1
|
Jung DH, Lee HJ, Choi YW, Shin HK, Choi BT. Sex-specific responses to juvenile stress on the dopaminergic system in an animal model of attention-deficit hyperactivity disorder. Biomed Pharmacother 2023; 160:114352. [PMID: 36738506 DOI: 10.1016/j.biopha.2023.114352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The etiology of attention-deficit hyperactivity disorder (ADHD) strongly suggests a genetic component as the main cause; however, environmental factors such as early adverse experiences in childhood may play an interactive role with the genetic susceptibility. Spontaneously hypertensive rats (SHRs), a genetic ADHD model, and control Wistar Kyoto rats (WKYs) were subjected to chronic unpredictable mild stress during the juvenile period. The behavioral characteristics were monitored, and dopamine-related factors in the core regions of dopaminergic pathways were measured. Higher ADHD symptom-related behaviors were observed in response to juvenile stress in male SHRs than control WKYs. For the SHRs subjected to juvenile stress, hyperactivity in males, recognition in females, and depressant potential in both sexes were markedly observed. In the expression of 17 dopamine-related genes and proteins, greater changes were detected in male SHRs subjected to juvenile stress, especially in dopamine metabolic factors. Dopamine clearance factors involved in dopamine degradation and transport, especially catechol-O-methyltransferase (COMT) and dopamine transporter (DAT), showed sex-specific differences induced by juvenile stress in dopamine metabolite assays. Moreover, stressed male SHRs treated with methylphenidate showed better improvement in behavior than the females, resulting in different levels of COMT and DAT amelioration. These results suggest that juvenile stress potentially increased the incidence of ADHD in a genetic rat model, which showed sex-specific differences based on the expression of COMT and DAT. Therefore, our results could help develop gender-specific diagnostics and healthcare options for juvenile stress in patients with ADHD.
Collapse
Affiliation(s)
- Da Hee Jung
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hong Ju Lee
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea
| | - Young Whan Choi
- Department of Horticultural Bioscience, College of Natural Resource and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Hwa Kyoung Shin
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea.
| | - Byung Tae Choi
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea.
| |
Collapse
|
2
|
Characterization by Gene Expression Analysis of Two Groups of Dopaminergic Cells Isolated from the Mouse Olfactory Bulb. BIOLOGY 2023; 12:biology12030367. [PMID: 36979058 PMCID: PMC10045757 DOI: 10.3390/biology12030367] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023]
Abstract
The olfactory bulb (OB) is one of two regions of the mammalian brain which undergo continuous neuronal replacement during adulthood. A significant fraction of the cells added in adulthood to the bulbar circuitry is constituted by dopaminergic (DA) neurons. We took advantage of a peculiar property of dopaminergic neurons in transgenic mice expressing eGFP under the tyrosine hydroxylase (TH) promoter: while DA neurons located in the glomerular layer (GL) display full electrophysiological maturation, eGFP+ cells in the mitral layer (ML) show characteristics of immature cells. In addition, they also display a lower fluorescence intensity, possibly reflecting different degrees of maturation. To investigate whether this difference in maturation might be confirmed at the gene expression level, we used a fluorescence-activated cell sorting technique on enzymatically dissociated cells of the OB. The cells were divided into two groups based on their level of fluorescence, possibly corresponding to immature ML cells and fully mature DA neurons from the GL. Semiquantitative real-time PCR was performed to detect the level of expression of genes linked to the degree of maturation of DA neurons. We showed that indeed the cells expressing low eGFP fluorescence are immature neurons. Our method can be further used to explore the differences between these two groups of DA neurons.
Collapse
|
3
|
Magnuson JT, Fuller N, McGruer V, Huff Hartz KE, Acuña S, Whitledge GW, Lydy MJ, Schlenk D. Effect of temperature and dietary pesticide exposure on neuroendocrine and olfactory responses in juvenile Chinook salmon (Oncorhynchus tshawytscha). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120938. [PMID: 36572271 DOI: 10.1016/j.envpol.2022.120938] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/06/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Projected water temperature increases based on predicted climate change scenarios and concomitant pesticide exposure raises concern about the responses of aquatic organisms. To better understand the effect of pesticide mixtures and influence of water temperature to fish, juvenile Chinook salmon (Oncorhynchus tshawytscha) were dietarily exposed to a mixture of legacy and current use pesticides (p,p'-DDE, bifenthrin, chlorpyrifos, esfenvalerate, and fipronil) at concentrations detected from field-collected prey items in the Sacramento-San Joaquin Delta, California (Delta) and exposed under current and predicted future water temperature scenarios, 11, 14, or 17 °C, for 14 days. The expression of a subset of genes (deiodinase 2-dio2, gonadotropin releasing hormone 2-gnrh2, and catechol-o-methyltransferase-comt) involved in neuroendocrine, dopaminergic, and olfactory function previously shown to be altered by individual pesticide exposures germane to this study were determined and olfactory function assessed using a Y-maze behavioral assay. When total body burdens of pesticides were measured, a significant decrease in dio2 expression was observed in Chinook salmon exposed at 14 °C compared to fish kept at 11 °C. Increases in gnrh2 expression were also observed in fish exposed to 14 °C. Similarly, increases in comt expression was noted at 14 and 17 °C. Additionally, altered expression of all transcripts was observed, showing interactions between temperature and individual pesticide concentrations. Chinook salmon spent significantly more time actively avoiding the odorant arm at baseline conditions of 11 °C in the Y-maze. At higher temperatures, Chinook spent significantly more time not making a choice between the odorant or clean arm following exposure to the low pesticide mixture, relative to 11 °C. These results suggest that dietary exposure to pesticide mixtures can potentially induce neuroendocrine effects and behavior. Impaired olfactory responses exhibited by Chinook salmon could have implications for predator avoidance in the wild under increased temperature scenarios and impact populations in the future.
Collapse
Affiliation(s)
- Jason T Magnuson
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States.
| | - Neil Fuller
- Center for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, IL, 62901, United States
| | - Victoria McGruer
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States
| | - Kara E Huff Hartz
- Center for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, IL, 62901, United States
| | - Shawn Acuña
- Metropolitan Water District of Southern California, Sacramento, CA, 95814, United States
| | - Gregory W Whitledge
- Center for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, IL, 62901, United States
| | - Michael J Lydy
- Center for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, IL, 62901, United States
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States; Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
4
|
Byrne DJ, Lipovsek M, Crespo A, Grubb MS. Brief sensory deprivation triggers plasticity of dopamine-synthesising enzyme expression in genetically labelled olfactory bulb dopaminergic neurons. Eur J Neurosci 2022; 56:3591-3612. [PMID: 35510299 PMCID: PMC9540594 DOI: 10.1111/ejn.15684] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
In the glomerular layer of the olfactory bulb, local dopaminergic interneurons play a key role in regulating the flow of sensory information from nose to cortex. These dual dopamine- and GABA-releasing cells are capable of marked experience-dependent changes in the expression of neurotransmitter-synthesising enzymes, including tyrosine hydroxylase (TH). However, such plasticity has most commonly been studied in cell populations identified by their expression of the enzyme being studied and after long periods of sensory deprivation. Here, instead, we used brief 1- or 3-day manipulations of olfactory experience in juvenile mice, coupled with a conditional genetic approach that labelled neurons contingent upon their expression of the dopamine transporter (DAT-tdTomato). This enabled us to evaluate the potential for rapid changes in neurotransmitter-synthesising enzyme expression in an independently identified neuronal population. Our labelling strategy showed good specificity for olfactory bulb dopaminergic neurons, while revealing a minority sub-population of non-dopaminergic DAT-tdTomato cells that expressed the calcium-binding protein calretinin. Crucially, the proportions of these neuronal subtypes were not affected by brief alterations in sensory experience. Short-term olfactory manipulations also produced no significant changes in immunofluorescence or whole-bulb mRNA for the GABA-synthesising enzyme GAD67/Gad1. However, in bulbar DAT-tdTomato neurons, brief sensory deprivation was accompanied by a transient, small drop in immunofluorescence for the dopamine-synthesising enzyme dopa decarboxylase (DDC) and a sustained decrease for TH. Deprivation also produced a sustained decrease in whole-bulb Th mRNA. Careful characterisation of an independently identified, genetically labelled neuronal population therefore enabled us to uncover rapid experience-dependent changes in dopamine-synthesising enzyme expression.
Collapse
Affiliation(s)
- Darren J. Byrne
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN)King's College LondonLondonUK
| | - Marcela Lipovsek
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN)King's College LondonLondonUK
- Ear InstituteUniversity College LondonLondonUK
| | - Andres Crespo
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN)King's College LondonLondonUK
| | - Matthew S. Grubb
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN)King's College LondonLondonUK
| |
Collapse
|
5
|
Everett AC, Graul BE, Ronström JW, Robinson JK, Watts DB, España RA, Siciliano CA, Yorgason JT. Effectiveness and Relationship between Biased and Unbiased Measures of Dopamine Release and Clearance. ACS Chem Neurosci 2022; 13:1534-1548. [PMID: 35482592 PMCID: PMC10763521 DOI: 10.1021/acschemneuro.2c00033] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Fast-scan cyclic voltammetry (FSCV) is an effective tool for measuring dopamine release and clearance throughout the brain, especially the striatum where dopamine terminals are abundant and signals are heavily regulated by release machinery and the dopamine transporter (DAT). Peak height measurement is perhaps the most common method for measuring dopamine release, but it is influenced by changes in clearance. Michaelis-Menten-based modeling has been a standard in measuring dopamine clearance, but it is problematic in that it requires experimenter fitted modeling subject to experimenter bias. This study presents the use of the first derivative (velocity) of evoked dopamine signals as an alternative approach for measuring and distinguishing dopamine release from clearance. Maximal upward velocity predicts reductions in dopamine peak height due to D2 and GABAB receptor stimulation and by alterations in calcium concentrations. The Michaelis-Menten maximal velocity (Vmax) measure, an approximation for DAT levels, predicts maximal downward velocity in slices and in vivo. Dopamine peak height and upward velocity were similar between wild-type and DAT knock-out (DATKO) mice. In contrast, downward velocity was lower and exponential decay (tau) was higher in DATKO mice, supporting the use of both measures for extreme changes in DAT activity. In slices, the competitive DAT inhibitors cocaine, PTT, and WF23 increased peak height and upward velocity differentially across increasing concentrations, with PTT and cocaine reducing these measures at high concentrations. Downward velocity and tau values decreased and increased respectively across concentrations, with greater potency and efficacy observed with WF23 and PTT. In vivo recordings demonstrated similar effects of WF23, PTT, and cocaine on measures of release and clearance. Tau was a more sensitive measure at low concentrations, supporting its use as a surrogate for the Michaelis-Menten measure of apparent affinity (Km). Together, these results inform on the use of these various measures for dopamine release and clearance.
Collapse
Affiliation(s)
- Anna C. Everett
- Brigham Young University, Department of Cellular Biology and Physiology, Provo, UT 84602, USA
| | - Ben E. Graul
- Brigham Young University, Department of Cellular Biology and Physiology, Provo, UT 84602, USA
| | - Joakim W. Ronström
- Brigham Young University, Department of Cellular Biology and Physiology, Provo, UT 84602, USA
| | - J. Kayden Robinson
- Brigham Young University, Department of Cellular Biology and Physiology, Provo, UT 84602, USA
| | - Daniel B. Watts
- Brigham Young University, Department of Cellular Biology and Physiology, Provo, UT 84602, USA
| | - Rodrigo A. España
- Drexel University, Department of Neurobiology & Anatomy, Philadelphia, PA 28619, USA
| | - Cody A. Siciliano
- Vanderbilt University, Center for Addiction Research, Nashville, TN 37203, USA
| | - Jordan T. Yorgason
- Brigham Young University, Department of Cellular Biology and Physiology, Provo, UT 84602, USA
| |
Collapse
|
6
|
Fischer T, Prey J, Eschholz L, Rotermund N, Lohr C. Norepinephrine-Induced Calcium Signaling and Store-Operated Calcium Entry in Olfactory Bulb Astrocytes. Front Cell Neurosci 2021; 15:639754. [PMID: 33833669 PMCID: PMC8021869 DOI: 10.3389/fncel.2021.639754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/02/2021] [Indexed: 11/30/2022] Open
Abstract
It is well-established that astrocytes respond to norepinephrine with cytosolic calcium rises in various brain areas, such as hippocampus or neocortex. However, less is known about the effect of norepinephrine on olfactory bulb astrocytes. In the present study, we used confocal calcium imaging and immunohistochemistry in mouse brain slices of the olfactory bulb, a brain region with a dense innervation of noradrenergic fibers, to investigate the calcium signaling evoked by norepinephrine in astrocytes. Our results show that application of norepinephrine leads to a cytosolic calcium rise in astrocytes which is independent of neuronal activity and mainly mediated by PLC/IP3-dependent internal calcium release. In addition, store-operated calcium entry (SOCE) contributes to the late phase of the response. Antagonists of both α1- and α2-adrenergic receptors, but not β-receptors, largely reduce the adrenergic calcium response, indicating that both α-receptor subtypes mediate norepinephrine-induced calcium transients in olfactory bulb astrocytes, whereas β-receptors do not contribute to the calcium transients.
Collapse
Affiliation(s)
- Timo Fischer
- Division of Neurophysiology, Department of Biology, Institute of Zoology, University of Hamburg, Hamburg, Germany
| | - Jessica Prey
- Division of Neurophysiology, Department of Biology, Institute of Zoology, University of Hamburg, Hamburg, Germany
| | - Lena Eschholz
- Division of Neurophysiology, Department of Biology, Institute of Zoology, University of Hamburg, Hamburg, Germany
| | - Natalie Rotermund
- Division of Neurophysiology, Department of Biology, Institute of Zoology, University of Hamburg, Hamburg, Germany
| | - Christian Lohr
- Division of Neurophysiology, Department of Biology, Institute of Zoology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
7
|
Yoo DY, Jung HY, Kim W, Hahn KR, Kwon HJ, Nam SM, Chung JY, Yoon YS, Kim DW, Hwang IK. Entacapone Treatment Modulates Hippocampal Proteins Related to Synaptic Vehicle Trafficking. Cells 2020; 9:cells9122712. [PMID: 33352833 PMCID: PMC7765944 DOI: 10.3390/cells9122712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 11/29/2022] Open
Abstract
Entacapone, a reversible inhibitor of catechol-O-methyl transferase, is used for patients in Parkinson’s disease because it increases the bioavailability and effectiveness of levodopa. In the present study, we observed that entacapone increases novel object recognition and neuroblasts in the hippocampus. In the present study, two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry were performed to compare the abundance profiles of proteins expressed in the hippocampus after entacapone treatment in mice. Results of 2-DE, MALDI-TOF mass spectrometry, and subsequent proteomic analysis revealed an altered protein expression profile in the hippocampus after entacapone treatment. Based on proteomic analysis, 556 spots were paired during the image analysis of 2-DE gels and 76 proteins were significantly changed more than two-fold among identified proteins. Proteomic analysis indicated that treatment with entacapone induced expressional changes in proteins involved in synaptic transmission, cellular processes, cellular signaling, the regulation of cytoskeletal structure, energy metabolism, and various subcellular enzymatic reactions. In particular, entacapone significantly increased proteins related to synaptic trafficking and plasticity, such as dynamin 1, synapsin I, and Munc18-1. Immunohistochemical staining showed the localization of the proteins, and western blot confirmed the significant increases in dynamin I (203.5% of control) in the hippocampus as well as synapsin I (254.0% of control) and Munc18-1 (167.1% of control) in the synaptic vesicle fraction of hippocampus after entacapone treatment. These results suggest that entacapone can enhance hippocampal synaptic trafficking and plasticity against various neurological diseases related to hippocampal dysfunction.
Collapse
Affiliation(s)
- Dae Young Yoo
- Department of Anatomy and Cell Biology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (D.Y.Y.); (H.Y.J.); (W.K.); (K.R.H.); (Y.S.Y.)
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Hyo Young Jung
- Department of Anatomy and Cell Biology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (D.Y.Y.); (H.Y.J.); (W.K.); (K.R.H.); (Y.S.Y.)
| | - Woosuk Kim
- Department of Anatomy and Cell Biology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (D.Y.Y.); (H.Y.J.); (W.K.); (K.R.H.); (Y.S.Y.)
- Department of Biomedical Sciences, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Kyu Ri Hahn
- Department of Anatomy and Cell Biology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (D.Y.Y.); (H.Y.J.); (W.K.); (K.R.H.); (Y.S.Y.)
| | - Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea;
| | - Sung Min Nam
- Department of Anatomy, School of Medicine and Institute for Environmental Science, Wonkwang University, Iksan 54538, Korea;
| | - Jin Young Chung
- Department of Veterinary Internal Medicine and Geriatrics, College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea;
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (D.Y.Y.); (H.Y.J.); (W.K.); (K.R.H.); (Y.S.Y.)
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea;
- Correspondence: (D.W.K.); (I.K.H.)
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (D.Y.Y.); (H.Y.J.); (W.K.); (K.R.H.); (Y.S.Y.)
- Correspondence: (D.W.K.); (I.K.H.)
| |
Collapse
|
8
|
Vorobyov V, Bakharev B, Medvinskaya N, Nesterova I, Samokhin A, Deev A, Tatarnikova O, Ustyugov AA, Sengpiel F, Bobkova N. Loss of Midbrain Dopamine Neurons and Altered Apomorphine EEG Effects in the 5xFAD Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2020; 70:241-256. [PMID: 31177214 DOI: 10.3233/jad-181246] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cognitive malfunction, synaptic dysfunction, and disconnections in neural networks are core deficits in Alzheimer's disease (AD). 5xFAD mice, a transgenic model of AD, are characterized by an enhanced level of amyloid-β and abnormal neurotransmission. The dopaminergic (DA) system has been shown to be involved in amyloid-β transformations and neuronal plasticity; however, its role in functional network changes in familial AD still remains unclear. In 5xFAD and non-transgenic freely moving mice, electroencephalograms (EEGs) were simultaneously recorded from the secondary motor cortex (MC), superficial layers of the hippocampal CA1 area (HPC), substantia nigra (SN), and ventral tegmental area (VTA). EEGs and their frequency spectra were analyzed before and after systemic injection of a DA receptor agonist, apomorphine (APO). In the baseline EEG from MC and HPC of 5xFAD mice, delta and alpha oscillations were enhanced and beta activity was attenuated, compared to control mice. In VTA and SN of 5xFAD mice, delta-theta activity was decreased and beta oscillations dominated. In control mice, APO suppressed delta activity in VTA to a higher extent than in MC, whereas in 5xFAD mice, this difference was eliminated due to attenuation of the delta suppression in VTA. APO increased beta activity in MC of mice from both groups while significant beta suppression was observed in VTA of 5xFAD mice. These mice were characterized by significant decrease of tyrosine hydroxylase immunopositive cells in both VTA and SN and of DA transporter in MC and hippocampal dentate gyrus. We suggest that the EEG modifications observed in 5xFAD mice are associated with alterations in dopaminergic transmission, resulting in adaptive changes in the cerebral networks in the course of familial AD development.
Collapse
Affiliation(s)
- Vasily Vorobyov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - Boris Bakharev
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - Natalia Medvinskaya
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - Inna Nesterova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - Alexander Samokhin
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - Alexander Deev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - Olga Tatarnikova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - Aleksey A Ustyugov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Moscow Region, Russian Federation
| | - Frank Sengpiel
- School of Biosciences and Neuroscience & Mental Health Research Institute, Cardiff University, Museum Avenue, Cardiff, UK
| | - Natalia Bobkova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| |
Collapse
|
9
|
Cassano R, Trapani A, Di Gioia ML, Mandracchia D, Pellitteri R, Tripodo G, Trombino S, Di Gioia S, Conese M. Synthesis and characterization of novel chitosan-dopamine or chitosan-tyrosine conjugates for potential nose-to-brain delivery. Int J Pharm 2020; 589:119829. [PMID: 32877724 DOI: 10.1016/j.ijpharm.2020.119829] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 10/23/2022]
Abstract
This work aims to the synthesis of novel carboxylated chitosan-dopamine (DA) and -tyrosine (Tyr) conjugates as systems for improving the brain delivery of the neurotransmitter DA following nasal administration. For this purpose, ester or amide conjugates were synthesized by N,N-dicyclohexylcarbodiimide (DCC) mediated coupling reactions between the appropriate N-tert-butyloxycarbonyl (Boc) protected starting polymers N,O-carboxymethyl chitosan and 6-carboxy chitosan and DA or O-tert-Butyl-L-tyrosine-tert-butyl ester hydrochloride. The resulting conjugates were characterized by FT-IR and 1H- and 13C NMR spectroscopies and their in vitro mucoadhesive properties in simulated nasal fluid (SNF), toxicity and uptake from Olfactory Ensheathing Cells (OECs) were assessed. Results demonstrated that N,O-carboxymethyl chitosan-DA conjugate was the most mucoadhesive polymer in the series examined and, together with the 6-carboxy chitosan-DA-conjugate were able to release the neurotransmitter in SNF. The MTT assay showed that the starting polymers as well as all the prepared conjugates in OECs resulted not toxic at any concentration tested. Likewise, the three synthesized conjugates were not cytotoxic as well. Cytofluorimetric analysis revealed that the N,O-carboxymethyl chitosan DA conjugate was internalized by OECs in a superior manner at 24 h as compared with the starting polymer. Overall, the N,O-CMCS-DA conjugate seems promising for improving the delivery of DA by nose-to-brain administration.
Collapse
Affiliation(s)
- Roberta Cassano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy.
| | - Maria Luisa Di Gioia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Delia Mandracchia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Rosalia Pellitteri
- Institute for Biomedical Research and Innovation (IRIB-CNR), 95126 Catania, Italy
| | - Giuseppe Tripodo
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Sonia Trombino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy.
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
10
|
Korshunov KS, Blakemore LJ, Bertram R, Trombley PQ. Spiking and Membrane Properties of Rat Olfactory Bulb Dopamine Neurons. Front Cell Neurosci 2020; 14:60. [PMID: 32265662 PMCID: PMC7100387 DOI: 10.3389/fncel.2020.00060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/02/2020] [Indexed: 11/13/2022] Open
Abstract
The mammalian olfactory bulb (OB) has a vast population of dopamine (DA) neurons, whose function is to increase odor discrimination through mostly inhibitory synaptic mechanisms. However, it is not well understood whether there is more than one neuronal type of OB DA neuron, how these neurons respond to different stimuli, and the ionic mechanisms behind those responses. In this study, we used a transgenic rat line (hTH-GFP) to identify fluorescent OB DA neurons for recording via whole-cell electrophysiology. These neurons were grouped based on their localization in the glomerular layer ("Top" vs. "Bottom") with these largest and smallest neurons grouped by neuronal area ("Large" vs. "Small," in μm2). We found that some membrane properties could be distinguished based on a neuron's area, but not by its glomerular localization. All OB DA neurons produced a single action potential when receiving a sufficiently depolarizing stimulus, while some could also spike multiple times when receiving weaker stimuli, an activity that was more likely in Large than Small neurons. This single spiking activity is likely driven by the Na+ current, which showed a sensitivity to inactivation by depolarization and a relatively long time constant for the removal of inactivation. These recordings showed that Small neurons were more sensitive to inactivation of Na+ current at membrane potentials of -70 and -60 mV than Large neurons. The hyperpolarization-activated H-current (identified by voltage sags) was more pronounced in Small than Large DA neurons across hyperpolarized membrane potentials. Lastly, to mimic a more physiological stimulus, these neurons received ramp stimuli of various durations and current amplitudes. When stimulated with weaker/shallow ramps, the neurons needed less current to begin and end firing and they produced more action potentials at a slower frequency. These spiking properties were further analyzed between the four groups of neurons, and these analyses support the difference in spiking induced with current step stimuli. Thus, there may be more than one type of OB DA neuron, and these neurons' activities may support a possible role of being high-pass filters in the OB by allowing the transmission of stronger odor signals while inhibiting weaker ones.
Collapse
Affiliation(s)
- Kirill S Korshunov
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States.,Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Laura J Blakemore
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States.,Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Richard Bertram
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States.,Department of Mathematics, Florida State University, Tallahassee, FL, United States
| | - Paul Q Trombley
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States.,Department of Biological Science, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
11
|
Tian Y, Dong J, Shi D. Protection of DAergic neurons mediates treadmill running attenuated olfactory deficits and olfactory neurogenesis promotion in depression model. Biochem Biophys Res Commun 2020; 521:725-731. [PMID: 31706577 DOI: 10.1016/j.bbrc.2019.10.158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022]
Abstract
In this study, we aimed to test the effects of treadmill running on depression induced olfactory functions and OB neurogenesis in depression model. Depression model was created with chronic unpredictable mild stress (CUMS) and treadmill running was performed as the antidepressant treatment. Behavioral results showed that treadmill running not only attenuated the depression mood but also improved the olfactory discrimination and sensitivity in CUMS depression model. Immune-staining further indicates treadmill running promoted neurogenesis in hippocampal OB region. Moreover, treadmill running prevented the loss of DAergic neurons in glomerular layer of OB region, indicating the critical role of DAergic neuronal functions in regulating treadmill running mediated olfactory functions. In depression model, inhibiting DAergic neurons by intra-OB injection of 6-OHDA resulted in the compromised improving effects of treadmill running olfactory discrimination. In conclusion, treadmill running could attenuate depression associated olfactory deficits by promoting olfactory neurogenesis and improve DAergic neural functions.
Collapse
Affiliation(s)
- Yuan Tian
- School of Physical Exercise, Taiyuan University of Technology, Taiyuan, China
| | | | - Dongbo Shi
- School of Physical Exercise, Taiyuan University of Technology, Taiyuan, China.
| |
Collapse
|
12
|
Huang Z, Hoffman CA, Chelette BM, Thiebaud N, Fadool DA. Elevated Anxiety and Impaired Attention in Super-Smeller, Kv1.3 Knockout Mice. Front Behav Neurosci 2018; 12:49. [PMID: 29615878 PMCID: PMC5867313 DOI: 10.3389/fnbeh.2018.00049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/28/2018] [Indexed: 12/27/2022] Open
Abstract
It has long been recognized that olfaction and emotion are linked. While chemosensory research using both human and rodent models have indicated a change in emotion can contribute to olfactory dysfunction, there are few studies addressing the contribution of olfaction to a modulation in emotion. In mice, olfactory deficits have been linked with heightened anxiety levels, suggesting that there could be an inverse relationship between olfaction and anxiety. Furthermore, increased anxiety is often co-morbid with psychiatric conditions such as attention disorders. Our study aimed to investigate the roles of olfaction in modulating anxiety. Voltage-gated potassium ion channel Kv1.3 knockout mice (Kv1.3−/−), which have heightened olfaction, and wild-type (WT) mice were examined for anxiety-like behaviors using marble burying (MB), light-dark box (LDB) and elevated-plus maze (EPM) tests. Because Kv1.3−/− mice have increased locomotor activity, inattentive and hyperactive behaviors were quantified for both genotypes. Kv1.3−/− mice showed increased anxiety levels compared to their WT counterparts and administration of methylphenidate (MPH) via oral gavage alleviated their increased anxiety. Object-based attention testing indicated young and older Kv1.3−/− mice had attention deficits and treatment with MPH also ameliorated this condition. Locomotor testing through use of a metabolic chamber indicated that Kv1.3−/− mice were not significantly hyperactive and MPH treatment failed to modify this activity. Our data suggest that heightened olfaction does not necessarily lead to decreased anxiety levels, and that Kv1.3−/− mice may have behaviors associated with inattentiveness.
Collapse
Affiliation(s)
- Zhenbo Huang
- Department of Biological Science, Florida State University, Tallahassee, FL, United States.,Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Carlie A Hoffman
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Brandon M Chelette
- Department of Biological Science, Florida State University, Tallahassee, FL, United States.,Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Nicolas Thiebaud
- Department of Biological Science, Florida State University, Tallahassee, FL, United States.,Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Debra A Fadool
- Department of Biological Science, Florida State University, Tallahassee, FL, United States.,Program in Neuroscience, Florida State University, Tallahassee, FL, United States.,Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
13
|
Semenova S, Rozov S, Panula P. Distribution, properties, and inhibitor sensitivity of zebrafish catechol-O-methyl transferases (COMT). Biochem Pharmacol 2017; 145:147-157. [PMID: 28844929 DOI: 10.1016/j.bcp.2017.08.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/14/2017] [Indexed: 12/24/2022]
Abstract
Catechol-O-methyltransferase (COMT; EC 2.1.1.6) is an enzyme with multiple functions in vertebrates. COMT methylates and thus inactivates catecholamine neurotransmitters and metabolizes xenobiotic catechols. Gene polymorphism rs4680 that influences the enzymatic activity of COMT affects cognition and behavior in humans. The zebrafish is widely used as an experimental animal in many areas of biomedical research, but most aspects of COMT function in this species have remained uncharacterized. We hypothesized that both comt genes play essential roles in zebrafish. Both comt-a and comt-b were widely expressed in zebrafish tissues, but their relative abundance varied considerably. Homogenates of zebrafish organs, including the brain, showed enzymatic COMT activity that was the highest in the liver and kidney. Treatment of larval zebrafish with the COMT inhibitor Ro41-0960 shifted the balance of catecholamine metabolic pathways towards increased oxidative metabolism. Whole-body concentrations of dioxyphenylacetic acid (DOPAC), a product of dopamine oxidation, were increased in the inhibitor-treated larvae, although the dopamine levels were unchanged. Thus, COMT is likely to participate in the processing of catecholamine neurotransmitters in the zebrafish, but the inhibition of COMT in larval fish is compensated efficiently and does not have pronounced effects on dopamine levels.
Collapse
Affiliation(s)
- Svetlana Semenova
- Department of Anatomy and Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Stanislav Rozov
- Department of Anatomy and Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Pertti Panula
- Department of Anatomy and Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland.
| |
Collapse
|
14
|
Pifl C, Reither H, Del Rey NLG, Cavada C, Obeso JA, Blesa J. Early Paradoxical Increase of Dopamine: A Neurochemical Study of Olfactory Bulb in Asymptomatic and Symptomatic MPTP Treated Monkeys. Front Neuroanat 2017; 11:46. [PMID: 28611598 PMCID: PMC5447291 DOI: 10.3389/fnana.2017.00046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 05/12/2017] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with both motor and non-motor manifestations. Hyposmia is one of the early non-motor symptoms, which can precede motor symptoms by several years. The relationship between hyposmia and PD remains elusive. Olfactory bulb (OB) pathology shows an increased number of olfactory dopaminergic cells, protein aggregates and dysfunction of neurotransmitter systems. In this study we examined tissue levels of dopamine (DA) and serotonin (5-hydroxytryptamine, 5-HT) and their metabolites, of noradrenaline (NA) and of the amino acid neurotransmitters aspartate, glutamate, taurine and γ-aminobutyric acid in OBs of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treated Macaca fascicularis in different stages, including monkeys who were always asymptomatic, monkeys who recovered from mild parkinsonian signs, and monkeys with stable moderate or severe parkinsonism. DA was increased compared to controls, while neither NA and 5-HT nor the amino acid neurotransmitters were significantly changed. Furthermore, DA increased before stable motor deficits appear with +51% in asymptomatic and +96% in recovered monkeys. Unchanged DA metabolites suggest a special metabolic profile of the newly formed DA neurons. Significant correlation of homovanillic acid (HVA) with taurine single values within the four MPTP groups and of aspartate with taurine within the asymptomatic and recovered MPTP groups, but not within the controls suggest interactions in the OB between taurine and the DA system and taurine and the excitatory neurotransmitter triggered by MPTP. This first investigation of OB in various stages after MPTP administration suggests that the DA increase seems to be an early phenomenon, not requiring profound nigrostriatal neurodegeneration or PD symptoms.
Collapse
Affiliation(s)
- Christian Pifl
- Center for Brain Research, Medical University of ViennaVienna, Austria
| | - Harald Reither
- Center for Brain Research, Medical University of ViennaVienna, Austria
| | - Natalia Lopez-Gonzalez Del Rey
- HM CINAC, Hospital Universitario HM Puerta del SurMostoles, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Ministerio de Ciencia e InnovacionMadrid, Spain
| | - Carmen Cavada
- Departamento de Anatomia, Histologia y Neurociencia, Facultad de Medicina, Universidad Autonoma de MadridMadrid, Spain
| | - Jose A Obeso
- HM CINAC, Hospital Universitario HM Puerta del SurMostoles, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Ministerio de Ciencia e InnovacionMadrid, Spain
| | - Javier Blesa
- HM CINAC, Hospital Universitario HM Puerta del SurMostoles, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Ministerio de Ciencia e InnovacionMadrid, Spain
| |
Collapse
|
15
|
Pignatelli A, Belluzzi O. Dopaminergic Neurones in the Main Olfactory Bulb: An Overview from an Electrophysiological Perspective. Front Neuroanat 2017; 11:7. [PMID: 28261065 PMCID: PMC5306133 DOI: 10.3389/fnana.2017.00007] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/02/2017] [Indexed: 02/03/2023] Open
Abstract
The olfactory bulb (OB), the first center processing olfactory information, is characterized by a vigorous life-long activity-dependent plasticity responsible for a variety of odor-evoked behavioral responses. It hosts the more numerous group of dopaminergic (DA) neurones in the central nervous system, cells strategically positioned at the entry of the bulbar circuitry, directly in contact with the olfactory nerve terminals, which play a key role in odor processing and in the adaptation of the bulbar network to external conditions. Here, we focus mainly on the electrophysiological properties of DA interneurones, reviewing findings concerning their excitability profiles in adulthood and in different phases of adult neurogenesis. We also discuss dynamic changes of the DA interneurones related to environmental stimuli and their possible functional implications.
Collapse
Affiliation(s)
- Angela Pignatelli
- Life Sciences and Biotechnology, University of Ferrara Ferrara, Italy
| | - Ottorino Belluzzi
- Life Sciences and Biotechnology, University of Ferrara Ferrara, Italy
| |
Collapse
|
16
|
Vaaga CE, Yorgason JT, Williams JT, Westbrook GL. Presynaptic gain control by endogenous cotransmission of dopamine and GABA in the olfactory bulb. J Neurophysiol 2016; 117:1163-1170. [PMID: 28031402 DOI: 10.1152/jn.00694.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/27/2016] [Accepted: 12/27/2016] [Indexed: 01/14/2023] Open
Abstract
In the olfactory bulb, lateral inhibition mediated by local juxtaglomerular interneurons has been proposed as a gain control mechanism, important for decorrelating odorant responses. Among juxtaglomerular interneurons, short axon cells are unique as dual-transmitter neurons that release dopamine and GABA. To examine their intraglomerular function, we expressed channelrhodopsin under control of the DAT-cre promoter and activated olfactory afferents within individual glomeruli. Optical stimulation of labeled cells triggered endogenous dopamine release as measured by cyclic voltammetry and GABA release as measured by whole cell GABAA receptor currents. Activation of short axon cells reduced the afferent presynaptic release probability via D2 and GABAB receptor activation, resulting in reduced spiking in both mitral and external tufted cells. Our results suggest that short axon cells influence glomerular activity not only by direct inhibition of external tufted cells but also by inhibition of afferent inputs to external tufted and mitral cells.NEW & NOTEWORTHY Sensory systems, including the olfactory system, encode information across a large dynamic range, making synaptic mechanisms of gain control critical to proper function. Here we demonstrate that a dual-transmitter interneuron in the olfactory bulb controls the gain of intraglomerular afferent input via two distinct mechanisms, presynaptic inhibition as well as inhibition of a principal neuron subtype, and thereby potently controls the synaptic gain of afferent inputs.
Collapse
Affiliation(s)
- Christopher E Vaaga
- Vollum Institute, Oregon Health and Science University, Portland, Oregon; and.,Neuroscience Graduate Program, Oregon Health and Science University, Portland, Oregon
| | - Jordan T Yorgason
- Vollum Institute, Oregon Health and Science University, Portland, Oregon; and
| | - John T Williams
- Vollum Institute, Oregon Health and Science University, Portland, Oregon; and
| | - Gary L Westbrook
- Vollum Institute, Oregon Health and Science University, Portland, Oregon; and
| |
Collapse
|