion hemolymph and its defensin ingredients highlights origin of neurotoxins in telson formed in Paleozoic scorpions. Int J Biol Macromol 2020; 148:351-363. [PMID: 31954123 DOI: 10.1016/j.ijbiomac.2020.01.133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/27/2022]
Abstract
An increasing number of scorpion fossils indicate that the venomous telson developed from the sharp telson in sea scorpions into the extant scorpion-like telson in aquatic scorpions in the Paleozoic Era and then further evolved into the fetal venom system. This hypothesis led us to evaluate the inhibition of scorpion venom-sensitive potassium channels by hemolymph from the scorpion Mesobuthus martensii. Scorpion hemolymph diluted 1:10 inhibited Kv1.1, Kv1.2, Kv1.3 and SK3 potassium channel currents by 76.4%, 90.2%, 85.8%, and 52.8%, respectively. These discoveries encouraged us to investigate the functional similarity between the more ancient defensin ingredients in hemolymph and the evolved neurotoxins in the venom. In addition to the expression of the representative defensin BmKDfsin3 and BmKDfsin5 in both venomous and non-venomous tissues, NMR analysis revealed structural similarities between scorpion defensin and neurotoxin. Functional experiments further indicated that scorpion defensin used the same mechanism as classical neurotoxin to block the neurotoxin-sensitive Kv1.1, Kv1.2, Kv1.3 and SK3 channels. These findings emphasize the likelihood that scorpion defensins evolved into neurotoxins that were adapted to the emergence of the scorpion telson from the sharp telson of sea scorpions into the extant scorpion-like telson in aquatic scorpions in the Paleozoic Era.
Collapse
Affiliation(s)
- Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yonghui Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Daliang Qu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China; School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Zili Xie
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xingchen Guo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhanyong Zhu
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan 430072, China
| | - Zongyun Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Longhua Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China; School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Wenxin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; Center for BioDrug Research, Wuhan University, Wuhan 430072, China
| | - Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; Center for BioDrug Research, Wuhan University, Wuhan 430072, China
| | - Changlin Tian
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China; School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; Center for BioDrug Research, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
16
|
Ison JR, Allen PD, Tempel BL, Brew HM. Sound Localization in Preweanling Mice Was More Severely Affected by Deleting the Kcna1 Gene Compared to Deleting Kcna2, and a Curious Inverted-U Course of Development That Appeared to Exceed Adult Performance Was Observed in All Groups. J Assoc Res Otolaryngol 2019; 20:565-577. [PMID: 31410614 PMCID: PMC6889093 DOI: 10.1007/s10162-019-00731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/18/2019] [Indexed: 11/30/2022] Open
Abstract
The submillisecond acuity for detecting rapid spatial and temporal fluctuations in acoustic stimuli observed in humans and laboratory animals depends in part on select groups of auditory neurons that preserve synchrony from the ears to the binaural nuclei in the brainstem. These fibers have specialized synapses and axons that use a low-threshold voltage-activated outward current, IKL, conducted through Kv1 potassium ion channels. These are in turn coupled with HCN channels that express a mixed cation inward mixed current, IH, to support precise synchronized firing. The behavioral evidence is that their respective Kcna1 or HCN1 genes are absent in adult mice; the results are weak startle reflexes, slow responding to noise offsets, and poor sound localization. The present behavioral experiments were motivated by an in vitro study reporting increased IKL in an auditory nucleus in Kcna2-/- mice lacking the Kv1.2 subunit, suggesting that Kcna2-/- mice might perform better than Kcna2+/+ mice. Because Kcna2-/- mice have only a 17-18-day lifespan, we compared both preweanling Kcna2-/- vs. Kcna2+/+ mice and Kcna1-/- vs. Kcna1+/+ mice at P12-P17/18; then, the remaining mice were tested at P23/P25. Both null mutant strains had a stunted physique, but the Kcna1-/- mice had severe behavioral deficits while those in Kcna2-/- mice were relatively few and minor. The in vitro increase of IKL could have resulted from Kv1.1 subunits substituting for Kv1.2 units and the loss of the inhibitory "managerial" effect of Kv1.2 on Kv1.1. However, any increased neuronal synchronicity that accompanies increased IKL may not have been enough to affect behavior. All mice performed unusually well on the early spatial tests, but then, they fell towards adult levels. This unexpected effect may reflect a shift from summated independent monaural pathways to integrated binaural processing, as has been suggested for similar observations for human infants.
Collapse
Affiliation(s)
- James R Ison
- Department of Brain and Cognitive Sciences, Meliora Hall, University of Rochester, Rochester, NY, 14627, USA.
- Department of Neuroscience and The Del Monte Neuromedicine Institute, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| | - Paul D Allen
- Department of Otolaryngology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Bruce L Tempel
- The Virginia Merrill Bloedel Hearing Research Center and the Departments of Otolaryngology-Head and Neck Surgery and Pharmacology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Helen M Brew
- The Virginia Merrill Bloedel Hearing Research Center and the Departments of Otolaryngology-Head and Neck Surgery and Pharmacology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| |
Collapse
|
17
|
Lu J, Liu H, Lin S, Li C, Wu H. Electrophysiological characterization of acutely isolated spiral ganglion neurons in neonatal and mature sonic hedgehog knock-in mice. Neurosci Lett 2019; 714:134536. [PMID: 31589904 DOI: 10.1016/j.neulet.2019.134536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/04/2019] [Accepted: 10/01/2019] [Indexed: 12/18/2022]
Abstract
Spiral ganglion neurons (SGNs) are primary afferent auditory neurons activated by inner hair cells in mammalian cochlea. Here, for the convenience of SGN studies such as patch-clamp or single cell RNA-sequence studies, a knock-in mouse (ShhCreEGFP/+; Rosa26-Tdtomatoloxp/+) was generated for the purpose of obtaining fluorescence SGNs. Auditory brainstem response (ABR) and Tuj1 immunohistochemistry staining were performed to verify the hearing function and the morphological characteristics. The results showed that there was no significant difference between shh and wild type mice. In electrophysiological studies, we verified a series of electrophysiological characteristics including the amplitude of sodium and potassium currents and action potential characteristics of shh and wild type mice and no significant differences were found either. From the above, shh mice have the same cell function and morphology as their littermate control wild type mice and could be used as an ideal tool to study the function and characteristics of spiral ganglion neurons. Potassium channels of SGNs play an important role in resolving time accuracy. We obtained similar amplitude of IK+ in neonatal and mature mice in the aging competition experiment, however, the density of IK+ from mature mice were significantly different from those of neonatal mice, a phenomenon that may play a key role in the nervous system. Potassium channels have been shown to contribute to apoptosis induced by cisplatin administration in various cell lines. Here we used cisplatin administration to study the ototoxicity and found that the effects of a low dose of cisplatin (0.5 mM correspond to therapeutic doses) causes a decrease in currents and is reversible after a short administration time. Moreover, we propose the activated state of potassium channels has changed but the characteristic and number remain still after cisplatin administration. The excess potassium ions may accumulate in the cell body, which had affected the firing properties and induce cytotoxicity and apoptosis. We suggest that the electrophysiological properties of acutely isolated SGNs may support further research on the mechanics of auditory propagation and ion channel pharmacology.
Collapse
Affiliation(s)
- Jiawen Lu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Huihui Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Shanshan Lin
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chao Li
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| |
Collapse
|
18
|
Sodium-activated potassium channels shape peripheral auditory function and activity of the primary auditory neurons in mice. Sci Rep 2019; 9:2573. [PMID: 30796290 PMCID: PMC6384918 DOI: 10.1038/s41598-019-39119-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/17/2019] [Indexed: 11/08/2022] Open
Abstract
Potassium (K+) channels shape the response properties of neurons. Although enormous progress has been made to characterize K+ channels in the primary auditory neurons, the molecular identities of many of these channels and their contributions to hearing in vivo remain unknown. Using a combination of RNA sequencing and single molecule fluorescent in situ hybridization, we localized expression of transcripts encoding the sodium-activated potassium channels KNa1.1 (SLO2.2/Slack) and KNa1.2 (SLO2.1/Slick) to the primary auditory neurons (spiral ganglion neurons, SGNs). To examine the contribution of these channels to function of the SGNs in vivo, we measured auditory brainstem responses in KNa1.1/1.2 double knockout (DKO) mice. Although auditory brainstem response (wave I) thresholds were not altered, the amplitudes of suprathreshold responses were reduced in DKO mice. This reduction in amplitude occurred despite normal numbers and molecular architecture of the SGNs and their synapses with the inner hair cells. Patch clamp electrophysiology of SGNs isolated from DKO mice displayed altered membrane properties, including reduced action potential thresholds and amplitudes. These findings show that KNa1 channel activity is essential for normal cochlear function and suggest that early forms of hearing loss may result from physiological changes in the activity of the primary auditory neurons.
Collapse
|
19
|
High frequency neural spiking and auditory signaling by ultrafast red-shifted optogenetics. Nat Commun 2018; 9:1750. [PMID: 29717130 PMCID: PMC5931537 DOI: 10.1038/s41467-018-04146-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 04/06/2018] [Indexed: 11/29/2022] Open
Abstract
Optogenetics revolutionizes basic research in neuroscience and cell biology and bears potential for medical applications. We develop mutants leading to a unifying concept for the construction of various channelrhodopsins with fast closing kinetics. Due to different absorption maxima these channelrhodopsins allow fast neural photoactivation over the whole range of the visible spectrum. We focus our functional analysis on the fast-switching, red light-activated Chrimson variants, because red light has lower light scattering and marginal phototoxicity in tissues. We show paradigmatically for neurons of the cerebral cortex and the auditory nerve that the fast Chrimson mutants enable neural stimulation with firing frequencies of several hundred Hz. They drive spiking at high rates and temporal fidelity with low thresholds for stimulus intensity and duration. Optical cochlear implants restore auditory nerve activity in deaf mice. This demonstrates that the mutants facilitate neuroscience research and future medical applications such as hearing restoration. Optogenetic applications would benefit from channelrhodopsins (ChRs) with faster photostimulation, increased tissue transparency and lower phototoxicity. Here, the authors develop fast red-shifted ChR variants and show the abilities for temporal precise spiking of cerebral interneurons and restoring auditory activity in deaf mice.
Collapse
|
20
|
Identification of Persistent and Resurgent Sodium Currents in Spiral Ganglion Neurons Cultured from the Mouse Cochlea. eNeuro 2017; 4:eN-NWR-0303-17. [PMID: 29138759 PMCID: PMC5684619 DOI: 10.1523/eneuro.0303-17.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 01/11/2023] Open
Abstract
In spiral ganglion neurons (SGNs), the afferent single units of the auditory nerve, high spontaneous and evoked firing rates ensure preservation of the temporal code describing the key features of incoming sound. During postnatal development, the spatiotemporal distribution of ion channel subtypes contributes to the maturation of action potential generation in SGNs, and to their ability to generate spike patterns that follow rapidly changing inputs. Here we describe tetrodotoxin (TTX)-sensitive Na+ currents in SGNs cultured from mice, whose properties may support this fast spiking behavior. A subthreshold persistent Na+ current (INaP) and a resurgent Na+ current (INaR) both emerged prior to the onset of hearing and became more prevalent as hearing matured. Navβ4 subunits, which are proposed to play a key role in mediating INaR elsewhere in the nervous system, were immunolocalized to the first heminode where spikes are generated in the auditory nerve, and to perisomatic nodes of Ranvier. ATX-II, a sea anemone toxin that slows classical Na+ channel inactivation selectively, enhanced INaP five-fold and INaR three-fold in voltage clamp recordings. In rapidly-adapting SGNs under current clamp, ATX-II increased the likelihood of firing additional action potentials. The data identify INaP and INaR as novel regulators of excitability in SGNs, and consistent with their roles in other neuronal types, we suggest that these nonclassical Na+ currents may contribute to the control of refractoriness in the auditory nerve.
Collapse
|
21
|
Phosphoinositol-4,5-Bisphosphate Regulates Auditory Hair-Cell Mechanotransduction-Channel Pore Properties and Fast Adaptation. J Neurosci 2017; 37:11632-11646. [PMID: 29066559 DOI: 10.1523/jneurosci.1351-17.2017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/05/2017] [Indexed: 11/21/2022] Open
Abstract
Membrane proteins, such as ion channels, interact dynamically with their lipid environment. Phosphoinositol-4,5-bisphosphate (PIP2) can directly or indirectly modify ion-channel properties. In auditory sensory hair cells of rats (Sprague Dawley) of either sex, PIP2 localizes within stereocilia, near stereocilia tips. Modulating the amount of free PIP2 in inner hair-cell stereocilia resulted in the following: (1) the loss of a fast component of mechanoelectric-transduction current adaptation, (2) an increase in the number of channels open at the hair bundle's resting position, (3) a reduction of single-channel conductance, (4) a change in ion selectivity, and (5) a reduction in calcium pore blocking effects. These changes occur without altering hair-bundle compliance or the number of functional stereocilia within a given hair bundle. Although the specific molecular mechanism for PIP2 action remains to be uncovered, data support a hypothesis for PIP2 directly regulating channel conformation to alter calcium permeation and single-channel conductance.SIGNIFICANCE STATEMENT How forces are relayed to the auditory mechanoelectrical transduction (MET) channel remains unknown. However, researchers have surmised that lipids might be involved. Previous work on bullfrog hair cells showed an effect of phosphoinositol-4,5-bisphosphate (PIP2) depletion on MET current amplitude and adaptation, leading to the postulation of the existence of an underlying myosin-based adaptation mechanism. We find similar results in rat cochlea hair cells but extend these data to include single-channel analysis, hair-bundle mechanics, and channel-permeation properties. These additional data attribute PIP2 effects to actions on MET-channel properties and not motor interactions. Further findings support PIP2's role in modulating a fast, myosin-independent, and Ca2+-independent adaptation process, validating fast adaptation's biological origin. Together this shows PIP2's pivotal role in auditory MET, likely as a direct channel modulator.
Collapse
|
22
|
Time-dependent activity of primary auditory neurons in the presence of neurotrophins and antibiotics. Hear Res 2017; 350:122-132. [DOI: 10.1016/j.heares.2017.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 03/16/2017] [Accepted: 04/23/2017] [Indexed: 12/19/2022]
|
23
|
Firing frequency and entrainment maintained in primary auditory neurons in the presence of combined BDNF and NT3. Sci Rep 2016; 6:28584. [PMID: 27335179 PMCID: PMC4917828 DOI: 10.1038/srep28584] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 06/07/2016] [Indexed: 12/16/2022] Open
Abstract
Primary auditory neurons rely on neurotrophic factors for development and survival. We previously determined that exposure to brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3) alters the activity of hyperpolarization-activated currents (Ih) in this neuronal population. Since potassium channels are sensitive to neurotrophins, and changes in Ih are often accompanied by a shift in voltage-gated potassium currents (IK), this study examined IK with exposure to both BDNF and NT3 and the impact on firing entrainment during high frequency pulse trains. Whole-cell patch-clamp recordings revealed significant changes in action potential latency and duration, but no change in firing adaptation or total outward IK. Dendrotoxin-I (DTX-I), targeting voltage-gated potassium channel subunits KV1.1 and KV1.2, uncovered an increase in the contribution of DTX-I sensitive currents with exposure to neurotrophins. No difference in Phrixotoxin-1 (PaTX-1) sensitive currents, mediated by KV4.2 and KV4.3 subunits, was observed. Further, no difference was seen in firing entrainment. These results show that combined BDNF and NT3 exposure influences the contribution of KV1.1 and KV1.2 to the low voltage-activated potassium current (IKL). Whilst this is accompanied by a shift in spike latency and duration, both firing frequency and entrainment to high frequency pulse trains are preserved.
Collapse
|
24
|
Human EAG channels are directly modulated by PIP2 as revealed by electrophysiological and optical interference investigations. Sci Rep 2016; 6:23417. [PMID: 27005320 PMCID: PMC4804213 DOI: 10.1038/srep23417] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/03/2016] [Indexed: 11/28/2022] Open
Abstract
Voltage-gated ether à go-go (EAG) K+ channels are expressed in various types of cancer cells and also in the central nervous system. Aberrant overactivation of human EAG1 (hEAG1) channels is associated with cancer and neuronal disorders such as Zimmermann-Laband and Temple-Baraitser syndromes. Although hEAG1 channels are recognized as potential therapeutic targets, regulation of their functional properties is only poorly understood. Here, we show that the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2) is a potent inhibitory gating modifier of hEAG1 channels. PIP2 inhibits the channel activity by directly binding to a short N-terminal segment of the channel important for Ca2+/calmodulin (CaM) binding as evidenced by bio-layer interferometry measurements. Conversely, depletion of endogenous PIP2 either by serotonin-induced phospholipase C (PLC) activation or by a rapamycin-induced translocation system enhances the channel activity at physiological membrane potentials, suggesting that PIP2 exerts a tonic inhibitory influence. Our study, combining electrophysiological and direct binding assays, demonstrates that hEAG1 channels are subject to potent inhibitory modulation by multiple phospholipids and suggests that manipulations of the PIP2 signaling pathway may represent a strategy to treat hEAG1 channel-associated diseases.
Collapse
|
25
|
Kim KX, Rutherford MA. Maturation of NaV and KV Channel Topographies in the Auditory Nerve Spike Initiator before and after Developmental Onset of Hearing Function. J Neurosci 2016; 36:2111-8. [PMID: 26888923 PMCID: PMC6602042 DOI: 10.1523/jneurosci.3437-15.2016] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Auditory nerve excitation and thus hearing depend on spike-generating ion channels and their placement along the axons of auditory nerve fibers (ANFs). The developmental expression patterns and native axonal locations of voltage-gated ion channels in ANFs are unknown. Therefore, we examined the development of heminodes and nodes of Ranvier in the peripheral axons of type I ANFs in the rat cochlea with immunohistochemistry and confocal microscopy. Nodal structures presumably supporting presensory spiking formed between postnatal days 5 (P5) and P7, including Ankyrin-G, NaV1.6, and Caspr. These immature nodal structures lacked low-voltage-activated KV1.1 which was not enriched at juxtaparanodes until approximately P13, concurrent with the developmental onset of acoustic hearing function. Anatomical alignment of ANF spike-initiating heminodes relative to excitatory input from inner hair cell (IHC) ribbon synapses continued until approximately P30. High-voltage-activated KV3.1b and KV2.2 were expressed in mutually exclusive domains: KV3.1b was strictly localized to nodes and heminodes, whereas KV2.2 expression began at the juxtaparanodes and continued centrally along the first internode. At spike-initiating heminodes in the distal osseous spiral lamina, NaV1.1 partly overlapped NaV1.6 and ankyrin-G. ANFs displayed KV7.2 and KV7.3 at heminodes, nodes, internodes, and the unmyelinated synaptic terminal segments beneath IHCs in the organ of Corti. In response to sound, spikes are initiated at the heminode, which is tightly coupled to the IHC ribbon synapse ∼20-40 μm away. These results show that maturation of nodal alignment and ion channel content may underlie postnatal improvements of ANF excitability and discharge synchrony. SIGNIFICANCE STATEMENT Acoustic and electrical hearing depends on rapid, reliable, and precise spike generation in auditory nerve fibers. A limitation of current models and therapies is a lack of information on the identities and topographies of underlying ion channels. We report the developmental profile of the auditory nerve spike generator with a focus on NaV1.1, NaV1.6, KV1.1, KV2.2, KV3.1b, KV7.2, and KV7.3 in relation to the scaffold ankyrin-G. Molecular anatomy of the spike generator matures in the weeks after developmental onset of hearing function. Subcellular positioning of voltage-gated ion channels will enable multicompartmental modeling of auditory nerve responses elicited by afferent chemical neurotransmission from hair cells and modulated by efferent neurotransmitters or evoked by extracellular field stimulation from a cochlear implant.
Collapse
Affiliation(s)
- Kyunghee X Kim
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Mark A Rutherford
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
26
|
Ballestero J, Recugnat M, Laudanski J, Smith KE, Jagger DJ, Gnansia D, McAlpine D. Reducing Current Spread by Use of a Novel Pulse Shape for Electrical Stimulation of the Auditory Nerve. Trends Hear 2015; 19:19/0/2331216515619763. [PMID: 26721928 PMCID: PMC4771040 DOI: 10.1177/2331216515619763] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Improving the electrode-neuron interface to reduce current spread between individual electrodes has been identified as one of the main objectives in the search for future improvements in cochlear-implant performance. Here, we address this problem by presenting a novel stimulation strategy that takes account of the biophysical properties of the auditory neurons (spiral ganglion neurons, SGNs) stimulated in electrical hearing. This new strategy employs a ramped pulse shape, where the maximum amplitude is achieved through a linear slope in the injected current. We present the theoretical framework that supports this new strategy and that suggests it will improve the modulation of SGNs’ activity by exploiting their sensitivity to the rising slope of current pulses. The theoretical consequence of this sensitivity to the slope is a reduction in the spread of excitation within the cochlea and, consequently, an increase in the neural dynamic range. To explore the impact of the novel stimulation method on neural activity, we performed in vitro recordings of SGNs in culture. We show that the stimulus efficacy required to evoke action potentials in SGNs falls as the stimulus slope decreases. This work lays the foundation for a novel, and more biomimetic, stimulation strategy with considerable potential for implementation in cochlear-implant technology.
Collapse
Affiliation(s)
| | | | | | - Katie E Smith
- Ear Institute, University College London, London, UK
| | | | | | | |
Collapse
|