1
|
von Saucken VE, Windner SE, Armetta G, Baylies MK. Postsynaptic BMP signaling regulates myonuclear properties in Drosophila larval muscles. J Cell Biol 2025; 224:e202404052. [PMID: 39475469 PMCID: PMC11530350 DOI: 10.1083/jcb.202404052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/13/2024] [Accepted: 10/13/2024] [Indexed: 11/04/2024] Open
Abstract
The syncytial mammalian muscle fiber contains a heterogeneous population of (myo)nuclei. At the neuromuscular junction (NMJ), myonuclei have specialized positioning and gene expression. However, it remains unclear how myonuclei are recruited and what regulates myonuclear output at the NMJ. Here, we identify specific properties of myonuclei located near the Drosophila larval NMJ. These synaptic myonuclei have increased size in relation to their surrounding cytoplasmic domain (size scaling), increased DNA content (ploidy), and increased levels of transcription factor pMad, a readout for BMP signaling activity. Our genetic manipulations show that local BMP signaling affects muscle size, nuclear size, ploidy, and NMJ size and function. In support, RNA sequencing analysis reveals that pMad regulates genes involved in muscle growth, ploidy (i.e., E2f1), and neurotransmission. Our data suggest that muscle BMP signaling instructs synaptic myonuclear output that positively shapes the NMJ synapse. This study deepens our understanding of how myonuclear heterogeneity supports local signaling demands to fine tune cellular function and NMJ activity.
Collapse
Affiliation(s)
- Victoria E. von Saucken
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell-Rockefeller-Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
- Biochemistry, Cell and Developmental Biology, and Molecular Biology (BCMB) Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Stefanie E. Windner
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Giovanna Armetta
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mary K. Baylies
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
2
|
Marhabaie M, Wharton TH, Kim SY, Wharton RP. Widespread regulation of the maternal transcriptome by Nanos in Drosophila. PLoS Biol 2024; 22:e3002840. [PMID: 39401257 PMCID: PMC11501031 DOI: 10.1371/journal.pbio.3002840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 10/24/2024] [Accepted: 09/14/2024] [Indexed: 10/23/2024] Open
Abstract
The translational repressor Nanos (Nos) regulates a single target, maternal hunchback (hb) mRNA, to govern abdominal segmentation in the early Drosophila embryo. Nos is recruited to sites in the 3' UTR of hb mRNA in collaboration with the sequence-specific RNA-binding protein Pumilio (Pum); on its own, Nos has no binding specificity. Nos is expressed at other stages of development, but very few mRNA targets that might mediate its action at these stages have been described. Nor has it been clear whether Nos is targeted to other mRNAs in concert with Pum or via other mechanisms. In this report, we identify mRNAs targeted by Nos via 2 approaches. First, we identify mRNAs depleted upon expression of a chimera bearing Nos fused to the nonsense mediated decay (NMD) factor Upf1. We find that, in addition to hb, Upf1-Nos depletes approximately 2,600 mRNAs from the maternal transcriptome in early embryos. Virtually all of these appear to be targeted in a canonical, hb-like manner in concert with Pum. In a second, more conventional approach, we identify mRNAs that are stabilized during the maternal zygotic transition (MZT) in embryos from nos- females. Most (86%) of the 1,185 mRNAs regulated by Nos are also targeted by Upf1-Nos, validating use of the chimera. Previous work has shown that 60% of the maternal transcriptome is degraded in early embryos. We find that maternal mRNAs targeted by Upf1-Nos are hypoadenylated and inefficiently translated at the ovary-embryo transition; they are subsequently degraded in the early embryo, accounting for 59% of all destabilized maternal mRNAs. We suggest that the late ovarian burst of Nos represses a large fraction of the maternal transcriptome, priming it for later degradation by other factors in the embryo.
Collapse
Affiliation(s)
- Mohammad Marhabaie
- Department of Molecular Genetics, Department of Cancer Biology and Genetics, Center for RNA Biology, Ohio State University, Columbus, Ohio, United States of America
| | - Tammy H. Wharton
- Department of Molecular Genetics, Department of Cancer Biology and Genetics, Center for RNA Biology, Ohio State University, Columbus, Ohio, United States of America
| | - Sung Yun Kim
- Department of Molecular Genetics, Department of Cancer Biology and Genetics, Center for RNA Biology, Ohio State University, Columbus, Ohio, United States of America
| | - Robin P. Wharton
- Department of Molecular Genetics, Department of Cancer Biology and Genetics, Center for RNA Biology, Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
3
|
Haugen RJ, Barnier C, Elrod ND, Luo H, Jensen MK, Ji P, Smibert CA, Lipshitz HD, Wagner EJ, Freddolino PL, Goldstrohm AC. Regulation of the Drosophila transcriptome by Pumilio and the CCR4-NOT deadenylase complex. RNA (NEW YORK, N.Y.) 2024; 30:866-890. [PMID: 38627019 PMCID: PMC11182014 DOI: 10.1261/rna.079813.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 04/04/2024] [Indexed: 05/07/2024]
Abstract
The sequence-specific RNA-binding protein Pumilio (Pum) controls Drosophila development; however, the network of mRNAs that it regulates remains incompletely characterized. In this study, we use knockdown and knockout approaches coupled with RNA-seq to measure the impact of Pum on the transcriptome of Drosophila cells in culture. We also use an improved RNA coimmunoprecipitation method to identify Pum-bound mRNAs in Drosophila embryos. Integration of these data sets with the locations of Pum-binding motifs across the transcriptome reveals novel direct Pum target genes involved in neural, muscle, wing, and germ cell development and in cellular proliferation. These genes include components of Wnt, TGF-β, MAPK/ERK, and Notch signaling pathways, DNA replication, and lipid metabolism. We identify the mRNAs regulated by the CCR4-NOT deadenylase complex, a key factor in Pum-mediated repression, and observe concordant regulation of Pum:CCR4-NOT target mRNAs. Computational modeling reveals that Pum binding, binding site number, clustering, and sequence context are important determinants of regulation. In contrast, we show that the responses of direct mRNA targets to Pum-mediated repression are not influenced by the content of optimal synonymous codons. Moreover, contrary to a prevailing model, we do not detect a role for CCR4-NOT in the degradation of mRNAs with low codon optimality. Together, the results of this work provide new insights into the Pum regulatory network and mechanisms and the parameters that influence the efficacy of Pum-mediated regulation.
Collapse
Affiliation(s)
- Rebecca J Haugen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Catherine Barnier
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Nathan D Elrod
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77550, USA
| | - Hua Luo
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Madeline K Jensen
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Ping Ji
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Craig A Smibert
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Eric J Wagner
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - P Lydia Freddolino
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Aaron C Goldstrohm
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
4
|
Katagade V, Kandroo M, Ratnaparkhi A. Embryonic spatiotemporal expression pattern of Folded gastrulation suggests roles in multiple morphogenetic events and regulation by AbdA. G3 (BETHESDA, MD.) 2024; 14:jkae032. [PMID: 38366558 DOI: 10.1093/g3journal/jkae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/03/2023] [Accepted: 01/31/2024] [Indexed: 02/18/2024]
Abstract
In Drosophila, the signaling pathway activated by the ligand Folded gastrulation (Fog) is among the few known G protein-coupled receptor (GPCR) pathways to regulate cell shape change with a well-characterized role in gastrulation. However, an understanding of the spectrum of morphogenetic events regulated by Fog signaling is still lacking. Here, we present an analysis of the expression pattern and regulation of fog using a genome-engineered Fog::sfGFP line. We show that Fog expression is widespread and in tissues previously not associated with the signaling pathway including germ cells, trachea, and amnioserosa. In the central nervous system (CNS), we find that the ligand is expressed in multiple types of glia indicating a prominent role in the development of these cells. Consistent with this, we have identified 3 intronic enhancers whose expression in the CNS overlaps with Fog::sfGFP. Further, we show that enhancer-1, (fogintenh-1) located proximal to the coding exon is responsive to AbdA. Supporting this, we find that fog expression is downregulated in abdA mutants. Together, our study highlights the broad scope of Fog-GPCR signaling during embryogenesis and identifies Hox gene AbdA as a novel regulator of fog expression.
Collapse
Affiliation(s)
- Vrushali Katagade
- MACS-Agharkar Research Institute (Affiliated to Savitribai Phule Pune University), Developmental Biology Group, G.G. Agarkar Road, Pune 411 004, Maharashtra, India
| | - Manisha Kandroo
- MACS-Agharkar Research Institute (Affiliated to Savitribai Phule Pune University), Developmental Biology Group, G.G. Agarkar Road, Pune 411 004, Maharashtra, India
| | - Anuradha Ratnaparkhi
- MACS-Agharkar Research Institute (Affiliated to Savitribai Phule Pune University), Developmental Biology Group, G.G. Agarkar Road, Pune 411 004, Maharashtra, India
| |
Collapse
|
5
|
Wang T, Frank CA. Using Electrophysiology to Study Homeostatic Plasticity at the Drosophila Neuromuscular Junction. Cold Spring Harb Protoc 2024:pdb.top108393. [PMID: 38688539 PMCID: PMC11522024 DOI: 10.1101/pdb.top108393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The Drosophila melanogaster neuromuscular junction (NMJ) is a superb system for studying synapse function. Beyond that, the NMJ is also great for studying forms of synaptic plasticity. Over the last 25 years, Drosophila NMJ neuroscientists have pioneered understanding of a form of plasticity called homeostatic synaptic plasticity, which imparts functional stability on synaptic connections. The reason is straightforward: The NMJ has a robust capacity for stability. Moreover, many strategies that the NMJ uses to maintain appropriate levels of function are mirrored at other metazoan synapses. Here, we introduce core approaches that neurophysiologists use to study homeostatic synaptic plasticity at the peripheral Drosophila NMJ. We focus on methods to study a specific form of homeostatic plasticity termed presynaptic homeostatic potentiation (PHP), which is the most well-characterized one. Other forms such as presynaptic homeostatic depression and developmental forms of homeostasis are briefly discussed. Finally, we share lists of several dozen factors and conditions known to influence the execution of PHP.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D.C. 20007, USA
| | - C Andrew Frank
- Department of Anatomy and Cell Biology, Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| |
Collapse
|
6
|
Wharton TH, Marhabaie M, Wharton RP. Significant roles in RNA-binding for the amino-terminal domains of Drosophila Pumilio and Nanos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563753. [PMID: 37961211 PMCID: PMC10634786 DOI: 10.1101/2023.10.24.563753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The Drosophila Pumilio (Pum) and Nanos (Nos) RNA-binding proteins govern abdominal segmentation in the early embryo, as well as a variety of other events during development. They bind together to a compound Nanos Response Element (NRE) present in thousands of maternal mRNAs in the ovary and embryo, including hunchback ( hb ) mRNA, thereby regulating poly-adenylation, translation, and stability. Many studies support a model in which mRNA recognition and effector recruitment are achieved by distinct regions of each protein. The well-ordered Pum and Nos RNA-binding domains (RBDs) are sufficient to specifically recognize NREs; the relatively larger low-complexity N-terminal domains (NTDs) of each protein have been thought to act by recruiting mRNA regulators. Here we use yeast interaction assays to show that the NTDs also play a significant role in recognition of the NRE, acting via two mechanisms. First, the Pum and Nos NTDs interact in trans to promote assembly of the Pum/Nos/NRE ternary complex. Second, the Pum NTD acts via an unknown mechanism in cis, modifying base recognition by its RBD. These activities of the Pum NTD are important for its regulation of maternal hb mRNA in vivo.
Collapse
|
7
|
Marhabaie M, Wharton TH, Kim SY, Wharton RP. Widespread regulation of the maternal transcriptome by Nanos in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555109. [PMID: 37693559 PMCID: PMC10491125 DOI: 10.1101/2023.08.28.555109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The translational repressor Nanos (Nos) regulates a single target, maternal hunchback (hb) mRNA, to govern abdominal segmentation in the early Drosophila embryo. Nos is recruited specifically to sites in the 3'-UTR of hb mRNA in collaboration with the sequence-specific RNA-binding protein Pumilio (Pum); on its own, Nos has no binding specificity. Nos is expressed at other stages of development, but very few mRNA targets that might mediate its action at these stages have been described. Nor has it been clear whether Nos is targeted to other mRNAs in concert with Pum or via other mechanisms. In this report, we identify mRNAs targeted by Nos via two approaches. In the first method, we identify mRNAs depleted upon expression of a chimera bearing Nos fused to the nonsense mediated decay (NMD) factor Upf1. We find that, in addition to hb, Upf1-Nos depletes ~2600 mRNAs from the maternal transcriptome in early embryos. Virtually all of these appear to be targeted in a canonical, hb-like manner in concert with Pum. In a second, more conventional approach, we identify mRNAs that are stabilized during the maternal zygotic transition (MZT) in embryos from nos- females. Most (86%) of the 1185 mRNAs regulated by Nos are also targeted by Upf1-Nos, validating use of the chimera. Approximately 60% of mRNAs targeted by Upf1-Nos are not stabilized in the absence of Nos. However, Upf1-Nos mRNA targets are hypo-adenylated and inefficiently translated at the ovary-embryo transition, whether or not they suffer Nos-dependent degradation in the embryo. We suggest that the late ovarian burst of Nos represses a large fraction of the maternal transcriptome, priming it for later degradation by other factors during the MZT in the embryo.
Collapse
|
8
|
Vicidomini R, Serpe M. Local BMP signaling: A sensor for synaptic activity that balances synapse growth and function. Curr Top Dev Biol 2022; 150:211-254. [PMID: 35817503 PMCID: PMC11102767 DOI: 10.1016/bs.ctdb.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Synapse development is coordinated by intercellular communication between the pre- and postsynaptic compartments, and by neuronal activity itself. In flies as in vertebrates, neuronal activity induces input-specific changes in the synaptic strength so that the entire circuit maintains stable function in the face of many challenges, including changes in synapse number and strength. But how do neurons sense synapse activity? In several studies carried out using the Drosophila neuromuscular junction (NMJ), we demonstrated that local BMP signaling provides an exquisite sensor for synapse activity. Here we review the main features of this exquisite sensor and discuss its functioning beyond monitoring the synapse activity but rather as a key controller that operates in coordination with other BMP signaling pathways to balance synapse growth, maturation and function.
Collapse
Affiliation(s)
- Rosario Vicidomini
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Mihaela Serpe
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
9
|
Duk MA, Gursky VV, Samsonova MG, Surkova SY. Application of Domain- and Genotype-Specific Models to Infer Post-Transcriptional Regulation of Segmentation Gene Expression in Drosophila. Life (Basel) 2021; 11:life11111232. [PMID: 34833107 PMCID: PMC8618293 DOI: 10.3390/life11111232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Unlike transcriptional regulation, the post-transcriptional mechanisms underlying zygotic segmentation gene expression in early Drosophila embryo have been insufficiently investigated. Condition-specific post-transcriptional regulation plays an important role in the development of many organisms. Our recent study revealed the domain- and genotype-specific differences between mRNA and the protein expression of Drosophila hb, gt, and eve genes in cleavage cycle 14A. Here, we use this dataset and the dynamic mathematical model to recapitulate protein expression from the corresponding mRNA patterns. The condition-specific nonuniformity in parameter values is further interpreted in terms of possible post-transcriptional modifications. For hb expression in wild-type embryos, our results predict the position-specific differences in protein production. The protein synthesis rate parameter is significantly higher in hb anterior domain compared to the posterior domain. The parameter sets describing Gt protein dynamics in wild-type embryos and Kr mutants are genotype-specific. The spatial discrepancy between gt mRNA and protein posterior expression in Kr mutants is well reproduced by the whole axis model, thus rejecting the involvement of post-transcriptional mechanisms. Our models fail to describe the full dynamics of eve expression, presumably due to its complex shape and the variable time delays between mRNA and protein patterns, which likely require a more complex model. Overall, our modeling approach enables the prediction of regulatory scenarios underlying the condition-specific differences between mRNA and protein expression in early embryo.
Collapse
Affiliation(s)
- Maria A. Duk
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (M.A.D.); (M.G.S.)
- Theoretical Department, Ioffe Institute, 194021 St. Petersburg, Russia;
| | - Vitaly V. Gursky
- Theoretical Department, Ioffe Institute, 194021 St. Petersburg, Russia;
| | - Maria G. Samsonova
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (M.A.D.); (M.G.S.)
| | - Svetlana Yu. Surkova
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (M.A.D.); (M.G.S.)
- Correspondence:
| |
Collapse
|
10
|
Arvola RM, Chang CT, Buytendorp JP, Levdansky Y, Valkov E, Freddolino PL, Goldstrohm AC. Unique repression domains of Pumilio utilize deadenylation and decapping factors to accelerate destruction of target mRNAs. Nucleic Acids Res 2020; 48:1843-1871. [PMID: 31863588 PMCID: PMC7038932 DOI: 10.1093/nar/gkz1187] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/02/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022] Open
Abstract
Pumilio is an RNA-binding protein that represses a network of mRNAs to control embryogenesis, stem cell fate, fertility and neurological functions in Drosophila. We sought to identify the mechanism of Pumilio-mediated repression and find that it accelerates degradation of target mRNAs, mediated by three N-terminal Repression Domains (RDs), which are unique to Pumilio orthologs. We show that the repressive activities of the Pumilio RDs depend on specific subunits of the Ccr4-Not (CNOT) deadenylase complex. Depletion of Pop2, Not1, Not2, or Not3 subunits alleviates Pumilio RD-mediated repression of protein expression and mRNA decay, whereas depletion of other CNOT components had little or no effect. Moreover, the catalytic activity of Pop2 deadenylase is important for Pumilio RD activity. Further, we show that the Pumilio RDs directly bind to the CNOT complex. We also report that the decapping enzyme, Dcp2, participates in repression by the N-terminus of Pumilio. These results support a model wherein Pumilio utilizes CNOT deadenylase and decapping complexes to accelerate destruction of target mRNAs. Because the N-terminal RDs are conserved in mammalian Pumilio orthologs, the results of this work broadly enhance our understanding of Pumilio function and roles in diseases including cancer, neurodegeneration and epilepsy.
Collapse
Affiliation(s)
- René M Arvola
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chung-Te Chang
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Joseph P Buytendorp
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yevgen Levdansky
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Eugene Valkov
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Peter L Freddolino
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Aaron C Goldstrohm
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
11
|
Nawalpuri B, Ravindran S, Muddashetty RS. The Role of Dynamic miRISC During Neuronal Development. Front Mol Biosci 2020; 7:8. [PMID: 32118035 PMCID: PMC7025485 DOI: 10.3389/fmolb.2020.00008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/10/2020] [Indexed: 12/17/2022] Open
Abstract
Activity-dependent protein synthesis plays an important role during neuronal development by fine-tuning the formation and function of neuronal circuits. Recent studies have shown that miRNAs are integral to this regulation because of their ability to control protein synthesis in a rapid, specific and potentially reversible manner. miRNA mediated regulation is a multistep process that involves inhibition of translation before degradation of targeted mRNA, which provides the possibility to store and reverse the inhibition at multiple stages. This flexibility is primarily thought to be derived from the composition of miRNA induced silencing complex (miRISC). AGO2 is likely the only obligatory component of miRISC, while multiple RBPs are shown to be associated with this core miRISC to form diverse miRISC complexes. The formation of these heterogeneous miRISC complexes is intricately regulated by various extracellular signals and cell-specific contexts. In this review, we discuss the composition of miRISC and its functions during neuronal development. Neurodevelopment is guided by both internal programs and external cues. Neuronal activity and external signals play an important role in the formation and refining of the neuronal network. miRISC composition and diversity have a critical role at distinct stages of neurodevelopment. Even though there is a good amount of literature available on the role of miRNAs mediated regulation of neuronal development, surprisingly the role of miRISC composition and its functional dynamics in neuronal development is not much discussed. In this article, we review the available literature on the heterogeneity of the neuronal miRISC composition and how this may influence translation regulation in the context of neuronal development.
Collapse
Affiliation(s)
- Bharti Nawalpuri
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India.,School of Chemical and Biotechnology, Shanmugha Arts, Science, and Technology and Research Academy (SASTRA) University, Thanjavur, India
| | - Sreenath Ravindran
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Ravi S Muddashetty
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India
| |
Collapse
|
12
|
Functions, mechanisms and regulation of Pumilio/Puf family RNA binding proteins: a comprehensive review. Mol Biol Rep 2019; 47:785-807. [PMID: 31643042 DOI: 10.1007/s11033-019-05142-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022]
Abstract
The Pumilio (Pum)/Puf family proteins are ubiquitously present across eukaryotes, including yeast, plants and humans. They generally bind to the 3' untranslated regions of single stranded RNA targets in a sequence specific manner and destabilize them, although a few reports suggest their role in stabilizing the target transcripts. The Pum isoforms are implicated in a wide array of biological processes including stem cell maintenance, development, ribosome biogenesis as well as human diseases. Further studies on Pum would be interesting and important to understand their evolutionarily conserved and divergent features across species, which can have potential implications in medicine, plant sciences as well as basic molecular and cell biological studies. A large number of research reports exists, pertaining to various aspects of Pum, in individual experimental systems. This review is a comprehensive summary of the functions, types, mechanism of action as well as the regulation of Pum in various species. Also, the research questions to be addressed in future are discussed.
Collapse
|
13
|
Cheng S, Ashley J, Kurleto JD, Lobb-Rabe M, Park YJ, Carrillo RA, Özkan E. Molecular basis of synaptic specificity by immunoglobulin superfamily receptors in Drosophila. eLife 2019; 8:41028. [PMID: 30688651 PMCID: PMC6374074 DOI: 10.7554/elife.41028] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 01/22/2019] [Indexed: 01/19/2023] Open
Abstract
In stereotyped neuronal networks, synaptic connectivity is dictated by cell surface proteins, which assign unique identities to neurons, and physically mediate axon guidance and synapse targeting. We recently identified two groups of immunoglobulin superfamily proteins in Drosophila, Dprs and DIPs, as strong candidates for synapse targeting functions. Here, we uncover the molecular basis of specificity in Dpr-DIP mediated cellular adhesions and neuronal connectivity. First, we present five crystal structures of Dpr-DIP and DIP-DIP complexes, highlighting the evolutionary and structural origins of diversification in Dpr and DIP proteins and their interactions. We further show that structures can be used to rationally engineer receptors with novel specificities or modified affinities, which can be used to study specific circuits that require Dpr-DIP interactions to help establish connectivity. We investigate one pair, engineered Dpr10 and DIP-α, for function in the neuromuscular circuit in flies, and reveal roles for homophilic and heterophilic binding in wiring.
Collapse
Affiliation(s)
- Shouqiang Cheng
- Department of Biochemistry and Molecular BiologyUniversity of ChicagoChicagoUnited States
| | - James Ashley
- Department of Molecular Genetics and Cell BiologyUniversity of ChicagoChicagoUnited States
| | - Justyna D Kurleto
- Department of Biochemistry and Molecular BiologyUniversity of ChicagoChicagoUnited States,Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
| | - Meike Lobb-Rabe
- Department of Molecular Genetics and Cell BiologyUniversity of ChicagoChicagoUnited States,Graduate Program in Cell and Molecular BiologyUniversity of ChicagoChicagoUnited States
| | - Yeonhee Jenny Park
- Department of Biochemistry and Molecular BiologyUniversity of ChicagoChicagoUnited States
| | - Robert A Carrillo
- Department of Molecular Genetics and Cell BiologyUniversity of ChicagoChicagoUnited States
| | - Engin Özkan
- Department of Biochemistry and Molecular BiologyUniversity of ChicagoChicagoUnited States
| |
Collapse
|
14
|
Olesnicky EC, Wright EG. Drosophila as a Model for Assessing the Function of RNA-Binding Proteins during Neurogenesis and Neurological Disease. J Dev Biol 2018; 6:E21. [PMID: 30126171 PMCID: PMC6162566 DOI: 10.3390/jdb6030021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 12/16/2022] Open
Abstract
An outstanding question in developmental neurobiology is how RNA processing events contribute to the regulation of neurogenesis. RNA processing events are increasingly recognized as playing fundamental roles in regulating multiple developmental events during neurogenesis, from the asymmetric divisions of neural stem cells, to the generation of complex and diverse neurite morphologies. Indeed, both asymmetric cell division and neurite morphogenesis are often achieved by mechanisms that generate asymmetric protein distributions, including post-transcriptional gene regulatory mechanisms such as the transport of translationally silent messenger RNAs (mRNAs) and local translation of mRNAs within neurites. Additionally, defects in RNA splicing have emerged as a common theme in many neurodegenerative disorders, highlighting the importance of RNA processing in maintaining neuronal circuitry. RNA-binding proteins (RBPs) play an integral role in splicing and post-transcriptional gene regulation, and mutations in RBPs have been linked with multiple neurological disorders including autism, dementia, amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), Fragile X syndrome (FXS), and X-linked intellectual disability disorder. Despite their widespread nature and roles in neurological disease, the molecular mechanisms and networks of regulated target RNAs have been defined for only a small number of specific RBPs. This review aims to highlight recent studies in Drosophila that have advanced our knowledge of how RBP dysfunction contributes to neurological disease.
Collapse
Affiliation(s)
- Eugenia C Olesnicky
- Department of Biology, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80918, USA.
| | - Ethan G Wright
- Department of Biology, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80918, USA.
| |
Collapse
|
15
|
De Keuckelaere E, Hulpiau P, Saeys Y, Berx G, van Roy F. Nanos genes and their role in development and beyond. Cell Mol Life Sci 2018; 75:1929-1946. [PMID: 29397397 PMCID: PMC11105394 DOI: 10.1007/s00018-018-2766-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 12/16/2022]
Abstract
The hallmark of Nanos proteins is their typical (CCHC)2 zinc finger motif (zf-nanos). Animals have one to four nanos genes. For example, the fruit fly and demosponge have only one nanos gene, zebrafish and humans have three, and Fugu rubripes has four. Nanos genes are mainly known for their evolutionarily preserved role in germ cell survival and pluripotency. Nanos proteins have been reported to bind the C-terminal RNA-binding domain of Pumilio to form a post-transcriptional repressor complex. Several observations point to a link between the miRNA-mediated repression complex and the Nanos/Pumilio complex. Repression of the E2F3 oncogene product is, indeed, mediated by cooperation between the Nanos/Pumilio complex and miRNAs. Another important interaction partner of Nanos is the CCR4-NOT deadenylase complex. Besides the tissue-specific contribution of Nanos proteins to normal development, their ectopic expression has been observed in several cancer cell lines and various human cancers. An inverse correlation between the expression levels of human Nanos1 and Nanos3 and E-cadherin was observed in several cancer cell lines. Loss of E-cadherin, an important cell-cell adhesion protein, contributes to tumor invasion and metastasis. Overexpression of Nanos3 induces epithelial-mesenchymal transition in lung cancer cell lines partly by repressing E-cadherin. Other than some most interesting data from Nanos knockout mice, little is known about mammalian Nanos proteins, and further research is needed. In this review, we summarize the main roles of Nanos proteins and discuss the emerging concept of Nanos proteins as oncofetal antigens.
Collapse
Affiliation(s)
- Evi De Keuckelaere
- VIB-UGent Center for Inflammation Research, Technologiepark 927, 9052, Ghent, Belgium
- Molecular Cell Biology Unit, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Paco Hulpiau
- VIB-UGent Center for Inflammation Research, Technologiepark 927, 9052, Ghent, Belgium
- Molecular Cell Biology Unit, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Yvan Saeys
- VIB-UGent Center for Inflammation Research, Technologiepark 927, 9052, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Krijgslaan 281, S9, 9000, Ghent, Belgium
| | - Geert Berx
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Frans van Roy
- VIB-UGent Center for Inflammation Research, Technologiepark 927, 9052, Ghent, Belgium.
- Molecular Cell Biology Unit, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| |
Collapse
|
16
|
Wharton TH, Nomie KJ, Wharton RP. No significant regulation of bicoid mRNA by Pumilio or Nanos in the early Drosophila embryo. PLoS One 2018; 13:e0194865. [PMID: 29601592 PMCID: PMC5877865 DOI: 10.1371/journal.pone.0194865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/12/2018] [Indexed: 01/23/2023] Open
Abstract
Drosophila Pumilio (Pum) is a founding member of the conserved Puf domain class of RNA-binding translational regulators. Pum binds with high specificity, contacting eight nucleotides, one with each of the repeats in its RNA-binding domain. In general, Pum is thought to block translation in collaboration with Nanos (Nos), which exhibits no binding specificity in isolation but is recruited jointly to regulatory sequences containing a Pum binding site in the 3’-UTRs of target mRNAs. Unlike Pum, which is ubiquitous in the early embryo, Nos is tightly restricted to the posterior, ensuring that repression of its best-characterized target, maternal hunchback (hb) mRNA, takes place exclusively in the posterior. An exceptional case of Nos-independent regulation by Pum has been described—repression of maternal bicoid (bcd) mRNA at the anterior pole of the early embryo, dependent on both Pum and conserved Pum binding sites in the 3’-UTR of the mRNA. We have re-investigated regulation of bcd in the early embryo; our experiments reveal no evidence of a role for Pum or its conserved binding sites in regulation of the perdurance of bcd mRNA or protein. Instead, we find that Pum and Nos control the accumulation of bcd mRNA in testes.
Collapse
Affiliation(s)
- Tammy H. Wharton
- Departments of Molecular Genetics & Cancer Biology and Genetics, Center for RNA Biology Ohio State University Columbus, OH
| | - Krystle J. Nomie
- Department of Lymphoma/Myeloma MD Anderson Cancer Center Holcombe Blvd. Houston, TX
| | - Robin P. Wharton
- Departments of Molecular Genetics & Cancer Biology and Genetics, Center for RNA Biology Ohio State University Columbus, OH
- * E-mail:
| |
Collapse
|
17
|
Dong H, Zhu M, Meng L, Ding Y, Yang D, Zhang S, Qiang W, Fisher DW, Xu EY. Pumilio2 regulates synaptic plasticity via translational repression of synaptic receptors in mice. Oncotarget 2018; 9:32134-32148. [PMID: 30181804 PMCID: PMC6114944 DOI: 10.18632/oncotarget.24345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/13/2018] [Indexed: 11/25/2022] Open
Abstract
PUMILIO 2 (PUM2) is a member of Pumilio and FBF (PUF) family, an RNA binding protein family with phylogenetically conserved roles in germ cell development. The Drosophila Pumilio homolog is also required for dendrite morphogenesis and synaptic function via translational control of synaptic proteins, such as glutamate receptors, and recent mammalian studies demonstrated a similar role in neuronal culture with associated motor and memory abnormalities in vivo. Importantly, transgenic mice with PUM2 knockout show prominent epileptiform activity, and patients with intractable temporal lobe epilepsy and mice with pilocarpine-induced seizures have decreased neuronal PUM2, possibly leading to further seizure susceptibility. However, how PUM2 influences synaptic function in vivo and, subsequently, seizures is not known. We found that PUM2 is highly expressed in the brain, especially in the temporal lobe, and knockout of Pum2 (Pum2-/- ) resulted in significantly increased pyramidal cell dendrite spine and synapse density. In addition, multiple proteins associated with excitatory synaptic function, including glutamate receptor 2 (GLUR2), are up-regulated in Pum2-/- mice. The expression of GLUR2 protein but not mRNA is increased in the Pum2-/- mutant hippocampus, Glur2 transcripts are increased in mutant polysome fractions, and overexpression of PUM2 led to repression of reporter expression containing the 3'Untranslated Region (3'UTR) of Glur2, suggesting translation of GLUR2 was increased in the absence of Pum2. Overall, these studies provide a molecular mechanism for the increased temporal lobe excitability observed with PUM2 loss and suggest PUM2 might contribute to intractable temporal lobe epilepsy.
Collapse
Affiliation(s)
- Hongxin Dong
- Departments of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mengyi Zhu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Liping Meng
- Departments of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yan Ding
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Ding Yang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Shanshan Zhang
- Departments of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Wenan Qiang
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Daniel W Fisher
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Eugene Yujun Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, P. R. China
| |
Collapse
|
18
|
Bohn JA, Van Etten JL, Schagat TL, Bowman BM, McEachin RC, Freddolino PL, Goldstrohm AC. Identification of diverse target RNAs that are functionally regulated by human Pumilio proteins. Nucleic Acids Res 2018; 46:362-386. [PMID: 29165587 PMCID: PMC5758885 DOI: 10.1093/nar/gkx1120] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 10/21/2017] [Accepted: 10/25/2017] [Indexed: 12/20/2022] Open
Abstract
Human Pumilio proteins, PUM1 and PUM2, are sequence specific RNA-binding proteins that regulate protein expression. We used RNA-seq, rigorous statistical testing and an experimentally derived fold change cut-off to identify nearly 1000 target RNAs-including mRNAs and non-coding RNAs-that are functionally regulated by PUMs. Bioinformatic analysis defined a PUM Response Element (PRE) that was significantly enriched in transcripts that increased in abundance and matches the PUM RNA-binding consensus. We created a computational model that incorporates PRE position and frequency within an RNA relative to the magnitude of regulation. The model reveals significant correlation of PUM regulation with PREs in 3' untranslated regions (UTRs), coding sequences and non-coding RNAs, but not 5' UTRs. To define direct, high confidence PUM targets, we cross-referenced PUM-regulated RNAs with all PRE-containing RNAs and experimentally defined PUM-bound RNAs. The results define nearly 300 direct targets that include both PUM-repressed and, surprisingly, PUM-activated target RNAs. Annotation enrichment analysis reveal that PUMs regulate genes from multiple signaling pathways and developmental and neurological processes. Moreover, PUM target mRNAs impinge on human disease genes linked to cancer, neurological disorders and cardiovascular disease. These discoveries pave the way for determining how the PUM-dependent regulatory network impacts biological functions and disease states.
Collapse
Affiliation(s)
- Jennifer A Bohn
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jamie L Van Etten
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Trista L Schagat
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Promega Corporation, Madison, WI 53711, USA
| | - Brittany M Bowman
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Richard C McEachin
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter L Freddolino
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Aaron C Goldstrohm
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
19
|
Bonneaud N, Layalle S, Colomb S, Jourdan C, Ghysen A, Severac D, Dantec C, Nègre N, Maschat F. Control of nerve cord formation by Engrailed and Gooseberry-Neuro: A multi-step, coordinated process. Dev Biol 2017; 432:273-285. [PMID: 29097190 DOI: 10.1016/j.ydbio.2017.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 10/06/2017] [Accepted: 10/24/2017] [Indexed: 01/05/2023]
Abstract
One way to better understand the molecular mechanisms involved in the construction of a nervous system is to identify the downstream effectors of major regulatory proteins. We previously showed that Engrailed (EN) and Gooseberry-Neuro (GsbN) transcription factors act in partnership to drive the formation of posterior commissures in the central nervous system of Drosophila. In this report, we identified genes regulated by both EN and GsbN through chromatin immunoprecipitation ("ChIP on chip") and transcriptome experiments, combined to a genetic screen relied to the gene dose titration method. The genomic-scale approaches allowed us to define 175 potential targets of EN-GsbN regulation. We chose a subset of these genes to examine ventral nerve cord (VNC) defects and found that half of the mutated targets show clear VNC phenotypes when doubly heterozygous with en or gsbn mutations, or when homozygous. This strategy revealed new groups of genes never described for their implication in the construction of the nerve cord. Their identification suggests that, to construct the nerve cord, EN-GsbN may act at three levels, in: (i) sequential control of the attractive-repulsive signaling that ensures contralateral projection of the commissural axons, (ii) temporal control of the translation of some mRNAs, (iii) regulation of the capability of glial cells to act as commissural guideposts for developing axons. These results illustrate how an early, coordinated transcriptional control may orchestrate the various mechanisms involved in the formation of stereotyped neuronal networks. They also validate the overall strategy to identify genes that play crucial role in axonal pathfinding.
Collapse
Affiliation(s)
- Nathalie Bonneaud
- MMDN, Univ. Montpellier, EPHE, INSERM, U1198, Montpellier, F-34095 France; CNRS,UPR1142, Institut de Génétique Humaine, Montpellier, F-34094, France
| | - Sophie Layalle
- CNRS,UPR1142, Institut de Génétique Humaine, Montpellier, F-34094, France; CNRS - INSERM - Université de Montpellier, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier F-34094, France
| | - Sophie Colomb
- CNRS,UPR1142, Institut de Génétique Humaine, Montpellier, F-34094, France
| | - Christophe Jourdan
- MMDN, Univ. Montpellier, EPHE, INSERM, U1198, Montpellier, F-34095 France
| | - Alain Ghysen
- MMDN, Univ. Montpellier, EPHE, INSERM, U1198, Montpellier, F-34095 France
| | - Dany Severac
- MGX - Montpellier GenomiX, Institut de Génomique Fonctionnelle, Montpellier F-34094, France
| | - Christelle Dantec
- MGX - Montpellier GenomiX, Institut de Génomique Fonctionnelle, Montpellier F-34094, France
| | - Nicolas Nègre
- DGIMI, INRA, Université de Montpellier, 34095 Montpellier, France; Institut Universitaire de France (IUF), Paris, France
| | - Florence Maschat
- MMDN, Univ. Montpellier, EPHE, INSERM, U1198, Montpellier, F-34095 France; CNRS,UPR1142, Institut de Génétique Humaine, Montpellier, F-34094, France.
| |
Collapse
|
20
|
Santana E, Casas-Tintó S. Orb2 as modulator of Brat and their role at the neuromuscular junction. J Neurogenet 2017; 31:181-188. [PMID: 29105522 DOI: 10.1080/01677063.2017.1393539] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
How synapses are built and dismantled is a central question in neurobiology. A wide range of proteins and processes from gene transcription to protein degradation are involved. Orb2 regulates mRNA translation depending on its monomeric or oligomeric state to modulate nervous system development and memory. Orb2 is expressed in Drosophila larval brain and neuromuscular junction (NMJ), Orb2 knockdown causes a reduction of synapse number and defects in neuronal morphology. Brain tumor (Brat) is an Orb2 target; it is expressed in larval brain related with cell growth and proliferation. Brat downregulation induces an increase in synapse number and abnormal growth of buttons and branches in neurons. In absence of Orb2, Brat is overexpressed suggesting that Orb2 is negatively regulating Brat mRNA translation. Orb2 or Brat control the expression of specific genes related to neuronal function. Orb2 is required for Liprin and Synaptobrevin transcription meanwhile Brat is required for Synaptobrevin and Synaptotagmin transcription. We present here evidences of a novel genetic mechanism to regulate synapse fine tuning during development and propose an equilibrium between Orb2 conformational state and nervous system formation.
Collapse
|
21
|
Li H, Watson A, Olechwier A, Anaya M, Sorooshyari SK, Harnett DP, Lee HKP, Vielmetter J, Fares MA, Garcia KC, Özkan E, Labrador JP, Zinn K. Deconstruction of the beaten Path-Sidestep interaction network provides insights into neuromuscular system development. eLife 2017; 6:28111. [PMID: 28829740 PMCID: PMC5578738 DOI: 10.7554/elife.28111] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/28/2017] [Indexed: 12/16/2022] Open
Abstract
An ‘interactome’ screen of all Drosophila cell-surface and secreted proteins containing immunoglobulin superfamily (IgSF) domains discovered a network formed by paralogs of Beaten Path (Beat) and Sidestep (Side), a ligand-receptor pair that is central to motor axon guidance. Here we describe a new method for interactome screening, the Bio-Plex Interactome Assay (BPIA), which allows identification of many interactions in a single sample. Using the BPIA, we ‘deorphanized’ four more members of the Beat-Side network. We confirmed interactions using surface plasmon resonance. The expression patterns of beat and side genes suggest that Beats are neuronal receptors for Sides expressed on peripheral tissues. side-VI is expressed in muscle fibers targeted by the ISNb nerve, as well as at growth cone choice points and synaptic targets for the ISN and TN nerves. beat-V genes, encoding Side-VI receptors, are expressed in ISNb and ISN motor neurons. Within every organ of the body, cells must be able to recognise and communicate with one another in order to work together to perform a particular role. Each cell has a specific protein on its surface that acts like a molecular identity card, and which can form weak bonds with a complementary protein on another cell. There are thousands of different cell surface proteins, and the interactions between them – known collectively as the interactome – dictate the how cells interact with one another. Many cell surface proteins are similar across species. Humans and fruit flies, for example, both possess a family of cell surface proteins that contain a region called the Immunoglobulin Superfamily domain. This family can be further divided into subfamilies, two of which are known as “Beats” and “Sides” for short. As the nervous system develops, nerve cells carrying a particular Beat protein interact with nerve or muscle cells carrying a corresponding Side protein. Yet while experiments have matched up many Beats and Sides, the partners of others remain unknown. Li et al. have now developed a new technique called the Bio-Plex Interactome Assay to rapidly screen for interactions between multiple cell surface proteins in a single sample. Applying the technique to cells from fruit flies revealed new binding partners within the Beats and the Sides. After verifying several of these interactions, Li et al. explored the role of various Beats and Sides in the developing nervous system of fruit fly embryos by mapping the cells that display them on their surfaces. This increased knowledge of the Beat-Side binding network should provide further insights into how connections form between nerve cells. The new screening technique could also eventually be used to map the cell surface protein interactome in humans. A number of key drugs, including the breast cancer drug Herceptin, target cell surface proteins. Identifying interactions among cell surface proteins could thus provide additional leads for developing new therapies.
Collapse
Affiliation(s)
- Hanqing Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Ash Watson
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.,Institute of Neuroscience, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Agnieszka Olechwier
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
| | - Michael Anaya
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | | | - Dermott P Harnett
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.,Institute of Neuroscience, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Hyung-Kook Peter Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Jost Vielmetter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Mario A Fares
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.,Department of Abiotic Stress, Group of Integrative and Systems Biology, Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), Valencia, Spain
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States.,Department of Structural Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
| | - Juan-Pablo Labrador
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.,Institute of Neuroscience, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Kai Zinn
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
22
|
Arvola RM, Weidmann CA, Tanaka Hall TM, Goldstrohm AC. Combinatorial control of messenger RNAs by Pumilio, Nanos and Brain Tumor Proteins. RNA Biol 2017; 14:1445-1456. [PMID: 28318367 PMCID: PMC5785226 DOI: 10.1080/15476286.2017.1306168] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Eukaryotes possess a vast array of RNA-binding proteins (RBPs) that affect mRNAs in diverse ways to control protein expression. Combinatorial regulation of mRNAs by RBPs is emerging as the rule. No example illustrates this as vividly as the partnership of 3 Drosophila RBPs, Pumilio, Nanos and Brain Tumor, which have overlapping functions in development, stem cell maintenance and differentiation, fertility and neurologic processes. Here we synthesize 30 y of research with new insights into their molecular functions and mechanisms of action. First, we provide an overview of the key properties of each RBP. Next, we present a detailed analysis of their collaborative regulatory mechanism using a classic example of the developmental morphogen, hunchback, which is spatially and temporally regulated by the trio during embryogenesis. New biochemical, structural and functional analyses provide insights into RNA recognition, cooperativity, and regulatory mechanisms. We integrate these data into a model of combinatorial RNA binding and regulation of translation and mRNA decay. We then use this information, transcriptome wide analyses and bioinformatics predictions to assess the global impact of Pumilio, Nanos and Brain Tumor on gene regulation. Together, the results support pervasive, dynamic post-transcriptional control.
Collapse
Affiliation(s)
- René M Arvola
- a Department of Biological Chemistry , University of Michigan , Ann Arbor , Michigan , USA.,d Department of Biochemistry, Molecular Biology and Biophysics , University of Minnesota , Minneapolis , Minnesota , USA
| | - Chase A Weidmann
- b Department of Chemistry , University of North Carolina , Chapel Hill , USA
| | - Traci M Tanaka Hall
- c Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences , National Institutes of Health , Research Triangle Park, North Carolina , USA
| | - Aaron C Goldstrohm
- d Department of Biochemistry, Molecular Biology and Biophysics , University of Minnesota , Minneapolis , Minnesota , USA
| |
Collapse
|
23
|
Zhang YV, Hannan SB, Kern JV, Stanchev DT, Koç B, Jahn TR, Rasse TM. The KIF1A homolog Unc-104 is important for spontaneous release, postsynaptic density maturation and perisynaptic scaffold organization. Sci Rep 2017; 7:38172. [PMID: 28344334 PMCID: PMC5366810 DOI: 10.1038/srep38172] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 11/07/2016] [Indexed: 12/13/2022] Open
Abstract
The kinesin-3 family member KIF1A has been shown to be important for experience dependent neuroplasticity. In Drosophila, amorphic mutations in the KIF1A homolog unc-104 disrupt the formation of mature boutons. Disease associated KIF1A mutations have been associated with motor and sensory dysfunctions as well as non-syndromic intellectual disability in humans. A hypomorphic mutation in the forkhead-associated domain of Unc-104, unc-104bris, impairs active zone maturation resulting in an increased fraction of post-synaptic glutamate receptor fields that lack the active zone scaffolding protein Bruchpilot. Here, we show that the unc-104brismutation causes defects in synaptic transmission as manifested by reduced amplitude of both evoked and miniature excitatory junctional potentials. Structural defects observed in the postsynaptic compartment of mutant NMJs include reduced glutamate receptor field size, and altered glutamate receptor composition. In addition, we observed marked loss of postsynaptic scaffolding proteins and reduced complexity of the sub-synaptic reticulum, which could be rescued by pre- but not postsynaptic expression of unc-104. Our results highlight the importance of kinesin-3 based axonal transport in synaptic transmission and provide novel insights into the role of Unc-104 in synapse maturation.
Collapse
Affiliation(s)
- Yao V Zhang
- Junior Research Group Synaptic Plasticity, Hertie-Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Str. 27, 72076 Tübingen 72076, Germany.,Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, 72074 Tübingen, Germany.,The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shabab B Hannan
- Junior Research Group Synaptic Plasticity, Hertie-Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Str. 27, 72076 Tübingen 72076, Germany.,Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, 72074 Tübingen, Germany.,CHS Research Group Proteostasis in Neurodegenerative Disease at CellNetworks Heidelberg University and DKFZ Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Jeannine V Kern
- Junior Research Group Synaptic Plasticity, Hertie-Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Str. 27, 72076 Tübingen 72076, Germany
| | - Doychin T Stanchev
- Junior Research Group Synaptic Plasticity, Hertie-Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Str. 27, 72076 Tübingen 72076, Germany
| | - Baran Koç
- Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, 72074 Tübingen, Germany
| | - Thomas R Jahn
- CHS Research Group Proteostasis in Neurodegenerative Disease at CellNetworks Heidelberg University and DKFZ Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Tobias M Rasse
- Junior Research Group Synaptic Plasticity, Hertie-Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Str. 27, 72076 Tübingen 72076, Germany.,CHS Research Group Proteostasis in Neurodegenerative Disease at CellNetworks Heidelberg University and DKFZ Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| |
Collapse
|
24
|
Weidmann CA, Qiu C, Arvola RM, Lou TF, Killingsworth J, Campbell ZT, Tanaka Hall TM, Goldstrohm AC. Drosophila Nanos acts as a molecular clamp that modulates the RNA-binding and repression activities of Pumilio. eLife 2016; 5. [PMID: 27482653 PMCID: PMC4995099 DOI: 10.7554/elife.17096] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/01/2016] [Indexed: 01/03/2023] Open
Abstract
Collaboration among the multitude of RNA-binding proteins (RBPs) is ubiquitous, yet our understanding of these key regulatory complexes has been limited to single RBPs. We investigated combinatorial translational regulation by Drosophila Pumilio (Pum) and Nanos (Nos), which control development, fertility, and neuronal functions. Our results show how the specificity of one RBP (Pum) is modulated by cooperative RNA recognition with a second RBP (Nos) to synergistically repress mRNAs. Crystal structures of Nos-Pum-RNA complexes reveal that Nos embraces Pum and RNA, contributes sequence-specific contacts, and increases Pum RNA-binding affinity. Nos shifts the recognition sequence and promotes repression complex formation on mRNAs that are not stably bound by Pum alone, explaining the preponderance of sub-optimal Pum sites regulated in vivo. Our results illuminate the molecular mechanism of a regulatory switch controlling crucial gene expression programs, and provide a framework for understanding how the partnering of RBPs evokes changes in binding specificity that underlie regulatory network dynamics. DOI:http://dx.doi.org/10.7554/eLife.17096.001 Molecules of DNA contain the instructions needed to make proteins inside cells. Proteins perform many different roles and each needs to be produced at the right time and in the right amounts to enable the cells to survive. The DNA is first copied to make molecules of ribonucleic acid (RNA), which are then used as templates to make the proteins. One way to control protein production is to regulate the RNA molecules. A family of proteins called RNA-binding proteins can recognise and bind to specific RNA molecules and determine whether a RNA molecule is destroyed, used to produce proteins, or stored for later use. In effect, these RNA-binding proteins act as switches that turn protein production on or off. Nanos and Pumilio are two RNA-binding proteins that are found in many organisms, including humans and other animals. Genetic studies in fruit flies show that these two proteins influence development, the nervous system and the behaviour of stem cells by switching off the production of certain proteins. To investigate how Nanos and Pumilio work together to regulate protein production, Weidmann, Qiu et al. used a variety of techniques to study the activity of these proteins in cells taken from fruit fly embryos. The experiments reveal that Nanos acts like a clamp to hold Pumilio close to specific RNAs, which allows Pumilio to switch off the production of the corresponding proteins. The presence of Nanos allows Pumilio to regulate RNAs that it cannot bind to alone. Therefore, the experiments show that by working together with Nanos, Pumilio is able to regulate a wider variety of RNAs than it would otherwise be able to. These findings provide a molecular understanding for why fruit fly mutants that lack Nanos or Pumilio have severe body defects and reduced fertility. The next challenge is to identify the specific RNAs targeted by Nanos and Pumilio in stem cells, the nervous system and during development. DOI:http://dx.doi.org/10.7554/eLife.17096.002
Collapse
Affiliation(s)
- Chase A Weidmann
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
| | - Chen Qiu
- Epigenetics and Stem Cell Biology Laboratory, National Institutes of Health, Research Triangle Park, United States.,National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| | - René M Arvola
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
| | - Tzu-Fang Lou
- Department of Biological Sciences, University of Texas at Dallas, Richardson, United States
| | - Jordan Killingsworth
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
| | - Zachary T Campbell
- Department of Biological Sciences, University of Texas at Dallas, Richardson, United States
| | - Traci M Tanaka Hall
- Epigenetics and Stem Cell Biology Laboratory, National Institutes of Health, Research Triangle Park, United States.,National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| | - Aaron C Goldstrohm
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, United States
| |
Collapse
|
25
|
Bhogal B, Plaza-Jennings A, Gavis ER. Nanos-mediated repression of hid protects larval sensory neurons after a global switch in sensitivity to apoptotic signals. Development 2016; 143:2147-59. [PMID: 27256879 DOI: 10.1242/dev.132415] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 04/11/2016] [Indexed: 01/05/2023]
Abstract
Dendritic arbor morphology is a key determinant of neuronal function. Once established, dendrite branching patterns must be maintained as the animal develops to ensure receptive field coverage. The translational repressors Nanos (Nos) and Pumilio (Pum) are required to maintain dendrite growth and branching of Drosophila larval class IV dendritic arborization (da) neurons, but their specific regulatory role remains unknown. We show that Nos-Pum-mediated repression of the pro-apoptotic gene head involution defective (hid) is required to maintain a balance of dendritic growth and retraction in class IV da neurons and that upregulation of hid results in decreased branching because of an increase in caspase activity. The temporal requirement for nos correlates with an ecdysone-triggered switch in sensitivity to apoptotic stimuli that occurs during the mid-L3 transition. We find that hid is required during pupariation for caspase-dependent pruning of class IV da neurons and that Nos and Pum delay pruning. Together, these results suggest that Nos and Pum provide a crucial neuroprotective regulatory layer to ensure that neurons behave appropriately in response to developmental cues.
Collapse
Affiliation(s)
- Balpreet Bhogal
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | - Elizabeth R Gavis
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
26
|
Carrillo RA, Özkan E, Menon KP, Nagarkar-Jaiswal S, Lee PT, Jeon M, Birnbaum ME, Bellen HJ, Garcia KC, Zinn K. Control of Synaptic Connectivity by a Network of Drosophila IgSF Cell Surface Proteins. Cell 2016; 163:1770-1782. [PMID: 26687361 DOI: 10.1016/j.cell.2015.11.022] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 09/27/2015] [Accepted: 11/10/2015] [Indexed: 12/16/2022]
Abstract
We have defined a network of interacting Drosophila cell surface proteins in which a 21-member IgSF subfamily, the Dprs, binds to a nine-member subfamily, the DIPs. The structural basis of the Dpr-DIP interaction code appears to be dictated by shape complementarity within the Dpr-DIP binding interface. Each of the six dpr and DIP genes examined here is expressed by a unique subset of larval and pupal neurons. In the neuromuscular system, interactions between Dpr11 and DIP-γ affect presynaptic terminal development, trophic factor responses, and neurotransmission. In the visual system, dpr11 is selectively expressed by R7 photoreceptors that use Rh4 opsin (yR7s). Their primary synaptic targets, Dm8 amacrine neurons, express DIP-γ. In dpr11 or DIP-γ mutants, yR7 terminals extend beyond their normal termination zones in layer M6 of the medulla. DIP-γ is also required for Dm8 survival or differentiation. Our findings suggest that Dpr-DIP interactions are important determinants of synaptic connectivity.
Collapse
Affiliation(s)
- Robert A Carrillo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Engin Özkan
- Dept. of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL.,Howard Hughes Medical Institute, Depts. of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA
| | - Kaushiki P Menon
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Sonal Nagarkar-Jaiswal
- Howard Hughes Medical Institute, Program in Developmental Biology, Dept. of Molecular and Human Genetics, Jan and Dan Duncan Neurological Research Institute at TCH, Baylor College of Medicine, Houston, TX
| | - Pei-Tseng Lee
- Howard Hughes Medical Institute, Program in Developmental Biology, Dept. of Molecular and Human Genetics, Jan and Dan Duncan Neurological Research Institute at TCH, Baylor College of Medicine, Houston, TX
| | - Mili Jeon
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA.,Howard Hughes Medical Institute, Depts. of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA
| | - Michael E Birnbaum
- Howard Hughes Medical Institute, Depts. of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA
| | - Hugo J Bellen
- Howard Hughes Medical Institute, Program in Developmental Biology, Dept. of Molecular and Human Genetics, Jan and Dan Duncan Neurological Research Institute at TCH, Baylor College of Medicine, Houston, TX
| | - K Christopher Garcia
- Howard Hughes Medical Institute, Depts. of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA
| | - Kai Zinn
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| |
Collapse
|
27
|
Harris KP, Littleton JT. Transmission, Development, and Plasticity of Synapses. Genetics 2015; 201:345-75. [PMID: 26447126 PMCID: PMC4596655 DOI: 10.1534/genetics.115.176529] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/28/2015] [Indexed: 01/03/2023] Open
Abstract
Chemical synapses are sites of contact and information transfer between a neuron and its partner cell. Each synapse is a specialized junction, where the presynaptic cell assembles machinery for the release of neurotransmitter, and the postsynaptic cell assembles components to receive and integrate this signal. Synapses also exhibit plasticity, during which synaptic function and/or structure are modified in response to activity. With a robust panel of genetic, imaging, and electrophysiology approaches, and strong evolutionary conservation of molecular components, Drosophila has emerged as an essential model system for investigating the mechanisms underlying synaptic assembly, function, and plasticity. We will discuss techniques for studying synapses in Drosophila, with a focus on the larval neuromuscular junction (NMJ), a well-established model glutamatergic synapse. Vesicle fusion, which underlies synaptic release of neurotransmitters, has been well characterized at this synapse. In addition, studies of synaptic assembly and organization of active zones and postsynaptic densities have revealed pathways that coordinate those events across the synaptic cleft. We will also review modes of synaptic growth and plasticity at the fly NMJ, and discuss how pre- and postsynaptic cells communicate to regulate plasticity in response to activity.
Collapse
Affiliation(s)
- Kathryn P Harris
- Department of Biology and Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - J Troy Littleton
- Department of Biology and Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
28
|
A Presynaptic Regulatory System Acts Transsynaptically via Mon1 to Regulate Glutamate Receptor Levels in Drosophila. Genetics 2015; 201:651-64. [PMID: 26290519 DOI: 10.1534/genetics.115.177402] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/10/2015] [Indexed: 11/18/2022] Open
Abstract
Mon1 is an evolutionarily conserved protein involved in the conversion of Rab5 positive early endosomes to late endosomes through the recruitment of Rab7. We have identified a role for Drosophila Mon1 in regulating glutamate receptor levels at the larval neuromuscular junction. We generated mutants in Dmon1 through P-element excision. These mutants are short-lived with strong motor defects. At the synapse, the mutants show altered bouton morphology with several small supernumerary or satellite boutons surrounding a mature bouton; a significant increase in expression of GluRIIA and reduced expression of Bruchpilot. Neuronal knockdown of Dmon1 is sufficient to increase GluRIIA levels, suggesting its involvement in a presynaptic mechanism that regulates postsynaptic receptor levels. Ultrastructural analysis of mutant synapses reveals significantly smaller synaptic vesicles. Overexpression of vglut suppresses the defects in synaptic morphology and also downregulates GluRIIA levels in Dmon1 mutants, suggesting that homeostatic mechanisms are not affected in these mutants. We propose that DMon1 is part of a presynaptically regulated transsynaptic mechanism that regulates GluRIIA levels at the larval neuromuscular junction.
Collapse
|
29
|
The translational regulator Cup controls NMJ presynaptic terminal morphology. Mol Cell Neurosci 2015; 67:126-36. [PMID: 26102195 DOI: 10.1016/j.mcn.2015.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 06/14/2015] [Accepted: 06/18/2015] [Indexed: 02/02/2023] Open
Abstract
During oogenesis and early embryonic development in Drosophila, translation of proteins from maternally deposited mRNAs is tightly controlled. We and others have previously shown that translational regulatory proteins that function during oogenesis also have essential roles in the nervous system. Here we examine the role of Cup in neuromuscular system development. Maternal Cup controls translation of localized mRNAs encoding the Oskar and Nanos proteins and binds to the general translation initiation factor eIF4E. In this paper, we show that zygotic Cup protein is localized to presynaptic terminals at larval neuromuscular junctions (NMJs). cup mutant NMJs have strong phenotypes characterized by the presence of small clustered boutons called satellite boutons. They also exhibit an increase in the frequency of spontaneous glutamate release events (mEPSPs). Reduction of eIF4E expression synergizes with partial loss of Cup expression to produce satellite bouton phenotypes. The presence of satellite boutons is often associated with increases in retrograde bone morphogenetic protein (BMP) signaling, and we show that synaptic BMP signaling is elevated in cup mutants. cup genetically interacts with two genes, EndoA and Dap160, that encode proteins involved in endocytosis that are also neuronal modulators of the BMP pathway. Endophilin protein, encoded by the EndoA gene, is downregulated in a cup mutant. Our results are consistent with a model in which Cup and eIF4E work together to ensure efficient localization and translation of endocytosis proteins in motor neurons and control the strength of the retrograde BMP signal.
Collapse
|
30
|
McDermott SM, Yang L, Halstead JM, Hamilton RS, Meignin C, Davis I. Drosophila Syncrip modulates the expression of mRNAs encoding key synaptic proteins required for morphology at the neuromuscular junction. RNA (NEW YORK, N.Y.) 2014; 20:1593-606. [PMID: 25171822 PMCID: PMC4174441 DOI: 10.1261/rna.045849.114] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 06/09/2014] [Indexed: 05/24/2023]
Abstract
Localized mRNA translation is thought to play a key role in synaptic plasticity, but the identity of the transcripts and the molecular mechanism underlying their function are still poorly understood. Here, we show that Syncrip, a regulator of localized translation in the Drosophila oocyte and a component of mammalian neuronal mRNA granules, is also expressed in the Drosophila larval neuromuscular junction, where it regulates synaptic growth. We use RNA-immunoprecipitation followed by high-throughput sequencing and qRT-PCR to show that Syncrip associates with a number of mRNAs encoding proteins with key synaptic functions, including msp-300, syd-1, neurexin-1, futsch, highwire, discs large, and α-spectrin. The protein levels of MSP-300, Discs large, and a number of others are significantly affected in syncrip null mutants. Furthermore, syncrip mutants show a reduction in MSP-300 protein levels and defects in muscle nuclear distribution characteristic of msp-300 mutants. Our results highlight a number of potential new players in localized translation during synaptic plasticity in the neuromuscular junction. We propose that Syncrip acts as a modulator of synaptic plasticity by regulating the translation of these key mRNAs encoding synaptic scaffolding proteins and other important components involved in synaptic growth and function.
Collapse
Affiliation(s)
- Suzanne M McDermott
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Lu Yang
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - James M Halstead
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Russell S Hamilton
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Carine Meignin
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
31
|
Thomas MG, Pascual ML, Maschi D, Luchelli L, Boccaccio GL. Synaptic control of local translation: the plot thickens with new characters. Cell Mol Life Sci 2014; 71:2219-39. [PMID: 24212248 PMCID: PMC11113725 DOI: 10.1007/s00018-013-1506-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 10/11/2013] [Accepted: 10/21/2013] [Indexed: 12/18/2022]
Abstract
The production of proteins from mRNAs localized at the synapse ultimately controls the strength of synaptic transmission, thereby affecting behavior and cognitive functions. The regulated transcription, processing, and transport of mRNAs provide dynamic control of the dendritic transcriptome, which includes thousands of messengers encoding multiple cellular functions. Translation is locally modulated by synaptic activity through a complex network of RNA-binding proteins (RBPs) and various types of non-coding RNAs (ncRNAs) including BC-RNAs, microRNAs, piwi-interacting RNAs, and small interference RNAs. The RBPs FMRP and CPEB play a well-established role in synaptic translation, and additional regulatory factors are emerging. The mRNA repressors Smaug, Nanos, and Pumilio define a novel pathway for local translational control that affects dendritic branching and spines in both flies and mammals. Recent findings support a role for processing bodies and related synaptic mRNA-silencing foci (SyAS-foci) in the modulation of synaptic plasticity and memory formation. The SyAS-foci respond to different stimuli with changes in their integrity thus enabling regulated mRNA release followed by translation. CPEB, Pumilio, TDP-43, and FUS/TLS form multimers through low-complexity regions related to prion domains or polyQ expansions. The oligomerization of these repressor RBPs is mechanistically linked to the aggregation of abnormal proteins commonly associated with neurodegeneration. Here, we summarize the current knowledge on how specificity in mRNA translation is achieved through the concerted action of multiple pathways that involve regulatory ncRNAs and RBPs, the modification of translation factors, and mRNA-silencing foci dynamics.
Collapse
Affiliation(s)
- María Gabriela Thomas
- Instituto Leloir, Av. Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
- IIBBA-CONICET, C1405BWE Buenos Aires, Argentina
| | - Malena Lucía Pascual
- Instituto Leloir, Av. Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
- IIBBA-CONICET, C1405BWE Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Buenos Aires, Argentina
| | - Darío Maschi
- Instituto Leloir, Av. Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
- Present Address: Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO USA
| | - Luciana Luchelli
- Instituto Leloir, Av. Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
- IIBBA-CONICET, C1405BWE Buenos Aires, Argentina
| | - Graciela Lidia Boccaccio
- Instituto Leloir, Av. Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
- IIBBA-CONICET, C1405BWE Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
32
|
Lin WH, Baines RA. Regulation of membrane excitability: a convergence on voltage-gated sodium conductance. Mol Neurobiol 2014; 51:57-67. [PMID: 24677068 PMCID: PMC4309913 DOI: 10.1007/s12035-014-8674-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/11/2014] [Indexed: 11/30/2022]
Abstract
The voltage-gated sodium channel (Nav) plays a key role in regulation of neuronal excitability. Aberrant regulation of Nav expression and/or function can result in an imbalance in neuronal activity which can progress to epilepsy. Regulation of Nav activity is achieved by coordination of a multitude of mechanisms including RNA alternative splicing and translational repression. Understanding of these regulatory mechanisms is complicated by extensive genetic redundancy: the mammalian genome encodes ten Navs. By contrast, the genome of the fruitfly, Drosophila melanogaster, contains just one Nav homologue, encoded by paralytic (DmNa v ). Analysis of splicing in DmNa v shows variants exhibit distinct gating properties including varying magnitudes of persistent sodium current (INaP). Splicing by Pasilla, an identified RNA splicing factor, alters INaP magnitude as part of an activity-dependent mechanism. Enhanced INaP promotes membrane hyperexcitability that is associated with seizure-like behaviour in Drosophila. Nova-2, a mammalian Pasilla homologue, has also been linked to splicing of Navs and, moreover, mouse gene knockouts display seizure-like behaviour.Expression level of Navs is also regulated through a mechanism of translational repression in both flies and mammals. The translational repressor Pumilio (Pum) can bind to Na v transcripts and repress the normal process of translation, thus regulating sodium current (INa) density in neurons. Pum2-deficient mice exhibit spontaneous EEG abnormalities. Taken together, aberrant regulation of Nav function and/or expression is often epileptogenic. As such, a better understanding of regulation of membrane excitability through RNA alternative splicing and translational repression of Navs should provide new leads to treat epilepsy.
Collapse
Affiliation(s)
- Wei-Hsiang Lin
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, UK
| | | |
Collapse
|
33
|
Extensive use of RNA-binding proteins in Drosophila sensory neuron dendrite morphogenesis. G3-GENES GENOMES GENETICS 2014; 4:297-306. [PMID: 24347626 PMCID: PMC3931563 DOI: 10.1534/g3.113.009795] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The large number of RNA-binding proteins and translation factors encoded in the Drosophila and other metazoan genomes predicts widespread use of post-transcriptional regulation in cellular and developmental processes. Previous studies identified roles for several RNA-binding proteins in dendrite branching morphogenesis of Drosophila larval sensory neurons. To determine the larger contribution of post-transcriptional gene regulation to neuronal morphogenesis, we conducted an RNA interference screen to identify additional Drosophila proteins annotated as either RNA-binding proteins or translation factors that function in producing the complex dendritic trees of larval class IV dendritic arborization neurons. We identified 88 genes encoding such proteins whose knockdown resulted in aberrant dendritic morphology, including alterations in dendritic branch number, branch length, field size, and patterning of the dendritic tree. In particular, splicing and translation initiation factors were associated with distinct and characteristic phenotypes, suggesting that different morphogenetic events are best controlled at specific steps in post-transcriptional messenger RNA metabolism. Many of the factors identified in the screen have been implicated in controlling the subcellular distributions and translation of maternal messenger RNAs; thus, common post-transcriptional regulatory strategies may be used in neurogenesis and in the generation of asymmetry in the female germline and embryo.
Collapse
|
34
|
Charlesworth A, Meijer HA, de Moor CH. Specificity factors in cytoplasmic polyadenylation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 4:437-61. [PMID: 23776146 PMCID: PMC3736149 DOI: 10.1002/wrna.1171] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 12/12/2022]
Abstract
Poly(A) tail elongation after export of an messenger RNA (mRNA) to the cytoplasm is called cytoplasmic polyadenylation. It was first discovered in oocytes and embryos, where it has roles in meiosis and development. In recent years, however, has been implicated in many other processes, including synaptic plasticity and mitosis. This review aims to introduce cytoplasmic polyadenylation with an emphasis on the factors and elements mediating this process for different mRNAs and in different animal species. We will discuss the RNA sequence elements mediating cytoplasmic polyadenylation in the 3' untranslated regions of mRNAs, including the CPE, MBE, TCS, eCPE, and C-CPE. In addition to describing the role of general polyadenylation factors, we discuss the specific RNA binding protein families associated with cytoplasmic polyadenylation elements, including CPEB (CPEB1, CPEB2, CPEB3, and CPEB4), Pumilio (PUM2), Musashi (MSI1, MSI2), zygote arrest (ZAR2), ELAV like proteins (ELAVL1, HuR), poly(C) binding proteins (PCBP2, αCP2, hnRNP-E2), and Bicaudal C (BICC1). Some emerging themes in cytoplasmic polyadenylation will be highlighted. To facilitate understanding for those working in different organisms and fields, particularly those who are analyzing high throughput data, HUGO gene nomenclature for the human orthologs is used throughout. Where human orthologs have not been clearly identified, reference is made to protein families identified in man.
Collapse
Affiliation(s)
- Amanda Charlesworth
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA
| | | | | |
Collapse
|
35
|
Dynein-dependent transport of nanos RNA in Drosophila sensory neurons requires Rumpelstiltskin and the germ plasm organizer Oskar. J Neurosci 2013; 33:14791-800. [PMID: 24027279 DOI: 10.1523/jneurosci.5864-12.2013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Intracellular mRNA localization is a conserved mechanism for spatially regulating protein production in polarized cells, such as neurons. The mRNA encoding the translational repressor Nanos (Nos) forms ribonucleoprotein (RNP) particles that are dendritically localized in Drosophila larval class IV dendritic arborization (da) neurons. In nos mutants, class IV da neurons exhibit reduced dendritic branching complexity, which is rescued by transgenic expression of wild-type nos mRNA but not by a localization-compromised nos derivative. While localization is essential for nos function in dendrite morphogenesis, the mechanism underlying the transport of nos RNP particles was unknown. We investigated the mechanism of dendritic nos mRNA localization by analyzing requirements for nos RNP particle motility in class IV da neuron dendrites through live imaging of fluorescently labeled nos mRNA. We show that dynein motor machinery components mediate transport of nos mRNA in proximal dendrites. Two factors, the RNA-binding protein Rumpelstiltskin and the germ plasm protein Oskar, which are required for diffusion/entrapment-mediated localization of nos during oogenesis, also function in da neurons for formation and transport of nos RNP particles. Additionally, we show that nos regulates neuronal function, most likely independent of its dendritic localization and function in morphogenesis. Our results reveal adaptability of localization factors for regulation of a target transcript in different cellular contexts.
Collapse
|
36
|
Brain tumor regulates neuromuscular synapse growth and endocytosis in Drosophila by suppressing mad expression. J Neurosci 2013; 33:12352-63. [PMID: 23884941 DOI: 10.1523/jneurosci.0386-13.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The precise regulation of synaptic growth is critical for the proper formation and plasticity of functional neural circuits. Identification and characterization of factors that regulate synaptic growth and function have been under intensive investigation. Here we report that brain tumor (brat), which was identified as a translational repressor in multiple biological processes, plays a crucial role at Drosophila neuromuscular junction (NMJ) synapses. Immunohistochemical analysis demonstrated that brat mutants exhibited synaptic overgrowth characterized by excess satellite boutons at NMJ terminals, whereas electron microscopy revealed increased synaptic vesicle size but reduced density at active zones compared with wild-types. Spontaneous miniature excitatory junctional potential amplitudes were larger and evoked quantal content was lower at brat mutant NMJs. In agreement with the morphological and physiological phenotypes, loss of Brat resulted in reduced FM1-43 uptake at the NMJ terminals, indicating that brat regulates synaptic endocytosis. Genetic analysis revealed that the actions of Brat at synapses are mediated through mothers against decapentaplegic (Mad), the signal transduction effector of the bone morphogenetic protein (BMP) signaling pathway. Furthermore, biochemical analyses showed upregulated levels of Mad protein but normal mRNA levels in the larval brains of brat mutants, suggesting that Brat suppresses Mad translation. Consistently, knockdown of brat by RNA interference in Drosophila S2 cells also increased Mad protein level. These results together reveal an important and previously unidentified role for Brat in synaptic development and endocytosis mediated by suppression of BMP signaling.
Collapse
|
37
|
Pumilio-2 regulates translation of Nav1.6 to mediate homeostasis of membrane excitability. J Neurosci 2013; 33:9644-54. [PMID: 23739961 DOI: 10.1523/jneurosci.0921-13.2013] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The ability to regulate intrinsic membrane excitability, to maintain consistency of action potential firing, is critical for stable neural circuit activity. Without such mechanisms, Hebbian-based synaptic plasticity could push circuits toward activity saturation or, alternatively, quiescence. Although now well documented, the underlying molecular components of these homeostatic mechanisms remain poorly understood. Recent work in the fruit fly, Drosophila melanogaster, has identified Pumilio (Pum), a translational repressor, as an essential component of one such mechanism. In response to changing synaptic excitation, Pum regulates the translation of the voltage-gated sodium conductance, leading to a concomitant adjustment in action potential firing. Although similar homeostatic mechanisms are operational in mammalian neurons, it is unknown whether Pum is similarly involved. In this study, we report that Pum2 is indeed central to the homeostatic mechanism regulating membrane excitability in rat visual cortical pyramidal neurons. Using RNA interference, we observed that loss of Pum2 leads to increased sodium current (I(Na)) and action potential firing, mimicking the response by these neurons to being deprived of synaptic depolarization. In contrast, increased synaptic depolarization results in increased Pum2 expression and subsequent reduction in INa and membrane excitability. We further show that Pum2 is able to directly bind the predominant voltage-gated sodium channel transcript (NaV1.6) expressed in these neurons and, through doing so, regulates translation of this key determinant of membrane excitability. Together, our results show that Pum2 forms part of a homeostatic mechanism that matches membrane excitability to synaptic depolarization in mammalian neurons.
Collapse
|
38
|
Frank CA. Homeostatic plasticity at the Drosophila neuromuscular junction. Neuropharmacology 2013; 78:63-74. [PMID: 23806804 DOI: 10.1016/j.neuropharm.2013.06.015] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/31/2013] [Accepted: 06/11/2013] [Indexed: 02/07/2023]
Abstract
In biology, homeostasis refers to how cells maintain appropriate levels of activity. This concept underlies a balancing act in the nervous system. Synapses require flexibility (i.e. plasticity) to adjust to environmental challenges. Yet there must also exist regulatory mechanisms that constrain activity within appropriate physiological ranges. An abundance of evidence suggests that homeostatic regulation is critical in this regard. In recent years, important progress has been made toward identifying molecules and signaling processes required for homeostatic forms of neuroplasticity. The Drosophila melanogaster third instar larval neuromuscular junction (NMJ) has been an important experimental system in this effort. Drosophila neuroscientists combine genetics, pharmacology, electrophysiology, imaging, and a variety of molecular techniques to understand how homeostatic signaling mechanisms take shape at the synapse. At the NMJ, homeostatic signaling mechanisms couple retrograde (muscle-to-nerve) signaling with changes in presynaptic calcium influx, changes in the dynamics of the readily releasable vesicle pool, and ultimately, changes in presynaptic neurotransmitter release. Roles in these processes have been demonstrated for several molecules and signaling systems discussed here. This review focuses primarily on electrophysiological studies or data. In particular, attention is devoted to understanding what happens when NMJ function is challenged (usually through glutamate receptor inhibition) and the resulting homeostatic responses. A significant area of study not covered in this review, for the sake of simplicity, is the homeostatic control of synapse growth, which naturally, could also impinge upon synapse function in myriad ways. This article is part of the Special Issue entitled 'Homeostatic Synaptic Plasticity'.
Collapse
Affiliation(s)
- C Andrew Frank
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
39
|
Menon KP, Carrillo RA, Zinn K. Development and plasticity of the Drosophila larval neuromuscular junction. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 2:647-70. [PMID: 24014452 DOI: 10.1002/wdev.108] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The Drosophila larval neuromuscular system is relatively simple, containing only 32 motor neurons in each abdominal hemisegment, and its neuromuscular junctions (NMJs) have been studied extensively. NMJ synapses exhibit developmental and functional plasticity while displaying stereotyped connectivity. Drosophila Type I NMJ synapses are glutamatergic, while the vertebrate NMJ uses acetylcholine as its primary neurotransmitter. The larval NMJ synapses use ionotropic glutamate receptors (GluRs) that are homologous to AMPA-type GluRs in the mammalian brain, and they have postsynaptic scaffolds that resemble those found in mammalian postsynaptic densities. These features make the Drosophila neuromuscular system an excellent genetic model for the study of excitatory synapses in the mammalian central nervous system. The first section of the review presents an overview of NMJ development. The second section describes genes that regulate NMJ development, including: (1) genes that positively and negatively regulate growth of the NMJ, (2) genes required for maintenance of NMJ bouton structure, (3) genes that modulate neuronal activity and alter NMJ growth, (4) genes involved in transsynaptic signaling at the NMJ. The third section describes genes that regulate acute plasticity, focusing on translational regulatory mechanisms. As this review is intended for a developmental biology audience, it does not cover NMJ electrophysiology in detail, and does not review genes for which mutations produce only electrophysiological but no structural phenotypes.
Collapse
Affiliation(s)
- Kaushiki P Menon
- Broad Center, Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | | | | |
Collapse
|
40
|
Oulhen N, Yoshida T, Yajima M, Song JL, Sakuma T, Sakamoto N, Yamamoto T, Wessel GM. The 3'UTR of nanos2 directs enrichment in the germ cell lineage of the sea urchin. Dev Biol 2013; 377:275-83. [PMID: 23357540 DOI: 10.1016/j.ydbio.2013.01.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/15/2013] [Accepted: 01/18/2013] [Indexed: 12/30/2022]
Abstract
Nanos is a translational regulator required for the survival and maintenance of primordial germ cells during embryogenesis. Three nanos homologs are present in the genome of the sea urchin Strongylocentrotus purpuratus (Sp), and each nanos mRNA accumulates specifically in the small micromere (sMic) lineage. We found that a highly conserved element in the 3' UTR of nanos2 is sufficient for reporter expression selectively in the sMic lineage: microinjection into a Sp fertilized egg of an RNA that contains the GFP open reading frame followed by Sp nanos2 3'UTR leads to selective reporter enrichment in the small micromeres in blastulae. The same result was seen with nanos2 from the sea urchin Hemicentrotus pulcherrimus (Hp). In both species, the 5'UTR alone is not sufficient for the sMic localization but it always increased the sMic reporter enrichment when present with the 3'UTR. We defined an element conserved between Hp and Sp in the nanos2 3'UTR which is necessary and sufficient for protein enrichment in the sMic, and refer to it as GNARLE (Global Nanos Associated RNA Lability Element). We also found that the nanos2 3'UTR is essential for the selective RNA retention in the small micromeres; GNARLE is required but not sufficient for this process. These results show that a combination of selective RNA retention and translational control mechanisms instills nanos accumulation uniquely in the sMic lineage.
Collapse
Affiliation(s)
- Nathalie Oulhen
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Pascual ML, Luchelli L, Habif M, Boccaccio GL. Synaptic activity regulated mRNA-silencing foci for the fine tuning of local protein synthesis at the synapse. Commun Integr Biol 2012; 5:388-92. [PMID: 23060966 PMCID: PMC3460847 DOI: 10.4161/cib.20257] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The regulated synthesis of specific proteins at the synapse is important for neuron plasticity, and several localized mRNAs are translated upon specific stimulus. Repression of mRNA translation is linked to the formation of mRNA-silencing foci, including Processing Bodies (PBs) and Stress Granules (SGs), which are macromolecular aggregates that harbor silenced messengers and associated proteins. In a recent work, we identified a kind of mRNA-silencing foci unique to neurons, termed S-foci, that contain the post-transcriptional regulator Smaug1/SAMD4. Upon specific synaptic stimulation, the S-foci dissolve and release mRNAs to allow their translation, paralleling the cycling of mRNAs between PBs and polysomes in other cellular contexts. Smaug 1 and other proteins involved in mRNA regulation in neurons contain aggregation domains distinct from their RNA binding motifs, and we speculate that self-aggregation helps silencing and transport. In addition to S-foci and PBs, other foci formed by distinct RNA binding proteins, such as TDP-43 and FMRP among others, respond dynamically to specific synaptic stimuli. We propose the collective name of synaptic activity-regulated mRNA silencing (SyAS) foci for these RNP aggregates that selectively respond to distinct stimulation patterns and contribute to the fine-tuning of local protein synthesis at the synapse.
Collapse
Affiliation(s)
- Malena Lucia Pascual
- Instituto Leloir; IIBBA-CONICET and Facultad de Ciencias Exactas y Naturales; University of Buenos Aires; Buenos Aires, Argentina
| | | | | | | |
Collapse
|
42
|
Olesnicky EC, Bhogal B, Gavis ER. Combinatorial use of translational co-factors for cell type-specific regulation during neuronal morphogenesis in Drosophila. Dev Biol 2012; 365:208-18. [PMID: 22391052 DOI: 10.1016/j.ydbio.2012.02.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 02/15/2012] [Accepted: 02/20/2012] [Indexed: 11/26/2022]
Abstract
The translational regulators Nanos (Nos) and Pumilio (Pum) work together to regulate the morphogenesis of dendritic arborization (da) neurons of the Drosophila larval peripheral nervous system. In contrast, Nos and Pum function in opposition to one another in the neuromuscular junction to regulate the morphogenesis and the electrophysiological properties of synaptic boutons. Neither the cellular functions of Nos and Pum nor their regulatory targets in neuronal morphogenesis are known. Here we show that Nos and Pum are required to maintain the dendritic complexity of da neurons during larval growth by promoting the outgrowth of new dendritic branches and the stabilization of existing dendritic branches, in part by regulating the expression of cut and head involution defective. Through an RNA interference screen we uncover a role for the translational co-factor Brain Tumor (Brat) in dendrite morphogenesis of da neurons and demonstrate that Nos, Pum, and Brat interact genetically to regulate dendrite morphogenesis. In the neuromuscular junction, Brat function is most likely specific for Pum in the presynaptic regulation of bouton morphogenesis. Our results reveal how the combinatorial use of co-regulators like Nos, Pum and Brat can diversify their roles in post-transcriptional regulation of gene expression for neuronal morphogenesis.
Collapse
Affiliation(s)
- Eugenia C Olesnicky
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
43
|
Glutamate receptors in synaptic assembly and plasticity: case studies on fly NMJs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 970:3-28. [PMID: 22351049 DOI: 10.1007/978-3-7091-0932-8_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The molecular and cellular mechanisms that control the composition and functionality of ionotropic glutamate receptors may be considered as most important "set screws" for adjusting excitatory transmission in the course of developmental and experience-dependent changes within neural networks. The Drosophila larval neuromuscular junction has emerged as one important invertebrate model system to study the formation, maintenance, and plasticity-related remodeling of glutamatergic synapses in vivo. By exploiting the unique genetic accessibility of this organism combined with diverse tools for manipulation and analysis including electrophysiology and state of the art imaging, considerable progress has been made to characterize the role of glutamate receptors during the orchestration of junctional development, synaptic activity, and synaptogenesis. Following an introduction to basic features of this model system, we will mainly focus on conceptually important findings such as the selective impact of glutamate receptor subtypes on the formation of new synapses, the coordination of presynaptic maturation and receptor subtype composition, the role of nonvesicularly released glutamate on the synaptic localization of receptors, or the homeostatic feedback of receptor functionality on presynaptic transmitter release.
Collapse
|
44
|
Cheng L, Locke C, Davis GW. S6 kinase localizes to the presynaptic active zone and functions with PDK1 to control synapse development. ACTA ACUST UNITED AC 2011; 194:921-35. [PMID: 21930778 PMCID: PMC3207287 DOI: 10.1083/jcb.201101042] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
S6 kinase localizes to the active zone in a Brp-dependent manner and collaborates with presynaptic PDK1 to modulate neuronal cell size, bouton size, active zone number, and neurotransmitter release. The dimensions of neuronal dendrites, axons, and synaptic terminals are reproducibly specified for each neuron type, yet it remains unknown how these structures acquire their precise dimensions of length and diameter. Similarly, it remains unknown how active zone number and synaptic strength are specified relative the precise dimensions of presynaptic boutons. In this paper, we demonstrate that S6 kinase (S6K) localizes to the presynaptic active zone. Specifically, S6K colocalizes with the presynaptic protein Bruchpilot (Brp) and requires Brp for active zone localization. We then provide evidence that S6K functions downstream of presynaptic PDK1 to control synaptic bouton size, active zone number, and synaptic function without influencing presynaptic bouton number. We further demonstrate that PDK1 is also a presynaptic protein, though it is distributed more broadly. We present a model in which synaptic S6K responds to local extracellular nutrient and growth factor signaling at the synapse to modulate developmental size specification, including cell size, bouton size, active zone number, and neurotransmitter release.
Collapse
Affiliation(s)
- Ling Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
45
|
Sarthi J, Elefant F. dTip60 HAT activity controls synaptic bouton expansion at the Drosophila neuromuscular junction. PLoS One 2011; 6:e26202. [PMID: 22046262 PMCID: PMC3203119 DOI: 10.1371/journal.pone.0026202] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 09/22/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Histone acetylation of chromatin plays a key role in promoting the dynamic transcriptional responses in neurons that influence the neuroplasticity linked to cognitive ability, yet the specific histone acetyltransferases (HATs) that create such epigenetic marks remain to be elucidated. METHODS AND FINDINGS Here we use the Drosophila neuromuscular junction (NMJ) as a well-characterized synapse model to identify HATs that control synaptic remodeling and structure. We show that the HAT dTip60 is concentrated both pre and post-synaptically within the NMJ. Presynaptic targeted reduction of dTip60 HAT activity causes a significant increase in synaptic bouton number that specifically affects type Is boutons. The excess boutons show a suppression of the active zone synaptic function marker bruchpilot, suggesting defects in neurotransmission function. Analysis of microtubule organization within these excess boutons using immunohistochemical staining to the microtubule associated protein futsch reveals a significant increase in the rearrangement of microtubule loop architecture that is required for bouton division. Moreover, α-tubulin acetylation levels of microtubules specifically extending into the terminal synaptic boutons are reduced in response to dTip60 HAT reduction. CONCLUSIONS Our results are the first to demonstrate a causative role for the HAT dTip60 in the control of synaptic plasticity that is achieved, at least in part, via regulation of the synaptic microtubule cytoskeleton. These findings have implications for dTip60 HAT dependant epigenetic mechanisms underlying cognitive function.
Collapse
Affiliation(s)
- Jessica Sarthi
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Felice Elefant
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
46
|
Marrero E, Rossi SG, Darr A, Tsoulfas P, Rotundo RL. Translational regulation of acetylcholinesterase by the RNA-binding protein Pumilio-2 at the neuromuscular synapse. J Biol Chem 2011; 286:36492-9. [PMID: 21865157 PMCID: PMC3196106 DOI: 10.1074/jbc.m111.285510] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 08/22/2011] [Indexed: 11/06/2022] Open
Abstract
Acetylcholinesterase (AChE) is highly expressed at sites of nerve-muscle contact where it is regulated at both the transcriptional and post-transcriptional levels. Our understanding of the molecular mechanisms underlying its regulation is incomplete, but they appear to involve both translational and post-translational events as well. Here, we show that Pumilio-2 (PUM2), an RNA binding translational repressor, is highly localized at the neuromuscular junction where AChE mRNA concentrates. Immunoprecipitation of muscle cell extracts with a PUM2 specific antibody precipitated AChE mRNA, suggesting that PUM2 binds to the AChE transcripts in a complex. Gel shift assays using a bacterially expressed PUM2 RNA binding domain showed specific binding using wild type AChE 3'-UTR RNA segment that was abrogated by mutation of the consensus recognition site. Transfecting skeletal muscle cells with shRNAs specific for PUM2 up-regulated AChE expression, whereas overexpression of PUM2 decreased AChE activity. We conclude that PUM2 binds to AChE mRNA and regulates AChE expression translationally at the neuromuscular synapse. Finally, we found that PUM2 is regulated by the motor nerve suggesting a trans-synaptic mechanism for locally regulating translation of specific proteins involved in modulating synaptic transmission, analogous to CNS synapses.
Collapse
Affiliation(s)
| | | | | | - Pantelis Tsoulfas
- From the Department of Cell Biology and Anatomy
- Neuroscience Program
- Department of Neurosurgery, and
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida 33136
| | | |
Collapse
|
47
|
Miller MA, Olivas WM. Roles of Puf proteins in mRNA degradation and translation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 2:471-92. [PMID: 21957038 DOI: 10.1002/wrna.69] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Puf proteins are regulators of diverse eukaryotic processes including stem cell maintenance, organelle biogenesis, oogenesis, neuron function, and memory formation. At the molecular level, Puf proteins promote translational repression and/or degradation of target mRNAs by first interacting with conserved cis-elements in the 3' untranslated region (UTR). Once bound to an mRNA, Puf proteins elicit RNA repression by complex interactions with protein cofactors and regulatory machinery involved in translation and degradation. Recent work has dramatically increased our understanding of the targets of Puf protein regulation, as well as the mechanisms by which Puf proteins recognize and regulate those mRNA targets. Crystal structure analysis of several Puf-RNA complexes has demonstrated that while Puf proteins are extremely conserved in their RNA-binding domains, Pufs attain target specificity by utilizing different structural conformations to recognize 8-10 nt sequences. Puf proteins have also evolved modes of protein interactions that are organism and transcript-specific, yet two common mechanisms of repression have emerged: inhibition of cap-binding events to block translation initiation, and recruitment of the CCR4-POP2-NOT deadenylase complex for poly(A) tail removal. Finally, multiple schemes to regulate Puf protein activity have been identified, including post-translational mechanisms that allow rapid changes in the repression of mRNA targets.
Collapse
Affiliation(s)
- Melanie A Miller
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, USA
| | | |
Collapse
|
48
|
Yu L, Song Y, Wharton RP. E(nos)/CG4699 required for nanos function in the female germ line of Drosophila. Genesis 2010; 48:161-70. [PMID: 20095054 DOI: 10.1002/dvg.20600] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The translational repressor Nanos is required in the germ line stem cells of the Drosophila ovary to maintain their capacity for self-renewal. Following division of the stem cells, Nanos is inhibited in the daughters that differentiate into cysts and ultimately become mature oocytes. The control of Nanos activity is thus an important aspect of the switch from self-renewal to differentiation. In this report, we describe a genetic interaction between nanos and Enhancer of nos, an allele of the previously uncharacterized locus CG4699. We find that E(nos) protein is required for normal accumulation of Nanos in the ovary and thus for maintenance of the germ line. The mechanism by which E(nos)/CG4699 protein acts is not clear, although it has been found in a complex with Mof acetylase. Consistent with the finding that E(nos) interacts with Mof, we observe that nanos and mof also interact genetically to maintain normal oogenesis.
Collapse
Affiliation(s)
- Lin Yu
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | | | | |
Collapse
|
49
|
Thomas U, Kobler O, Gundelfinger ED. TheDrosophilaLarval Neuromuscular Junction as a Model for Scaffold Complexes at Glutamatergic Synapses: Benefits and Limitations. J Neurogenet 2010; 24:109-19. [DOI: 10.3109/01677063.2010.493589] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
50
|
Mosca TJ, Schwarz TL. The nuclear import of Frizzled2-C by Importins-beta11 and alpha2 promotes postsynaptic development. Nat Neurosci 2010; 13:935-43. [PMID: 20601947 PMCID: PMC2913881 DOI: 10.1038/nn.2593] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 06/04/2010] [Indexed: 12/18/2022]
Abstract
Synapse-to-nucleus signaling is critical for synaptic development and plasticity. In Drosophila, the ligand Wingless causes the C-terminus of its Frizzled2 receptor (Fz2-C) to be cleaved and translocated from the postsynaptic density to nuclei. The mechanism of nuclear import is unknown and the developmental consequences of this translocation are uncertain. Here, we show that Fz2-C localization to muscle nuclei requires the nuclear import factors, Importin-β11 and Importin-α2 and that this pathway promotes the postsynaptic development of the subsynaptic reticulum (SSR), an elaboration of the postsynaptic plasma membrane. importin-β11 and dfz2 mutants have less SSR and some boutons lacking the postsynaptic marker Discs Large. These developmental defects in importin-β11 can be overcome by expression of Fz2-C fused to a nuclear localization sequence that can bypass Importin-β11. Thus, Wnt-activated growth of the postsynaptic membrane is mediated by the synapse-to-nucleus translocation and active nuclear import of Fz2-C via a selective Importin-β11/α2 pathway.
Collapse
Affiliation(s)
- Timothy J Mosca
- The F.M. Kirby Neurobiology Center, Children's Hospital Boston, Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|