1
|
Li H, Tamura R, Hayashi D, Asai H, Koga J, Ando S, Yokota S, Kaneko J, Sakurai K, Sumiyoshi A, Yamamoto T, Hikishima K, Tanaka KZ, McHugh TJ, Hisatsune T. Silencing dentate newborn neurons alters excitatory/inhibitory balance and impairs behavioral inhibition and flexibility. SCIENCE ADVANCES 2024; 10:eadk4741. [PMID: 38198539 PMCID: PMC10780870 DOI: 10.1126/sciadv.adk4741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
Adult neurogenesis confers the hippocampus with unparalleled neural plasticity, essential for intricate cognitive functions. The specific influence of sparse newborn neurons (NBNs) in modulating neural activities and subsequently steering behavior, however, remains obscure. Using an engineered NBN-tetanus toxin mouse model (NBN-TeTX), we noninvasively silenced NBNs, elucidating their crucial role in impulse inhibition and cognitive flexibility as evidenced through Morris water maze reversal learning and Go/Nogo task in operant learning. Task-based functional MRI (tb-fMRI) paired with operant learning revealed dorsal hippocampal hyperactivation during the Nogo task in male NBN-TeTX mice, suggesting that hippocampal hyperexcitability might underlie the observed behavioral deficits. Additionally, resting-state fMRI (rs-fMRI) exhibited enhanced functional connectivity between the dorsal and ventral dentate gyrus following NBN silencing. Further investigations into the activities of PV+ interneurons and mossy cells highlighted the indispensability of NBNs in maintaining the hippocampal excitation/inhibition balance. Our findings emphasize that the neural plasticity driven by NBNs extensively modulates the hippocampus, sculpting inhibitory control and cognitive flexibility.
Collapse
Affiliation(s)
- Haowei Li
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Risako Tamura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Daiki Hayashi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Hirotaka Asai
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Junya Koga
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Shota Ando
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Sayumi Yokota
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Jun Kaneko
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Keisuke Sakurai
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Akira Sumiyoshi
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tadashi Yamamoto
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Keigo Hikishima
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Kazumasa Z. Tanaka
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama, Japan
| | - Thomas J. McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama, Japan
| | - Tatsuhiro Hisatsune
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
2
|
Niu D, Zhang X, Zhang S, Fan T, Zhou X, Wang H, Zhang X, Nan F, Jiang S, Liu F, Wang Y, Wang B. Human Cytomegalovirus IE2 Disrupts Neural Progenitor Development and Induces Microcephaly in Transgenic Mouse. Mol Neurobiol 2023; 60:3883-3897. [PMID: 36991278 DOI: 10.1007/s12035-023-03310-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/25/2023] [Indexed: 03/31/2023]
Abstract
Human cytomegalovirus (HCMV) is a significant contributor to congenital birth defects. Limited by the lack of animal models, the pathogenesis of neurological damage in vivo caused by HCMV infection and the role of individual viral genes remain to be elucidated. Immediate early (IE2) protein may play a function in neurodevelopmental problems caused by HCMV infection. Here, this study intended to investigate IE2's long-term effects on development of the brain in IE2-expressing transgenic mice (Rosa26-LSL-IE2+/-, Camk2α-Cre) aimed to observe the phenotype of postnatal mice. The expression of IE2 in transgenic mice was confirmed by PCR and Western blot technology. We collected mouse brain tissue at 2, 4, 6, 8, and 10 days postpartum to analyze the developmental process of neural stem cells by immunofluorescence. We discovered that transgenic mice (Rosa26-LSL-IE2+/-, Camk2α-Cre) can reliably produce IE2 in the brain at various postpartum phases. Furthermore, we also observed the symptoms of microcephaly in postnatal transgenic mice, and IE2 can damage the amount of neural stem cells, prevent them from proliferating and differentiating, and activate microglia and astrocytes, creating an unbalanced environment in the brain's neurons. In conclusion, we demonstrate that long-term expression of HCMV-IE2 can cause microcephaly through molecular mechanisms affecting the differentiation and development of neural stem cells in vivo. This work establishes a theoretical and experimental foundation for elucidating the molecular mechanism of fetal microcephaly brought by HCMV infection in throughout the period of neural development of pregnancy.
Collapse
Affiliation(s)
- Delei Niu
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, 266000, Shandong, China
| | - Xianjuan Zhang
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, 266000, Shandong, China
| | - Shuyun Zhang
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, 266000, Shandong, China
| | - Tianyu Fan
- Department of Immunology, College of Basic Medicine, Qingdao University, Qingdao, 266000, Shandong, China
| | - Xiaoqiong Zhou
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, 266000, Shandong, China
| | - Hui Wang
- Department of Special Medicine, College of Basic Medicine, Qingdao University, Qingdao, 266000, Shandong, China
| | - Xueming Zhang
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, 266000, Shandong, China
| | - Fulong Nan
- Department of Special Medicine, College of Basic Medicine, Qingdao University, Qingdao, 266000, Shandong, China
| | - Shasha Jiang
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, 266000, Shandong, China
| | - Fengjun Liu
- Department of Special Medicine, College of Basic Medicine, Qingdao University, Qingdao, 266000, Shandong, China
| | - Yunyang Wang
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| | - Bin Wang
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, 266000, Shandong, China.
- Department of Special Medicine, College of Basic Medicine, Qingdao University, Qingdao, 266000, Shandong, China.
| |
Collapse
|
3
|
Godale CM, Parkins EV, Gross C, Danzer SC. Impact of Raptor and Rictor Deletion on Hippocampal Pathology Following Status Epilepticus. J Mol Neurosci 2022; 72:1243-1258. [PMID: 35618880 PMCID: PMC9571976 DOI: 10.1007/s12031-022-02030-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
Abstract
Neuronal hyperactivation of the mTOR signaling pathway may play a role in driving the pathological sequelae that follow status epilepticus. Animal studies using pharmacological tools provide support for this hypothesis, however, systemic inhibition of mTOR-a growth pathway active in every mammalian cell-limits conclusions on cell type specificity. To circumvent the limitations of pharmacological approaches, we developed a viral/genetic strategy to delete Raptor or Rictor, inhibiting mTORC1 or mTORC2, respectively, from excitatory hippocampal neurons after status epilepticus in mice. Raptor or Rictor was deleted from roughly 25% of hippocampal granule cells, with variable involvement of other hippocampal neurons, after pilocarpine status epilepticus. Status epilepticus induced the expected loss of hilar neurons, sprouting of granule cell mossy fiber axons and reduced c-Fos activation. Gene deletion did not prevent these changes, although Raptor loss reduced the density of c-Fos-positive granule cells overall relative to Rictor groups. Findings demonstrate that mTOR signaling can be effectively modulated with this approach and further reveal that blocking mTOR signaling in a minority (25%) of granule cells is not sufficient to alter key measures of status epilepticus-induced pathology. The approach is suitable for producing higher deletion rates, and altering the timing of deletion, which may lead to different outcomes.
Collapse
Affiliation(s)
- Christin M Godale
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, CincinnatiCincinnati, OH, ML200145229, USA
- University of Cincinnati, Neuroscience Graduate Program, Cincinnati, OH, USA
| | - Emma V Parkins
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati, Neuroscience Graduate Program, Cincinnati, OH, USA
| | - Christina Gross
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati, Neuroscience Graduate Program, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, CincinnatiCincinnati, OH, ML200145229, USA.
- University of Cincinnati, Neuroscience Graduate Program, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
4
|
Zhang Z, Zhang X. Inference of high-resolution trajectories in single-cell RNA-seq data by using RNA velocity. CELL REPORTS METHODS 2021; 1:100095. [PMID: 35474895 PMCID: PMC9017235 DOI: 10.1016/j.crmeth.2021.100095] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/29/2021] [Accepted: 09/20/2021] [Indexed: 12/19/2022]
Abstract
Trajectory inference (TI) methods infer cell developmental trajectory from single-cell RNA sequencing data. Current TI methods can be categorized into those using RNA velocity information and those using only single-cell gene expression data. The latter type of methods are restricted to certain trajectory structures, and cannot determine cell developmental direction. Recently proposed TI methods using RNA velocity information have limited accuracy. We present CellPath, a method that infers cell trajectories by integrating single-cell gene expression and RNA velocity information. CellPath overcomes the restrictions of TI methods that do not use RNA velocity information: it can find multiple high-resolution trajectories without constraints on the trajectory structure, and can automatically detect the direction of each trajectory path. We evaluate CellPath on both real and simulated datasets and show that CellPath finds more accurate and detailed trajectories than the state-of-the-art TI methods using or not using RNA velocity information.
Collapse
Affiliation(s)
- Ziqi Zhang
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Xiuwei Zhang
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
5
|
Madencioglu DA, Çalışkan G, Yuanxiang P, Rehberg K, Demiray YE, Kul E, Engler A, Hayani H, Bergado-Acosta JR, Kummer A, Müller I, Song I, Dityatev A, Kähne T, Kreutz MR, Stork O. Transgenic modeling of Ndr2 gene amplification reveals disturbance of hippocampus circuitry and function. iScience 2021; 24:102868. [PMID: 34381982 PMCID: PMC8340122 DOI: 10.1016/j.isci.2021.102868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/19/2021] [Accepted: 07/14/2021] [Indexed: 11/18/2022] Open
Abstract
Duplications and deletions of short chromosomal fragments are increasingly recognized as the cause for rare neurodevelopmental conditions and disorders. The NDR2 gene encodes a protein kinase important for neuronal development and is part of a microduplication region on chromosome 12 that is associated with intellectual disabilities, autism, and epilepsy. We developed a conditional transgenic mouse with increased Ndr2 expression in postmigratory forebrain neurons to study the consequences of an increased gene dosage of this Hippo pathway kinase on brain circuitry and cognitive functions. Our analysis reveals reduced terminal fields and synaptic transmission of hippocampal mossy fibers, altered hippocampal network activity, and deficits in mossy fiber-dependent behaviors. Reduced doublecortin expression and protein interactome analysis indicate that transgenic Ndr2 disturbs the maturation of granule cells in the dentate gyrus. Together, our data suggest that increased expression of Ndr2 may critically contribute to the development of intellectual disabilities upon gene amplification.
Collapse
Affiliation(s)
- Deniz A. Madencioglu
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Gürsel Çalışkan
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences, 39102Magdeburg, Germany
| | - Pingan Yuanxiang
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39112Magdeburg, Germany
| | - Kati Rehberg
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Yunus E. Demiray
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Emre Kul
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Alexander Engler
- Institute of Experimental Internal Medicine, Otto-von-Guericke-University, 39120Magdeburg, Germany
| | - Hussam Hayani
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases, 39120Magdeburg, Germany
| | - Jorge R. Bergado-Acosta
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences, 39102Magdeburg, Germany
| | - Anne Kummer
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Iris Müller
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences, 39102Magdeburg, Germany
| | - Inseon Song
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases, 39120Magdeburg, Germany
| | - Alexander Dityatev
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases, 39120Magdeburg, Germany
- Center for Behavioral Brain Sciences, 39102Magdeburg, Germany
- Medical Faculty, Otto-von-Guericke-University, 39120Magdeburg, Germany
| | - Thilo Kähne
- Institute of Experimental Internal Medicine, Otto-von-Guericke-University, 39120Magdeburg, Germany
- Center for Behavioral Brain Sciences, 39102Magdeburg, Germany
| | - Michael R. Kreutz
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39112Magdeburg, Germany
- Leibniz Group 'Dendritic Organelles and Synaptic Function', University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology, ZMNH, 20251Hamburg, Germany
- Center for Behavioral Brain Sciences, 39102Magdeburg, Germany
| | - Oliver Stork
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences, 39102Magdeburg, Germany
| |
Collapse
|
6
|
Chin HS, Fu NY. Physiological Functions of Mcl-1: Insights From Genetic Mouse Models. Front Cell Dev Biol 2021; 9:704547. [PMID: 34336857 PMCID: PMC8322662 DOI: 10.3389/fcell.2021.704547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/14/2021] [Indexed: 01/27/2023] Open
Abstract
The ability to regulate the survival and death of a cell is paramount throughout the lifespan of a multicellular organism. Apoptosis, a main physiological form of programmed cell death, is regulated by the Bcl-2 family proteins that are either pro-apoptotic or pro-survival. The in vivo functions of distinct Bcl-2 family members are largely unmasked by genetically engineered murine models. Mcl-1 is one of the two Bcl-2 like pro-survival genes whose germline deletion causes embryonic lethality in mice. Its requisite for the survival of a broad range of cell types has been further unraveled by using conditional and inducible deletion murine model systems in different tissues or cell lineages and at distinct developmental stages. Moreover, genetic mouse cancer models have also demonstrated that Mcl-1 is essential for the survival of multiple tumor types. The MCL-1 locus is commonly amplified across various cancer types in humans. Small molecule inhibitors with high affinity and specificity to human MCL-1 have been developed and explored for the treatment of certain cancers. To facilitate the pre-clinical studies of MCL-1 in cancer and other diseases, transgenic mouse models over-expressing human MCL-1 as well as humanized MCL-1 mouse models have been recently engineered. This review discusses the current advances in understanding the physiological roles of Mcl-1 based on studies using genetic murine models and its critical implications in pathology and treatment of human diseases.
Collapse
Affiliation(s)
- Hui San Chin
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Nai Yang Fu
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore.,Department of Physiology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
7
|
Scott GA, Terstege DJ, Roebuck AJ, Gorzo KA, Vu AP, Howland JG, Epp JR. Adult neurogenesis mediates forgetting of multiple types of memory in the rat. Mol Brain 2021; 14:97. [PMID: 34174906 PMCID: PMC8236170 DOI: 10.1186/s13041-021-00808-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/08/2021] [Indexed: 11/30/2022] Open
Abstract
The formation and retention of hippocampus-dependent memories is impacted by neurogenesis, a process that involves the production of new neurons in the dentate gyrus of the hippocampus. Recent studies demonstrate that increasing neurogenesis after memory formation induces forgetting of previously acquired memories. Neurogenesis-induced forgetting was originally demonstrated in mice, but a recent report suggests that the same effect may be absent in rats. Although a general species difference is possible, other potential explanations for these incongruent findings are that memories which are more strongly reinforced become resilient to forgetting or that perhaps only certain types of memories are affected. Here, we investigated whether neurogenesis-induced forgetting occurs in rats using several hippocampus-dependent tasks including contextual fear conditioning (CFC), the Morris Water Task (MWT), and touchscreen paired associates learning (PAL). Neurogenesis was increased following training using voluntary exercise for 4 weeks before recall of the previous memory was assessed. We show that voluntary running causes forgetting of context fear memories in a neurogenesis-dependent manner, and that neurogenesis-induced forgetting is present in rats across behavioral tasks despite differences in complexity or reliance on spatial, context, or object memories. In addition, we asked whether stronger memories are less susceptible to forgetting by varying the strength of training. Even with a very strong training protocol in the CFC task, we still observed enhanced forgetting related to increased neurogenesis. These results suggest that forgetting due to neurogenesis is a conserved mechanism that aids in the clearance of memories.
Collapse
Affiliation(s)
- Gavin A Scott
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, HMRB 162, Health Sciences Centre, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Dylan J Terstege
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, HMRB 162, Health Sciences Centre, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Andrew J Roebuck
- Yukon University, 500 University Drive, Whitehorse, YT, Y1A 5K4, Canada
| | - Kelsea A Gorzo
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, HMRB 162, Health Sciences Centre, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Alex P Vu
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, HMRB 162, Health Sciences Centre, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - John G Howland
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Jonathan R Epp
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, HMRB 162, Health Sciences Centre, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
8
|
Robert BJA, Moreau MM, Dos Santos Carvalho S, Barthet G, Racca C, Bhouri M, Quiedeville A, Garret M, Atchama B, Al Abed AS, Guette C, Henderson DJ, Desmedt A, Mulle C, Marighetto A, Montcouquiol M, Sans N. Vangl2 in the Dentate Network Modulates Pattern Separation and Pattern Completion. Cell Rep 2021; 31:107743. [PMID: 32521268 PMCID: PMC7296350 DOI: 10.1016/j.celrep.2020.107743] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/13/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
The organization of spatial information, including pattern completion and pattern separation processes, relies on the hippocampal circuits, yet the molecular and cellular mechanisms underlying these two processes are elusive. Here, we find that loss of Vangl2, a core PCP gene, results in opposite effects on pattern completion and pattern separation processes. Mechanistically, we show that Vangl2 loss maintains young postmitotic granule cells in an immature state, providing increased cellular input for pattern separation. The genetic ablation of Vangl2 disrupts granule cell morpho-functional maturation and further prevents CaMKII and GluA1 phosphorylation, disrupting the stabilization of AMPA receptors. As a functional consequence, LTP at lateral perforant path-GC synapses is impaired, leading to defects in pattern completion behavior. In conclusion, we show that Vangl2 exerts a bimodal regulation on young and mature GCs, and its disruption leads to an imbalance in hippocampus-dependent pattern completion and separation processes. Vangl2-dependent PCP signaling controls granule cell maturation and network integration Vangl2 stabilizes GluA1-containing receptors at the surface of dendritic spines Granule cells require Vangl2-dependent signaling to elicit LTP Vangl2 loss has opposite functional effects on pattern completion/separation processes
Collapse
Affiliation(s)
- Benjamin J A Robert
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France
| | - Maïté M Moreau
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France
| | - Steve Dos Santos Carvalho
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France
| | - Gael Barthet
- CNRS, IINS, UMR 5297, 33000 Bordeaux, France; Université Bordeaux, IINS, 33000 Bordeaux, France
| | - Claudia Racca
- Biosciences Institute, Newcastle University, Medical School, Newcastle upon Tyne, NE2 4HH, UK
| | - Mehdi Bhouri
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France
| | - Anne Quiedeville
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France
| | - Maurice Garret
- CNRS, INCIA, 33000 Bordeaux, France; Université Bordeaux, INCIA, 30000 Bordeaux, France
| | - Bénédicte Atchama
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France
| | - Alice Shaam Al Abed
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France
| | - Christelle Guette
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France
| | - Deborah J Henderson
- Biosciences Institute, Newcastle University, Centre for Life, Newcastle upon Tyne, NE1 4EP, UK
| | - Aline Desmedt
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France
| | - Christophe Mulle
- CNRS, IINS, UMR 5297, 33000 Bordeaux, France; Université Bordeaux, IINS, 33000 Bordeaux, France
| | - Aline Marighetto
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France
| | - Mireille Montcouquiol
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France.
| | - Nathalie Sans
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France.
| |
Collapse
|
9
|
Kim J, Shin CY. Deciphering the role of T-type calcium channels in regulating adult hippocampal neurogenesis. Acta Physiol (Oxf) 2021; 232:e13643. [PMID: 33660407 DOI: 10.1111/apha.13643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ji‐Woon Kim
- Department of Pharmacology School of Medicine Vanderbilt University Nashville TN USA
| | - Chan Young Shin
- Department of Pharmacology and Department of Advanced Translational Medicine School of Medicine Konkuk University Seoul South Korea
| |
Collapse
|
10
|
Vetere G, Xia F, Ramsaran AI, Tran LM, Josselyn SA, Frankland PW. An inhibitory hippocampal-thalamic pathway modulates remote memory retrieval. Nat Neurosci 2021; 24:685-693. [PMID: 33782621 PMCID: PMC8715645 DOI: 10.1038/s41593-021-00819-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/18/2021] [Indexed: 01/30/2023]
Abstract
Memories are supported by distributed hippocampal-thalamic-cortical networks, but the brain regions that contribute to network activity may vary with memory age. This process of reorganization is referred to as systems consolidation, and previous studies have examined the relationship between the activation of different hippocampal, thalamic, and cortical brain regions and memory age at the time of recall. While the activation of some brain regions increases with memory age, other regions become less active. In mice, here we show that the active disengagement of one such brain region, the anterodorsal thalamic nucleus, is necessary for recall at remote time-points and, in addition, which projection(s) mediate such inhibition. Specifically, we identified a sparse inhibitory projection from CA3 to the anterodorsal thalamic nucleus that becomes more active during systems consolidation, such that it is necessary for contextual fear memory retrieval at remote, but not recent, time-points post-learning.
Collapse
Affiliation(s)
- Gisella Vetere
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada,Team Cerebral Codes and Circuits Connectivity (C4), Plasticité du Cerveau, ESPCI Paris, CNRS, PSL University, Paris, France,These authors contributed equally: Gisella Vetere, Frances Xia
| | - Frances Xia
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada,Department of Physiology, University of Toronto, Toronto, Ontario, Canada,These authors contributed equally: Gisella Vetere, Frances Xia
| | - Adam I. Ramsaran
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada,Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Lina M. Tran
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Sheena A. Josselyn
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada,Department of Physiology, University of Toronto, Toronto, Ontario, Canada,Department of Psychology, University of Toronto, Toronto, Ontario, Canada,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada,Brain, Mind & Consciousness Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Paul W. Frankland
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada,Department of Physiology, University of Toronto, Toronto, Ontario, Canada,Department of Psychology, University of Toronto, Toronto, Ontario, Canada,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada,Child & Brain Development Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada,Correspondence and requests for materials should be addressed to P.W.F.
| |
Collapse
|
11
|
The Calcium/Calmodulin-Dependent Kinases II and IV as Therapeutic Targets in Neurodegenerative and Neuropsychiatric Disorders. Int J Mol Sci 2021; 22:ijms22094307. [PMID: 33919163 PMCID: PMC8122486 DOI: 10.3390/ijms22094307] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/14/2022] Open
Abstract
CaMKII and CaMKIV are calcium/calmodulin-dependent kinases playing a rudimentary role in many regulatory processes in the organism. These kinases attract increasing interest due to their involvement primarily in memory and plasticity and various cellular functions. Although CaMKII and CaMKIV are mostly recognized as the important cogs in a memory machine, little is known about their effect on mood and role in neuropsychiatric diseases etiology. Here, we aimed to review the structure and functions of CaMKII and CaMKIV, as well as how these kinases modulate the animals’ behavior to promote antidepressant-like, anxiolytic-like, and procognitive effects. The review will help in the understanding of the roles of the above kinases in the selected neurodegenerative and neuropsychiatric disorders, and this knowledge can be used in future drug design.
Collapse
|
12
|
NeuroPath2Path: Classification and elastic morphing between neuronal arbors using path-wise similarity. Neuroinformatics 2020; 18:479-508. [PMID: 32107735 DOI: 10.1007/s12021-019-09450-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Neuron shape and connectivity affect function. Modern imaging methods have proven successful at extracting morphological information. One potential path to achieve analysis of this morphology is through graph theory. Encoding by graphs enables the use of high throughput informatic methods to extract and infer brain function. However, the application of graph-theoretic methods to neuronal morphology comes with certain challenges in term of complex subgraph matching and the difficulty in computing intermediate shapes in between two imaged temporal samples. Here we report a novel, efficacious graph-theoretic method that rises to the challenges. The morphology of a neuron, which consists of its overall size, global shape, local branch patterns, and cell-specific biophysical properties, can vary significantly with the cell's identity, location, as well as developmental and physiological state. Various algorithms have been developed to customize shape based statistical and graph related features for quantitative analysis of neuromorphology, followed by the classification of neuron cell types using the features. Unlike the classical feature extraction based methods from imaged or 3D reconstructed neurons, we propose a model based on the rooted path decomposition from the soma to the dendrites of a neuron and extract morphological features from each constituent path. We hypothesize that measuring the distance between two neurons can be realized by minimizing the cost of continuously morphing the set of all rooted paths of one neuron to another. To validate this claim, we first establish the correspondence of paths between two neurons using a modified Munkres algorithm. Next, an elastic deformation framework that employs the square root velocity function is established to perform the continuous morphing, which, as an added benefit, provides an effective visualization tool. We experimentally show the efficacy of NeuroPath2Path, NeuroP2P, over the state of the art.
Collapse
|
13
|
Kosmidis S, Polyzos A, Harvey L, Youssef M, Denny CA, Dranovsky A, Kandel ER. RbAp48 Protein Is a Critical Component of GPR158/OCN Signaling and Ameliorates Age-Related Memory Loss. Cell Rep 2019; 25:959-973.e6. [PMID: 30355501 PMCID: PMC7725275 DOI: 10.1016/j.celrep.2018.09.077] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 06/25/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022] Open
Abstract
Precisely deciphering the molecular mechanisms of age-related memory loss is crucial to create appropriate therapeutic interventions. We have previously shown that the histone-binding protein RbAp48/Rbbp4 is a molecular determinant of Age-Related Memory Loss. By exploring how this protein regulates the genomic landscape of the hippocampal circuit, we find that RbAp48 controls the expression of BDNF and GPR158 proteins, both critical components of osteocalcin (OCN) signaling in the mouse hippocampus. We show that inhibition of RbAp48 in the hippocampal formation inhibits OCN's beneficial functions in cognition and causes deficits in discrimination memory. In turn, disruption of OCN/GPR158 signaling leads to the downregulation of RbAp48 protein, mimicking the discrimination memory deficits observed in the aged hippocampus. We also show that activation of the OCN/GPR158 pathway increases the expression of RbAp48 in the aged dentate gyrus and rescues age-related memory loss.
Collapse
Affiliation(s)
- Stylianos Kosmidis
- Department of Neuroscience, Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
| | - Alexandros Polyzos
- Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Lucas Harvey
- Department of Neuroscience, Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
| | - Mary Youssef
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Christine A Denny
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Systems Neuroscience, New York State Psychiatric Institute (NYSPI)/Research Foundation for Mental Hygiene, Inc. (RFMH), New York, NY 10032, USA
| | - Alex Dranovsky
- New York State Psychiatric Institute, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Eric R Kandel
- Department of Neuroscience, Columbia University, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
14
|
Takeyama E, Islam A, Watanabe N, Tsubaki H, Fukushima M, Mamun MA, Sato S, Sato T, Eto F, Yao I, Ito TK, Horikawa M, Setou M. Dietary Intake of Green Nut Oil or DHA Ameliorates DHA Distribution in the Brain of a Mouse Model of Dementia Accompanied by Memory Recovery. Nutrients 2019; 11:E2371. [PMID: 31590339 PMCID: PMC6835595 DOI: 10.3390/nu11102371] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/31/2019] [Accepted: 10/02/2019] [Indexed: 12/15/2022] Open
Abstract
Docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid, has significant healthbenefits. Previous studies reported decreased levels of DHA and DHA-containing phosphatidylcholines inthe brain of animals suffering from Alzheimer's disease, the most common type of dementia; furthermore,DHA supplementation has been found to improve brain DHA levels and memory efficiency in dementia. Oilextracted from the seeds of Plukenetia volubilis (green nut oil; GNO) is also expected to have DHA like effectsas it contains approximately 50% α-linolenic acid, a precursor of DHA. Despite this, changes in the spatialdistribution of DHA in the brain of animals with dementia following GNO or DHA supplementation remainunexplored. In this study, desorption electrospray ionization imaging mass spectrometry (DESI-IMS) wasapplied to observe the effects of GNO or DHA supplementation upon the distribution of DHA in the brain ofmale senescence-accelerated mouse-prone 8 (SAMP8) mice, a mouse model of dementia. DESI-IMS revealedthat brain DHA distribution increased 1.85-fold and 3.67-fold in GNO-fed and DHA-fed SAMP8 mice,respectively, compared to corn oil-fed SAMP8 mice. Memory efficiency in SAMP8 mice was also improvedby GNO or DHA supplementation. In summary, this study suggests the possibility of GNO or DHAsupplementation for the prevention of dementia.
Collapse
Affiliation(s)
- Emiko Takeyama
- Department of Food Science and Nutrition, Graduate School of Human Life Sciences, Showa Women's University, 1-7-57 Taishido, Setagaya-ku, 154-8533 Tokyo, Japan.
- Institute of Women's Health Sciences, Showa Women's University, 1-7-57 Taishido, Setagaya-ku, Tokyo 154-8533, Japan.
| | - Ariful Islam
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
| | - Nakamichi Watanabe
- Department of Food Science and Nutrition, Graduate School of Human Life Sciences, Showa Women's University, 1-7-57 Taishido, Setagaya-ku, 154-8533 Tokyo, Japan.
- Institute of Women's Health Sciences, Showa Women's University, 1-7-57 Taishido, Setagaya-ku, Tokyo 154-8533, Japan.
| | - Hiroe Tsubaki
- The Institute of Statistical Mathematics, 10-3 Midori-cho, Tachikawa-si, Tokyo 190-8562, Japan.
| | - Masako Fukushima
- Institute of Women's Health Sciences, Showa Women's University, 1-7-57 Taishido, Setagaya-ku, Tokyo 154-8533, Japan.
| | - Md Al Mamun
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
| | - Shumpei Sato
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
| | - Tomohito Sato
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
| | - Fumihiro Eto
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
- Department of Optical Imaging, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
| | - Ikuko Yao
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
- Department of Optical Imaging, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
| | - Takashi K Ito
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
| | - Makoto Horikawa
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
- Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
| |
Collapse
|
15
|
Liu W, Xia Y, Kuang H, Wang Z, Liu S, Tang C, Yin D. Proteomic Profile of Carbonylated Proteins Screen the Regulation of Calmodulin-Dependent Protein Kinases-AMPK-Beclin1 in Aerobic Exercise-Induced Autophagy in Middle-Aged Rat Hippocampus. Gerontology 2019; 65:620-633. [PMID: 31242498 DOI: 10.1159/000500742] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/04/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Carbonylation is an oxidative modification of the proteins and a marker of oxidative stress. The accumulation of toxic carbonylated proteins might be one of the onsets of pathogenesis in hippocampal aging or neurodegeneration. Enormous evidence indicates that regular aerobic exercise might alleviate the dysfunction of carbonylated proteins, but the adaptational mechanisms in response to exercise are unclear. OBJECTIVE This study explored the carbonyl stress mechanism in the hippocampus using proteomics and the role of calmodulin-dependent protein kinases (CAMK)-AMP-activated protein kinase (AMPK)-Beclin1 signaling pathways in alleviating aging or improving function with regular aerobic exercise. METHODS Twenty-four healthy 13-month-old male Sprague-Dawley rats (average 693.21 ± 68.85 g) were randomly divided into middle-aged sedentary control group (M-SED, n = 12) and middle-aged aerobic exercise runner group (M-EX, n = 12). The M-EX group participated in regular aerobic exercise - treadmill running - with exercise intensity increasing gradually from 50-55% to 65-70% of maximum oxygen consumption (V˙O2max) over 10 weeks. The targeted proteins of oxidative modification were profiled by avidin magnetic beads and electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q-TOF-MS). Western blots were used to test for molecular targets. RESULTS Regular aerobic exercise restores the intersessional habituation and rescues the hippocampus morphological structure in middle-aged rats. -ESI-Q-TOF-MS screened 56 carbonylated proteins only found in M-SED and 16 carbonylated proteins only found in M-EX, indicating aerobic exercise decreased carbonyl stress. Intriguingly, Ca2+/CAMK II alpha (CAMKIIα) was carbonylated only in the M-SED group at the oxidative modification site of 4-hydroxynonenal adducts, while regular aerobic exercise alleviated CAMKIIα carbonylation. Regular aerobic exercise significantly increased the expression and phosphorylated, active levels of CAMKIIα and AMPKα1. It also upregulated the expression of Beclin1 and microtubule-associated protein1-light chain 3 in the hippocampus. CONCLUSION Quantification of CAMKIIα carbonylation may be a potential biomarker of the hippocampal senescence. Additionally, regular aerobic exercise-induced autophagy via the activation of CAMK-AMPK-Beclin1 signaling pathway may mitigate the hippocampal neurodegeneration or pathological changes by alleviating protein carbonylation (carbonyl stress).
Collapse
Affiliation(s)
- Wenfeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, China, .,Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA,
| | - Yan Xia
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, China
| | - Heyu Kuang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, China
| | - Zhiyuan Wang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, China
| | - Shaopeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, China
| | - Changfa Tang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, China
| | - Dazhong Yin
- Qingyuan People's Hospital, The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
16
|
Liao R, Chen Y, Cheng L, Fan L, Chen H, Wan Y, You Y, Zheng Y, Jiang L, Chen Z, Zhang X, Hu W. Histamine H1 Receptors in Neural Stem Cells Are Required for the Promotion of Neurogenesis Conferred by H3 Receptor Antagonism following Traumatic Brain Injury. Stem Cell Reports 2019; 12:532-544. [PMID: 30745032 PMCID: PMC6409425 DOI: 10.1016/j.stemcr.2019.01.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 01/05/2019] [Accepted: 01/07/2019] [Indexed: 01/08/2023] Open
Abstract
The neurological recovery following traumatic brain injury (TBI) is limited, largely due to a deficiency in neurogenesis. The present study explores the effects of histamine H3 receptor (H3R) antagonism on TBI and mechanisms related to neurogenesis. H3R antagonism or H3R gene knockout alleviated neurological injury in the late phase of TBI, and also promoted neuroblast differentiation to enhance neurogenesis through activation of the histaminergic system. Histamine H1 receptor, but not H2 receptor, in neural stem cells is shown to be essential for this promotion by using Hrh1fl/fl;NestinCreERT2 and Hrh2fl/fl;NestinCreERT2 mice. Moreover, increase in mature and functional neurons at the penumbra area conferred by H3R antagonism was abrogated in Hrh1fl/fl;NestinCreERT2 mice. Taken together, H3R antagonism provides neuroprotection against TBI in the late phase through the promotion of neurogenesis, and the H1 receptor in neural stem cells is required for this action. H3R may serve as a new target for clinical treatment of TBI. Histamine H3R antagonism provides neuroprotection against traumatic brain injury H3R antagonism promotes neuroblast differentiation to enhance neurogenesis H1R in NSCs is required for the promotion of neurogenesis H3R antagonism increases mature and functional neurons mediated by H1R in NSCs
Collapse
Affiliation(s)
- Rujia Liao
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Science, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Youchao Chen
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Science, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Li Cheng
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Science, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Lishi Fan
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Science, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Han Chen
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Science, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Yushan Wan
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Science, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Yi You
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Science, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Yanrong Zheng
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Science, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Lei Jiang
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Science, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Zhong Chen
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Science, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Xiangnan Zhang
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Science, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China.
| | - Weiwei Hu
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Basic Medical Science, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Pharmacy of Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China.
| |
Collapse
|
17
|
Choi JH, Yarishkin O, Kim E, Bae Y, Kim A, Kim SC, Ryoo K, Cho CH, Hwang EM, Park JY. TWIK-1/TASK-3 heterodimeric channels contribute to the neurotensin-mediated excitation of hippocampal dentate gyrus granule cells. Exp Mol Med 2018; 50:1-13. [PMID: 30416196 PMCID: PMC6230555 DOI: 10.1038/s12276-018-0172-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 07/16/2018] [Accepted: 07/23/2018] [Indexed: 01/15/2023] Open
Abstract
Two-pore domain K+ (K2P) channels have been shown to modulate neuronal excitability. The physiological role of TWIK-1, the first identified K2P channel, in neuronal cells is largely unknown, and we reported previously that TWIK-1 contributes to the intrinsic excitability of dentate gyrus granule cells (DGGCs) in mice. In the present study, we investigated the coexpression of TWIK-1 and TASK-3, another K2P member, in DGGCs. Immunohistochemical staining data showed that TASK-3 proteins were highly localized in the proximal dendrites and soma of DGGCs, and this localization is similar to the expression pattern of TWIK-1. TWIK-1 was shown to associate with TASK-3 in DGGCs of mouse hippocampus and when both genes were overexpressed in COS-7 cells. shRNA-mediated gene silencing demonstrated that TWIK-1/TASK-3 heterodimeric channels displayed outwardly rectifying currents and contributed to the intrinsic excitability of DGGCs. Neurotensin-neurotensin receptor 1 (NT-NTSR1) signaling triggered the depolarization of DGGCs by inhibiting TWIK-1/TASK-3 heterodimeric channels, causing facilitated excitation of DGGCs. Taken together, our study clearly showed that TWIK-1/TASK-3 heterodimeric channels contribute to the intrinsic excitability of DGGCs and that their activities are regulated by NT-NTSR1 signaling.
Collapse
Affiliation(s)
- Jae Hyouk Choi
- Korea Institute of Science and Technology (KIST), Center for Functional Connectomics, Seoul, 02792, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Oleg Yarishkin
- Korea Institute of Science and Technology (KIST), Center for Functional Connectomics, Seoul, 02792, Republic of Korea
| | - Eunju Kim
- Korea Institute of Science and Technology (KIST), Center for Functional Connectomics, Seoul, 02792, Republic of Korea.,School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| | - Yeonju Bae
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| | - Ajung Kim
- Korea Institute of Science and Technology (KIST), Center for Functional Connectomics, Seoul, 02792, Republic of Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Seung-Chan Kim
- Korea Institute of Science and Technology (KIST), Center for Functional Connectomics, Seoul, 02792, Republic of Korea.,School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| | - Kanghyun Ryoo
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| | - Chang-Hoon Cho
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| | - Eun Mi Hwang
- Korea Institute of Science and Technology (KIST), Center for Functional Connectomics, Seoul, 02792, Republic of Korea. .,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea. .,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Jae-Yong Park
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
18
|
Galinato MH, Takashima Y, Fannon MJ, Quach LW, Morales Silva RJ, Mysore KK, Terranova MJ, Dutta RR, Ostrom RW, Somkuwar SS, Mandyam CD. Neurogenesis during Abstinence Is Necessary for Context-Driven Methamphetamine-Related Memory. J Neurosci 2018; 38:2029-2042. [PMID: 29363584 PMCID: PMC5824740 DOI: 10.1523/jneurosci.2011-17.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/05/2017] [Accepted: 01/09/2018] [Indexed: 12/22/2022] Open
Abstract
Abstinence from methamphetamine addiction enhances proliferation and differentiation of neural progenitors and increases adult neurogenesis in the dentate gyrus (DG). We hypothesized that neurogenesis during abstinence contributes to context-driven drug-seeking behaviors. To test this hypothesis, the pharmacogenetic rat model (GFAP-TK rats) was used to conditionally and specifically ablate neurogenesis in the DG. Male GFAP-TK rats were trained to self-administer methamphetamine or sucrose and were administered the antiviral drug valganciclovir (Valcyte) to produce apoptosis of actively dividing GFAP type 1 stem-like cells to inhibit neurogenesis during abstinence. Hippocampus tissue was stained for Ki-67, NeuroD, and DCX to measure levels of neural progenitors and immature neurons, and was stained for synaptoporin to determine alterations in mossy fiber tracts. DG-enriched tissue punches were probed for CaMKII to measure alterations in plasticity-related proteins. Whole-cell patch-clamp recordings were performed in acute brain slices from methamphetamine naive (controls) and methamphetamine experienced animals (+/-Valcyte). Spontaneous EPSCs and intrinsic excitability were recorded from granule cell neurons (GCNs). Reinstatement of methamphetamine seeking enhanced autophosphorylation of CaMKII, reduced mossy fiber density, and induced hyperexcitability of GCNs. Inhibition of neurogenesis during abstinence prevented context-driven methamphetamine seeking, and these effects correlated with reduced autophosphorylation of CaMKII, increased mossy fiber density, and reduced the excitability of GCNs. Context-driven sucrose seeking was unaffected. Together, the loss-of-neurogenesis data demonstrate that neurogenesis during abstinence assists with methamphetamine context-driven memory in rats, and that neurogenesis during abstinence is essential for the expression of synaptic proteins and plasticity promoting context-driven drug memory.SIGNIFICANCE STATEMENT Our work uncovers a mechanistic relationship between neurogenesis in the dentate gyrus and drug seeking. We report that the suppression of excessive neurogenesis during abstinence from methamphetamine addiction by a confirmed phamacogenetic approach blocked context-driven methamphetamine reinstatement and prevented maladaptive changes in expression and activation of synaptic proteins and basal synaptic function associated with learning and memory in the dentate gyrus. Our study is the first to demonstrate an interesting and dysfunctional role of adult hippocampal neurogenesis during abstinence to drug-seeking behavior in animals self-administering escalating amounts of methamphetamine. Together, these results support a direct role for the importance of adult neurogenesis during abstinence in compulsive-like drug reinstatement.
Collapse
Affiliation(s)
- Melissa H Galinato
- Departments of Neuroscience
- Veterans Medical Research Foundation, VA San Diego Healthcare System, San Diego, California 92161, and
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California 92037
| | - Yoshio Takashima
- Anesthesiology, University of California San Diego, San Diego, California 92093
- Veterans Medical Research Foundation, VA San Diego Healthcare System, San Diego, California 92161, and
| | - McKenzie J Fannon
- Veterans Medical Research Foundation, VA San Diego Healthcare System, San Diego, California 92161, and
| | - Leon W Quach
- Veterans Medical Research Foundation, VA San Diego Healthcare System, San Diego, California 92161, and
| | | | - Karthik K Mysore
- Veterans Medical Research Foundation, VA San Diego Healthcare System, San Diego, California 92161, and
| | - Michael J Terranova
- Veterans Medical Research Foundation, VA San Diego Healthcare System, San Diego, California 92161, and
| | - Rahul R Dutta
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California 92037
| | - Ryan W Ostrom
- Veterans Medical Research Foundation, VA San Diego Healthcare System, San Diego, California 92161, and
| | - Sucharita S Somkuwar
- Veterans Medical Research Foundation, VA San Diego Healthcare System, San Diego, California 92161, and
| | - Chitra D Mandyam
- Departments of Neuroscience,
- Anesthesiology, University of California San Diego, San Diego, California 92093
- Veterans Medical Research Foundation, VA San Diego Healthcare System, San Diego, California 92161, and
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
19
|
Xia F, Richards BA, Tran MM, Josselyn SA, Takehara-Nishiuchi K, Frankland PW. Parvalbumin-positive interneurons mediate neocortical-hippocampal interactions that are necessary for memory consolidation. eLife 2017; 6:27868. [PMID: 28960176 PMCID: PMC5655147 DOI: 10.7554/elife.27868] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 09/28/2017] [Indexed: 12/13/2022] Open
Abstract
Following learning, increased coupling between spindle oscillations in the medial prefrontal cortex (mPFC) and ripple oscillations in the hippocampus is thought to underlie memory consolidation. However, whether learning-induced increases in ripple-spindle coupling are necessary for successful memory consolidation has not been tested directly. In order to decouple ripple-spindle oscillations, here we chemogenetically inhibited parvalbumin-positive (PV+) interneurons, since their activity is important for regulating the timing of spiking activity during oscillations. We found that contextual fear conditioning increased ripple-spindle coupling in mice. However, inhibition of PV+ cells in either CA1 or mPFC eliminated this learning-induced increase in ripple-spindle coupling without affecting ripple or spindle incidence. Consistent with the hypothesized importance of ripple-spindle coupling in memory consolidation, post-training inhibition of PV+ cells disrupted contextual fear memory consolidation. These results indicate that successful memory consolidation requires coherent hippocampal-neocortical communication mediated by PV+ cells.
Collapse
Affiliation(s)
- Frances Xia
- Department of Physiology, University of Toronto, Toronto, Canada.,Program in Neurosciences and Mental Health, Hospital for Sick Children, University Avenue, Toronto, Canada
| | - Blake A Richards
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Matthew M Tran
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Sheena A Josselyn
- Department of Physiology, University of Toronto, Toronto, Canada.,Program in Neurosciences and Mental Health, Hospital for Sick Children, University Avenue, Toronto, Canada.,Department of Psychology, University of Toronto, Toronto, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Kaori Takehara-Nishiuchi
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.,Department of Psychology, University of Toronto, Toronto, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Paul W Frankland
- Department of Physiology, University of Toronto, Toronto, Canada.,Program in Neurosciences and Mental Health, Hospital for Sick Children, University Avenue, Toronto, Canada.,Department of Psychology, University of Toronto, Toronto, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Canada
| |
Collapse
|
20
|
Oxytocin stimulates hippocampal neurogenesis via oxytocin receptor expressed in CA3 pyramidal neurons. Nat Commun 2017; 8:537. [PMID: 28912554 PMCID: PMC5599651 DOI: 10.1038/s41467-017-00675-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 07/19/2017] [Indexed: 11/08/2022] Open
Abstract
In addition to the regulation of social and emotional behaviors, the hypothalamic neuropeptide oxytocin has been shown to stimulate neurogenesis in adult dentate gyrus; however, the mechanisms underlying the action of oxytocin are still unclear. Taking advantage of the conditional knockout mouse model, we show here that endogenous oxytocin signaling functions in a non-cell autonomous manner to regulate survival and maturation of newly generated dentate granule cells in adult mouse hippocampus via oxytocin receptors expressed in CA3 pyramidal neurons. Through bidirectional chemogenetic manipulations, we also uncover a significant role for CA3 pyramidal neuron activity in regulating adult neurogenesis in the dentate gyrus. Retrograde neuronal tracing combined with immunocytochemistry revealed that the oxytocin neurons in the paraventricular nucleus project directly to the CA3 region of the hippocampus. Our findings reveal a critical role for oxytocin signaling in adult neurogenesis. Oxytocin (OXT) has been implicated in adult neurogenesis. Here the authors show that CA3 pyramidal cells in the adult mouse hippocampus express OXT receptors and receive inputs from hypothalamic OXT neurons; activation of OXT signaling in CA3 pyramidal cells promotes the survival and maturation of newborn neurons in the dentate gyrus in a non-cell autonomous manner.
Collapse
|
21
|
Zhao J, Wang Y, Xu C, Liu K, Wang Y, Chen L, Wu X, Gao F, Guo Y, Zhu J, Wang S, Nishibori M, Chen Z. Therapeutic potential of an anti-high mobility group box-1 monoclonal antibody in epilepsy. Brain Behav Immun 2017; 64:308-319. [PMID: 28167116 DOI: 10.1016/j.bbi.2017.02.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/22/2017] [Accepted: 02/01/2017] [Indexed: 12/17/2022] Open
Abstract
Brain inflammation is a major factor in epilepsy, and the high mobility group box-1 (HMGB1) protein is known to contribute significantly to the generation of seizures. Here, we investigated the therapeutic potential of an anti-HMGB1 monoclonal antibody (mAb) in epilepsy. anti-HMGB1 mAb attenuated both acute seizure models (maximal electroshock seizure, pentylenetetrazole-induced and kindling-induced), and chronic epilepsy model (kainic acid-induced) in a dose-dependent manner. Meanwhile, the anti-HMGB1 mAb also attenuated seizure activities of human brain slices obtained from surgical resection from drug-resistant epilepsy patients. The mAb showed an anti-seizure effect with a long-term manner and appeared to be minimal side effects at even very high dose (no disrupted physical EEG rhythm and no impaired basic physical functions, such as body growth rate and thermoregulation). This anti-seizure effect of mAb results from its inhibition of translocated HMGB1 from nuclei following seizures, and the anti-seizure effect was absent in toll-like receptor 4 knockout (TLR4-/-) mice. Interestingly, the anti-HMGB1 mAb also showed a disease-modifying anti-epileptogenetic effect on epileptogenesis after status epileptics, which is indicated by reducing seizure frequency and improving the impaired cognitive function. These results indicate that the anti-HMGB1 mAb should be viewed as a very promising approach for the development of novel therapies to treat refractory epilepsy.
Collapse
Affiliation(s)
- Junli Zhao
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Cenglin Xu
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Keyue Liu
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ying Wang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Liying Chen
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaohua Wu
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Gao
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Guo
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junming Zhu
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuang Wang
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Zhong Chen
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
22
|
Takemoto-Kimura S, Suzuki K, Horigane SI, Kamijo S, Inoue M, Sakamoto M, Fujii H, Bito H. Calmodulin kinases: essential regulators in health and disease. J Neurochem 2017; 141:808-818. [PMID: 28295333 DOI: 10.1111/jnc.14020] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/24/2017] [Accepted: 03/08/2017] [Indexed: 01/22/2023]
Abstract
Neuronal activity induces intracellular Ca2+ increase, which triggers activation of a series of Ca2+ -dependent signaling cascades. Among these, the multifunctional Ca2+ /calmodulin-dependent protein kinases (CaMKs, or calmodulin kinases) play key roles in neuronal transmission, synaptic plasticity, circuit development and cognition. The most investigated CaMKs for these roles in neuronal functions are CaMKI, CaMKII, CaMKIV and we will shed light on these neuronal CaMKs' functions in this review. Catalytically active members of CaMKs currently are CaMKI, CaMKII, CaMKIV and CaMKK. Although they all necessitate the binding of Ca2+ and calmodulin complex (Ca2+ /CaM) for releasing autoinhibition, each member of CaMK has distinct activation mechanisms-autophosphorylation mediated autonomy of multimeric CaMKII and CaMKK-dependent phosphoswitch-induced activation of CaMKI or CaMKIV. Furthermore, each CaMK shows distinct subcellular localization that underlies specific compartmentalized function in each activated neuron. In this review, we first summarize these molecular characteristics of each CaMK as to regulation and subcellular localization, and then describe each biological function. In the last section, we also focus on the emerging role of CaMKs in pathophysiological conditions by introducing the recent studies, especially focusing on drug addiction and depression, and discuss how dysfunctional CaMKs may contribute to the pathology of the neuropsychological disorders. This article is part of the mini review series "60th Anniversary of the Japanese Society for Neurochemistry".
Collapse
Affiliation(s)
- Sayaka Takemoto-Kimura
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Neuroscience I, Research Institute of Environmental Medicine, Nagoya University, Chikusa-ku, Nagoya, Japan.,PRESTO-Japan Science and Technology Agency, Chiyoda-ku, Tokyo, Japan
| | - Kanzo Suzuki
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shin-Ichiro Horigane
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Neuroscience I, Research Institute of Environmental Medicine, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Satoshi Kamijo
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masatoshi Inoue
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masayuki Sakamoto
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hajime Fujii
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
23
|
Huang CW, Chen YW, Lin YR, Chen PH, Chou MH, Lee LJ, Wang PY, Wu JT, Tsao YP, Chen SL. Conditional Knockout of Breast Carcinoma Amplified Sequence 2 (BCAS2) in Mouse Forebrain Causes Dendritic Malformation via β-catenin. Sci Rep 2016; 6:34927. [PMID: 27713508 PMCID: PMC5054673 DOI: 10.1038/srep34927] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/20/2016] [Indexed: 01/11/2023] Open
Abstract
Breast carcinoma amplified sequence 2 (BCAS2) is a core component of the hPrP19 complex that controls RNA splicing. Here, we performed an exon array assay and showed that β-catenin is a target of BCAS2 splicing regulation. The regulation of dendrite growth and morphology by β-catenin is well documented. Therefore, we generated conditional knockout (cKO) mice to eliminate the BCAS2 expression in the forebrain to investigate the role of BCAS2 in dendrite growth. BCAS2 cKO mice showed a microcephaly-like phenotype with a reduced volume in the dentate gyrus (DG) and low levels of learning and memory, as evaluated using Morris water maze analysis and passive avoidance, respectively. Golgi staining revealed shorter dendrites, less dendritic complexity and decreased spine density in the DG of BCAS2 cKO mice. Moreover, the cKO mice displayed a short dendrite length in newborn neurons labeled by DCX, a marker of immature neurons, and BrdU incorporation. To further examine the mechanism underlying BCAS2-mediated dendritic malformation, we overexpressed β-catenin in BCAS2-depleted primary neurons and found that the dendritic growth was restored. In summary, BCAS2 is an upstream regulator of β-catenin gene expression and plays a role in dendrite growth at least partly through β-catenin.
Collapse
Affiliation(s)
- Chu-Wei Huang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yi-Wen Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yi-Rou Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Po-Han Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Meng-Hsuan Chou
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Li-Jen Lee
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Pei-Yu Wang
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - June-Tai Wu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan.,Department of Medical Research, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Yeou-Ping Tsao
- Department of Ophthalmology, Mackay Memorial Hospital, Taipei 104, Taiwan
| | - Show-Li Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
24
|
Nakahara S, Miyake S, Tajinda K, Ito H. Mossy fiber mis-pathfinding and semaphorin reduction in the hippocampus of α-CaMKII hKO mice. Neurosci Lett 2015; 598:47-51. [DOI: 10.1016/j.neulet.2015.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/24/2015] [Accepted: 05/08/2015] [Indexed: 11/25/2022]
|