1
|
Huang L, Hardyman F, Edwards M, Galliano E. Deprivation-Induced Plasticity in the Early Central Circuits of the Rodent Visual, Auditory, and Olfactory Systems. eNeuro 2024; 11:ENEURO.0435-23.2023. [PMID: 38195533 PMCID: PMC11059429 DOI: 10.1523/eneuro.0435-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024] Open
Abstract
Activity-dependent neuronal plasticity is crucial for animals to adapt to dynamic sensory environments. Traditionally, it has been investigated using deprivation approaches in animal models primarily in sensory cortices. Nevertheless, emerging evidence emphasizes its significance in sensory organs and in subcortical regions where cranial nerves relay information to the brain. Additionally, critical questions started to arise. Do different sensory modalities share common cellular mechanisms for deprivation-induced plasticity at these central entry points? Does the deprivation duration correlate with specific plasticity mechanisms? This study systematically reviews and meta-analyzes research papers that investigated visual, auditory, or olfactory deprivation in rodents of both sexes. It examines the consequences of sensory deprivation in homologous regions at the first central synapse following cranial nerve transmission (vision - lateral geniculate nucleus and superior colliculus; audition - ventral and dorsal cochlear nucleus; olfaction - olfactory bulb). The systematic search yielded 91 papers (39 vision, 22 audition, 30 olfaction), revealing substantial heterogeneity in publication trends, experimental methods, measures of plasticity, and reporting across the sensory modalities. Despite these differences, commonalities emerged when correlating plasticity mechanisms with the duration of sensory deprivation. Short-term deprivation (up to 1 d) reduced activity and increased disinhibition, medium-term deprivation (1 d to a week) involved glial changes and synaptic remodeling, and long-term deprivation (over a week) primarily led to structural alterations. These findings underscore the importance of standardizing methodologies and reporting practices. Additionally, they highlight the value of cross-modal synthesis for understanding how the nervous system, including peripheral, precortical, and cortical areas, respond to and compensate for sensory inputs loss.
Collapse
Affiliation(s)
- Li Huang
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB23EL Cambridge, United Kingdom
| | - Francesca Hardyman
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB23EL Cambridge, United Kingdom
| | - Megan Edwards
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB23EL Cambridge, United Kingdom
| | - Elisa Galliano
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB23EL Cambridge, United Kingdom
| |
Collapse
|
2
|
Coppola DM, Reisert J. The Role of the Stimulus in Olfactory Plasticity. Brain Sci 2023; 13:1553. [PMID: 38002512 PMCID: PMC10669894 DOI: 10.3390/brainsci13111553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Plasticity, the term we use to describe the ability of a nervous system to change with experience, is the evolutionary adaptation that freed animal behavior from the confines of genetic determinism. This capacity, which increases with brain complexity, is nowhere more evident than in vertebrates, especially mammals. Though the scientific study of brain plasticity dates back at least to the mid-19th century, the last several decades have seen unprecedented advances in the field afforded by new technologies. Olfaction is one system that has garnered particular attention in this realm because it is the only sensory modality with a lifelong supply of new neurons, from two niches no less! Here, we review some of the classical and contemporary literature dealing with the role of the stimulus or lack thereof in olfactory plasticity. We have restricted our comments to studies in mammals that have used dual tools of the field: stimulus deprivation and stimulus enrichment. The former manipulation has been implemented most frequently by unilateral naris occlusion and, thus, we have limited our comments to research using this technique. The work reviewed on deprivation provides substantial evidence of activity-dependent processes in both developing and adult mammals at multiple levels of the system from olfactory sensory neurons through to olfactory cortical areas. However, more recent evidence on the effects of deprivation also establishes several compensatory processes with mechanisms at every level of the system, whose function seems to be the restoration of information flow in the face of an impoverished signal. The results of sensory enrichment are more tentative, not least because of the actual manipulation: What odor or odors? At what concentrations? On what schedule? All of these have frequently not been sufficiently rationalized or characterized. Perhaps it is not surprising, then, that discrepant results are common in sensory enrichment studies. Despite this problem, evidence has accumulated that even passively encountered odors can "teach" olfactory cortical areas to better detect, discriminate, and more efficiently encode them for future encounters. We discuss these and other less-established roles for the stimulus in olfactory plasticity, culminating in our recommended "aspirations" for the field going forward.
Collapse
Affiliation(s)
- David M. Coppola
- Biology Department, Randolph-Macon College, Ashland, VA 23005, USA
| | | |
Collapse
|
3
|
Browne LP, Crespo A, Grubb MS. Rapid presynaptic maturation in naturally regenerating axons of the adult mouse olfactory nerve. Cell Rep 2022; 41:111750. [PMID: 36476871 DOI: 10.1016/j.celrep.2022.111750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/26/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Successful neuronal regeneration requires the reestablishment of synaptic connectivity. This process requires the reconstitution of presynaptic neurotransmitter release, which we investigate here in a model of entirely natural regeneration. After toxin-induced injury, olfactory sensory neurons in the adult mouse olfactory epithelium can regenerate fully, sending axons via the olfactory nerve to reestablish synaptic contact with postsynaptic partners in the olfactory bulb. Using electrophysiological recordings in acute slices, we find that, after initial recontact, functional connectivity in this system is rapidly established. Reconnecting presynaptic terminals have almost mature functional properties, including high release probability and strong capacity for presynaptic inhibition. Release probability then matures quickly, rendering reestablished terminals functionally indistinguishable from controls just 1 week after initial contact. These data show that successful synaptic regeneration in the adult mammalian brain is almost a "plug-and-play" process, with presynaptic terminals undergoing a rapid phase of functional maturation as they reintegrate into target networks.
Collapse
Affiliation(s)
- Lorcan P Browne
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Andres Crespo
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Matthew S Grubb
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK.
| |
Collapse
|
4
|
Hu B, Wang JJ, Jin C. In vivo odorant input induces spike timing-dependent plasticity of glutamatergic synapses in developing zebrafish olfactory bulb. Biochem Biophys Res Commun 2020; 526:532-538. [PMID: 32245615 DOI: 10.1016/j.bbrc.2020.03.126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 03/21/2020] [Indexed: 01/24/2023]
Abstract
Early odorant experience and neural activity are essential for refining developing neural connections. Although neural activity-induced synaptic plasticity is one of the most important cellular mechanisms underlying the refinement of neural circuits, whether and how natural odorant experience induces long-term plasticity in the olfactory bulb remains unknown. In vivo perforated whole-cell recording from mitral cells (MCs) in larval zebrafish showed that odorant experience induced persistent modification of developing olfactory bulb circuits via spike timing-dependent plasticity (STDP). Repetitive odorant stimuli paired with postsynaptic spiking in a critical time window (pre-post, positive timing) resulted in persistent enhancement of glutamatergic inputs from olfactory sensory neurons, but long-term depression within the opposite time window (post-pre, negative timing). Furthermore, spike-timing-dependent potentiation (tLTP) in STDP induced by repetitive odorant stimulation had similar cellular processes to those of electrical stimulation-induced tLTP. Finally, odorant input induced STDP required the activation of postsynaptic N-methyl-d-aspartate receptors (NMDARs). Thus, the NMDAR is likely to be a postsynaptic coincidence detector responsible for the sensory experience-dependent refinement of developing connections.
Collapse
Affiliation(s)
- Bin Hu
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Jiangsu, 221004, China; Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Jiangsu, 211166, China.
| | - Jing-Jing Wang
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Jiangsu, 211166, China
| | - Chen Jin
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Jiangsu, 221004, China
| |
Collapse
|
5
|
Mitf Links Neuronal Activity and Long-Term Homeostatic Intrinsic Plasticity. eNeuro 2020; 7:ENEURO.0412-19.2020. [PMID: 32193365 PMCID: PMC7174873 DOI: 10.1523/eneuro.0412-19.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/07/2020] [Accepted: 03/02/2020] [Indexed: 12/25/2022] Open
Abstract
Neuroplasticity forms the basis for neuronal circuit complexity and differences between otherwise similar circuits. We show that the microphthalmia-associated transcription factor (Mitf) plays a central role in intrinsic plasticity of olfactory bulb (OB) projection neurons. Mitral and tufted (M/T) neurons from Mitf mutant mice are hyperexcitable, have a reduced A-type potassium current (IA) and exhibit reduced expression of Kcnd3, which encodes a potassium voltage-gated channel subunit (Kv4.3) important for generating the IA Furthermore, expression of the Mitf and Kcnd3 genes is activity dependent in OB projection neurons and the MITF protein activates expression from Kcnd3 regulatory elements. Moreover, Mitf mutant mice have changes in olfactory habituation and have increased habituation for an odorant following long-term exposure, indicating that regulation of Kcnd3 is pivotal for long-term olfactory adaptation. Our findings show that Mitf acts as a direct regulator of intrinsic homeostatic feedback and links neuronal activity, transcriptional changes and neuronal function.
Collapse
|
6
|
Koyama S, Heinbockel T. The Effects of Essential Oils and Terpenes in Relation to Their Routes of Intake and Application. Int J Mol Sci 2020; 21:E1558. [PMID: 32106479 PMCID: PMC7084246 DOI: 10.3390/ijms21051558] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 12/18/2022] Open
Abstract
Essential oils have been used in multiple ways, i.e., inhaling, topically applying on the skin, and drinking. Thus, there are three major routes of intake or application involved: the olfactory system, the skin, and the gastro-intestinal system. Understanding these routes is important for clarifying the mechanisms of action of essential oils. Here we summarize the three systems involved, and the effects of essential oils and their constituents at the cellular and systems level. Many factors affect the rate of uptake of each chemical constituent included in essential oils. It is important to determine how much of each constituent is included in an essential oil and to use single chemical compounds to precisely test their effects. Studies have shown synergistic influences of the constituents, which affect the mechanisms of action of the essential oil constituents. For the skin and digestive system, the chemical components of essential oils can directly activate gamma aminobutyric acid (GABA) receptors and transient receptor potential channels (TRP) channels, whereas in the olfactory system, chemical components activate olfactory receptors. Here, GABA receptors and TRP channels could play a role, mostly when the signals are transferred to the olfactory bulb and the brain.
Collapse
Affiliation(s)
- Sachiko Koyama
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Thomas Heinbockel
- Department of Anatomy, College of Medicine, Howard University, Washington, DC 20059, USA
| |
Collapse
|
7
|
Geramita MA, Wen JA, Rannals MD, Urban NN. Decreased amplitude and reliability of odor-evoked responses in two mouse models of autism. J Neurophysiol 2019; 123:1283-1294. [PMID: 31891524 DOI: 10.1152/jn.00277.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sensory processing deficits are increasingly recognized as core symptoms of autism spectrum disorders (ASDs). However the molecular and circuit mechanisms that lead to sensory deficits are unknown. We show that two molecularly disparate mouse models of autism display similar deficits in sensory-evoked responses in the mouse olfactory system. We find that both Cntnap2- and Shank3-deficient mice of both sexes exhibit reduced response amplitude and trial-to-trial reliability during repeated odor presentation. Mechanistically, we show that both mouse models have weaker and fewer synapses between olfactory sensory nerve (OSN) terminals and olfactory bulb tufted cells and weaker synapses between OSN terminals and inhibitory periglomerular cells. Consequently, deficits in sensory processing provide an excellent candidate phenotype for analysis in ASDs.NEW & NOTEWORTHY The genetics of autism spectrum disorder (ASD) are complex. How the many risk genes generate the similar sets of symptoms that define the disorder is unknown. In particular, little is understood about the functional consequences of these genetic alterations. Sensory processing deficits are important aspects of the ASD diagnosis and may be due to unreliable neural circuits. We show that two mouse models of autism, Cntnap2- and Shank3-deficient mice, display reduced odor-evoked response amplitudes and reliability. These data suggest that altered sensory-evoked responses may constitute a circuit phenotype in ASDs.
Collapse
Affiliation(s)
- Matthew A Geramita
- Department of Neurobiology, Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jing A Wen
- Department of Neurobiology, Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Matthew D Rannals
- Department of Neurobiology, Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nathan N Urban
- Department of Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
Bhattarai JP, Schreck M, Moberly AH, Luo W, Ma M. Aversive Learning Increases Release Probability of Olfactory Sensory Neurons. Curr Biol 2019; 30:31-41.e3. [PMID: 31839448 DOI: 10.1016/j.cub.2019.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/04/2019] [Accepted: 11/01/2019] [Indexed: 10/25/2022]
Abstract
Predicting danger from previously associated sensory stimuli is essential for survival. Contributions from altered peripheral sensory inputs are implicated in this process, but the underlying mechanisms remain elusive. Here, we use the mammalian olfactory system to investigate such mechanisms. Primary olfactory sensory neurons (OSNs) project their axons directly to the olfactory bulb (OB) glomeruli, where their synaptic release is subject to local and cortical influence and neuromodulation. Pairing optogenetic activation of a single glomerulus with foot shock in mice induces freezing to light stimulation alone during fear retrieval. This is accompanied by an increase in OSN release probability and a reduction in GABAB receptor expression in the conditioned glomerulus. Furthermore, freezing time is positively correlated with the release probability of OSNs in fear-conditioned mice. These results suggest that aversive learning increases peripheral olfactory inputs at the first synapse, which may contribute to the behavioral outcome.
Collapse
Affiliation(s)
- Janardhan P Bhattarai
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, 109 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA.
| | - Mary Schreck
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, 109 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Andrew H Moberly
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, 109 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Wenqin Luo
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, 109 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Minghong Ma
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, 109 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Almeida-Santos AF, Carvalho VR, Jaimes LF, de Castro CM, Pinto HP, Oliveira TPD, Vieira LB, Moraes MFD, Pereira GS. Social isolation impairs the persistence of social recognition memory by disturbing the glutamatergic tonus and the olfactory bulb-dorsal hippocampus coupling. Sci Rep 2019; 9:473. [PMID: 30679583 PMCID: PMC6345767 DOI: 10.1038/s41598-018-36871-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/23/2018] [Indexed: 11/09/2022] Open
Abstract
The absence of companion may jeopardize mental health in social animals. Here, we tested the hypothesis that social isolation impairs social recognition memory by altering the excitability and the dialog between the olfactory bulb (OB) and the dorsal hippocampus (dHIP). Adult male Swiss mice were kept grouped (GH) or isolated (SI) for 7 days. Social memory (LTM) was evaluated using social recognition test. SI increased glutamate release in the OB, while decreased in the dHIP. Blocking AMPA and NMDA receptors into the OB or activating AMPA into the dHIP rescued LTM in SI mice, suggesting a cause-effect relationship between glutamate levels and LTM impairment. Additionally, during memory retrieval, phase-amplitude coupling between OB and dHIP decreased in SI mice. Our results indicate that SI impaired the glutamatergic signaling and the normal communication between OB and HIP, compromising the persistence of social memory.
Collapse
Affiliation(s)
- Ana F Almeida-Santos
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vinícius R Carvalho
- Programa de Pós-graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Laura F Jaimes
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Caio M de Castro
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Hyorrana P Pinto
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tadeu P D Oliveira
- Laboratório de Neurofarmacologia, Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciene B Vieira
- Laboratório de Neurofarmacologia, Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Márcio F D Moraes
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Grace S Pereira
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
10
|
Vinograd A, Fuchs-Shlomai Y, Stern M, Mukherjee D, Gao Y, Citri A, Davison I, Mizrahi A. Functional Plasticity of Odor Representations during Motherhood. Cell Rep 2018; 21:351-365. [PMID: 29020623 PMCID: PMC5643523 DOI: 10.1016/j.celrep.2017.09.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 06/21/2017] [Accepted: 09/11/2017] [Indexed: 01/24/2023] Open
Abstract
Motherhood is accompanied by new behaviors aimed at ensuring the wellbeing of the offspring. Olfaction plays a key role in guiding maternal behaviors during this transition. We studied functional changes in the main olfactory bulb (OB) of mothers in mice. Using in vivo two-photon calcium imaging, we studied the sensory representation of odors by mitral cells (MCs). We show that MC responses to monomolecular odors become sparser and weaker in mothers. In contrast, responses to biologically relevant odors are spared from sparsening or strengthen. MC responses to mixtures and to a range of concentrations suggest that these differences between odor responses cannot be accounted for by mixture suppressive effects or gain control mechanisms. In vitro whole-cell recordings show an increase in inhibitory synaptic drive onto MCs. The increase of inhibitory tone may contribute to the general decrease in responsiveness and concomitant enhanced representation of specific odors. MCs of mothers show sparser responses for pure odors MCs of mothers have stronger inhibitory drive onto MCs MCs of mothers show stronger responses to natural odors MC ensemble coding is improved for natural but not pure odors
Collapse
Affiliation(s)
- Amit Vinograd
- Department of Neurobiology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| | - Yael Fuchs-Shlomai
- Department of Neurobiology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| | - Merav Stern
- Department of Applied Mathematics, University of Washington, Seattle, WA, USA
| | - Diptendu Mukherjee
- Department of Chemical Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| | - Yuan Gao
- Department of Biology, Boston University, Boston, MA, USA
| | - Ami Citri
- Department of Chemical Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| | - Ian Davison
- Department of Biology, Boston University, Boston, MA, USA
| | - Adi Mizrahi
- Department of Neurobiology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel.
| |
Collapse
|
11
|
Wang Q, Titlow WB, McClintock DA, Stromberg AJ, McClintock TS. Activity-Dependent Gene Expression in the Mammalian Olfactory Epithelium. Chem Senses 2018; 42:611-624. [PMID: 28525560 DOI: 10.1093/chemse/bjx028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Activity-dependent processes are important to olfactory sensory neurons (OSNs) in several ways, such as cell survival and the specificity of axonal convergence. The identification of activity-dependent mRNAs has contributed to our understanding of OSN axon convergence, but has revealed surprisingly little about other processes. Published studies of activity-dependent mRNAs in olfactory mucosae overlap poorly, but by combining these agreements with meta-analysis of existing data we identify 443 mRNAs that respond to methods that alter OSN activity. Three hundred and fifty of them are expressed in mature OSNs, consistent with the expectation that activity-dependent responses are cell autonomous and driven by odor stimulation. Many of these mRNAs encode proteins that function at presynaptic terminals or support electrical activity, consistent with hypotheses linking activity dependence to synaptic plasticity and energy conservation. The lack of agreement between studies is due largely to underpowered experiments. In addition, methods used to alter OSN activity are susceptible to indirect or off-target effects. These effects deserve greater attention, not only to rigorously identify OSN mRNAs that respond to altered OSN activity, but also because these effects are of significant interest in their own right. For example, the mRNAs of some sustentacular cell enzymes believed to function in odorant clearance (Cyp2a4 and Cyp2g1) are sensitive to unilateral naris occlusion used to reduce odorant stimulation of the ipsilateral olfactory epithelium. Also problematic are odorant receptor mRNAs, which show little agreement across studies and are susceptible to differences in frequency of expression that masquerade as activity-dependent changes in mRNA abundance.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Physiology, University of Kentucky, 800 Rose St., Lexington, KY 40536-0298, USA
| | - William B Titlow
- Department of Physiology, University of Kentucky, 800 Rose St., Lexington, KY 40536-0298, USA
| | - Declan A McClintock
- Department of Physiology, University of Kentucky, 800 Rose St., Lexington, KY 40536-0298, USA
| | - Arnold J Stromberg
- Department of Statistics, University of Kentucky, 725 Rose St., Lexington, KY 40536-0082, USA
| | - Timothy S McClintock
- Department of Physiology, University of Kentucky, 800 Rose St., Lexington, KY 40536-0298, USA
| |
Collapse
|
12
|
Korsak LIT, Shepard KA, Akins MR. Cell type-dependent axonal localization of translational regulators and mRNA in mouse peripheral olfactory neurons. J Comp Neurol 2017; 525:2202-2215. [PMID: 28266018 DOI: 10.1002/cne.24199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 01/01/2023]
Abstract
Local protein synthesis in mature axons may play a role in synaptic plasticity, axonal arborization, or functional diversity of the circuit. To gain insight into this question, we investigated the axonal localization of translational regulators and associated mRNAs in five parallel olfactory circuits, four in the main olfactory bulb and one in the accessory olfactory bulb. Axons in all four main olfactory bulb circuits exhibited axonal localization of Fragile X granules (FXGs), structures that comprise ribosomes, mRNA, and RNA binding proteins including Fragile X mental retardation protein (FMRP) and the related protein FXR2P. In contrast, FXGs were not seen in axons innervating the accessory olfactory bulb. Similarly, axons innervating the main olfactory bulb, but not the accessory olfactory bulb, contained the FXG-associated mRNA Omp (olfactory marker protein). This differential localization was not explained by circuit-dependent differences in expression of FXG components or Omp, suggesting that other factors must regulate their axonal transport. The specificity of this transport was highlighted by the absence from olfactory axons of the calmodulin transcript Calm1, which is highly expressed in peripheral olfactory neurons at levels equivalent to Omp. Regulation of axonal translation by FMRP may shape the structure and function of the axonal arbor in mature sensory neurons in the main olfactory system but not in the accessory olfactory system.
Collapse
Affiliation(s)
- Lulu I T Korsak
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, 19104
| | | | - Michael R Akins
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, 19104.,Department of Neurobiology and Anatomy, Drexel University, Philadelphia, Pennsylvania, 19104
| |
Collapse
|
13
|
Genovese F, Thews M, Möhrlen F, Frings S. Properties of an optogenetic model for olfactory stimulation. J Physiol 2016; 594:3501-16. [PMID: 26857095 DOI: 10.1113/jp271853] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 01/22/2016] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS In olfactory research it is difficult to deliver stimuli with defined intensity and duration to olfactory sensory neurons. Expression of channelrhodopsin 2 (ChR2) in olfactory sensory neurons provides a means to activate these neurons with light flashes. Appropriate mouse models are available. The present study explores the suitability of an established olfactory marker protein (OMP)/ChR2-yellow fluorescent protein (YFP) mouse model for ex vivo experimentation. Expression of ChR2 in sensory neurons of the main olfactory epithelium, the septal organ and vomeronasal organ is characterized. Expression pattern of ChR2 in olfactory receptor neurons and the properties of light responses indicate that light stimulation does not impact on signal transduction in the chemosensory cilia. Light-induced electro-olfactograms are characterized with light flashes of different intensities, durations and frequencies. The impact of light-induced afferent stimulation on the olfactory bulb is examined with respect to response amplitude, polarity and low-pass filtering. ABSTRACT For the examination of sensory processing, it is helpful to deliver stimuli in precisely defined temporal and spatial patterns with accurate control of stimulus intensity. This is challenging in experiments with the mammalian olfactory system because airborne odorants have to be transported into the intricate sensory structures of the nose and must dissolve in mucus to be detected by sensory neurons. Defined and reproducible activity can be generated in olfactory sensory neurons that express the light-gated ion channel channelrhodopsin 2 (ChR2). The neurons can be stimulated by light flashes in a controlled fashion by this optogenetic approach. Here we examined the application of an olfactory marker protein (OMP)/ChR2-yellow fluorescent protein (YFP) model for ex vivo exploration of the olfactory epithelium and the olfactory bulb of the mouse. We studied the expression patterns of ChR2 in the main olfactory system, the vomeronasal system, and the septal organ, and we found that ChR2 is absent from the sensory cilia of olfactory sensory neurons. In the olfactory epithelium, we characterized light-induced electro-olfactograms with respect to peripheral encoding of stimulus intensity, stimulus duration and stimulus frequency. In acute slices of the olfactory bulb, we identified specific aspects of the ChR2-induced input signal, concerning its dynamic range, its low-pass filter property and its response to prolonged stimulation. Our study describes the performance of the OMP/ChR2-YFP model for ex vivo experimentation on the peripheral olfactory system and documents its versatility and its limitations for olfactory research.
Collapse
Affiliation(s)
- Federica Genovese
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Im Neuenheimer Feld 504, Heidelberg University, Heidelberg, Germany
| | - Marion Thews
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Im Neuenheimer Feld 504, Heidelberg University, Heidelberg, Germany
| | - Frank Möhrlen
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Im Neuenheimer Feld 504, Heidelberg University, Heidelberg, Germany
| | - Stephan Frings
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Im Neuenheimer Feld 504, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
14
|
Barber CN, Coppola DM. Compensatory plasticity in the olfactory epithelium: age, timing, and reversibility. J Neurophysiol 2015; 114:2023-32. [PMID: 26269548 DOI: 10.1152/jn.00076.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 08/02/2015] [Indexed: 11/22/2022] Open
Abstract
Like other biological systems, olfaction responds "homeostatically" to enduring change in the stimulus environment. This adaptive mechanism, referred to as compensatory plasticity, has been studied almost exclusively in developing animals. Thus it is unknown if this phenomenon is limited to ontogenesis and irreversible, characteristics common to some other forms of plasticity. Here we explore the effects of odor deprivation on the adult mouse olfactory epithelium (OE) using nasal plugs to eliminate nasal airflow unilaterally. Plugs were in place for 2-6 wk after which electroolfactograms (EOGs) were recorded from the occluded and open sides of the nasal cavity. Mean EOG amplitudes were significantly greater on the occluded than on the open side. The duration of plugging did not affect the results, suggesting that maximal compensation occurs within 2 wk or less. The magnitude of the EOG difference between the open and occluded side in plugged mice was comparable to adults that had undergone surgical naris occlusion as neonates. When plugs were removed after 4 wk followed by 2 wk of recovery, mean EOG amplitudes were not significantly different between the always-open and previously plugged sides of the nasal cavity suggesting that this form of plasticity is reversible. Taken together, these results suggest that compensatory plasticity is a constitutive mechanism of olfactory receptor neurons that allows these cells to recalibrate their stimulus-response relationship to fit the statistics of their current odor environment.
Collapse
Affiliation(s)
- Casey N Barber
- Department of Biology, Randolph-Macon College, Ashland, Virginia
| | - David M Coppola
- Department of Biology, Randolph-Macon College, Ashland, Virginia
| |
Collapse
|
15
|
Abstract
It is well established that the active properties of nerve and muscle cells are stabilized by homeostatic signaling systems. In organisms ranging from Drosophila to humans, neurons restore baseline function in the continued presence of destabilizing perturbations by rebalancing ion channel expression, modifying neurotransmitter receptor surface expression and trafficking, and modulating neurotransmitter release. This review focuses on the homeostatic modulation of presynaptic neurotransmitter release, termed presynaptic homeostasis. First, we highlight criteria that can be used to define a process as being under homeostatic control. Next, we review the remarkable conservation of presynaptic homeostasis at the Drosophila, mouse, and human neuromuscular junctions and emerging parallels at synaptic connections in the mammalian central nervous system. We then highlight recent progress identifying cellular and molecular mechanisms. We conclude by reviewing emerging parallels between the mechanisms of homeostatic signaling and genetic links to neurological disease.
Collapse
Affiliation(s)
- Graeme W Davis
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158;
| | | |
Collapse
|
16
|
Weiss J, Pyrski M, Weissgerber P, Zufall F. Altered synaptic transmission at olfactory and vomeronasal nerve terminals in mice lacking N-type calcium channel Cav2.2. Eur J Neurosci 2014; 40:3422-35. [PMID: 25195871 DOI: 10.1111/ejn.12713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/31/2014] [Accepted: 08/04/2014] [Indexed: 12/19/2022]
Abstract
We investigated the role of voltage-activated calcium (Cav) channels for synaptic transmission at mouse olfactory and vomeronasal nerve terminals at the first synapse of the main and accessory olfactory pathways, respectively. We provided evidence for a central role of the N-type Cav channel subunit Cav2.2 in presynaptic transmitter release at these synapses. Striking Cav2.2 immunoreactivity was localised to the glomerular neuropil of the main olfactory bulb (MOB) and accessory olfactory bulb (AOB), and co-localised with presynaptic molecules such as bassoon. Voltage-clamp recordings of sensory nerve-evoked, excitatory postsynaptic currents (EPSCs) in mitral/tufted (M/T) and superficial tufted cells of the MOB and mitral cells of the AOB, in combination with established subtype-specific Cav channel toxins, indicated a predominant role of N-type channels in transmitter release at these synapses, whereas L-type, P/Q-type, and R-type channels had either no or only relatively minor contributions. In Cacna1b mutant mice lacking the Cav2.2 (α1B) subunit of N-type channels, olfactory nerve-evoked M/T cell EPSCs were not reduced but became blocker-resistant, thus indicating a major reorganisation and compensation of Cav channel subunits as a result of the Cav2.2 deletion at this synapse. Cav2.2-deficient mice also revealed that Cav2.2 was critically required for paired-pulse depression of olfactory nerve-evoked EPSCs in M/T cells of the MOB, and they demonstrated an essential requirement for Cav2.2 in vomeronasal nerve-evoked EPSCs of AOB mitral cells. Thus, Cacna1b loss-of-function mutations are unlikely to cause general anosmia but Cacna1b emerges as a strong candidate in the search for mutations causing altered olfactory perception, such as changes in general olfactory sensitivity and altered social responses to chemostimuli.
Collapse
Affiliation(s)
- Jan Weiss
- Department of Physiology, University of Saarland School of Medicine, Kirrbergerstrasse, Building 58, D-66421, Homburg, Germany
| | | | | | | |
Collapse
|
17
|
Barnes DC, Wilson DA. Sleep and olfactory cortical plasticity. Front Behav Neurosci 2014; 8:134. [PMID: 24795585 PMCID: PMC4001050 DOI: 10.3389/fnbeh.2014.00134] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/03/2014] [Indexed: 12/21/2022] Open
Abstract
In many systems, sleep plays a vital role in memory consolidation and synaptic homeostasis. These processes together help store information of biological significance and reset synaptic circuits to facilitate acquisition of information in the future. In this review, we describe recent evidence of sleep-dependent changes in olfactory system structure and function which contribute to odor memory and perception. During slow-wave sleep, the piriform cortex becomes hypo-responsive to odor stimulation and instead displays sharp-wave activity similar to that observed within the hippocampal formation. Furthermore, the functional connectivity between the piriform cortex and other cortical and limbic regions is enhanced during slow-wave sleep compared to waking. This combination of conditions may allow odor memory consolidation to occur during a state of reduced external interference and facilitate association of odor memories with stored hedonic and contextual cues. Evidence consistent with sleep-dependent odor replay within olfactory cortical circuits is presented. These data suggest that both the strength and precision of odor memories is sleep-dependent. The work further emphasizes the critical role of synaptic plasticity and memory in not only odor memory but also basic odor perception. The work also suggests a possible link between sleep disturbances that are frequently co-morbid with a wide range of pathologies including Alzheimer's disease, schizophrenia and depression and the known olfactory impairments associated with those disorders.
Collapse
Affiliation(s)
- Dylan C. Barnes
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric ResearchOrangeburg, NY, USA
- Behavioral and Cognitive Neuroscience Program, City University of New YorkNew York, NY, USA
- Department of Biology, University of OklahomaNorman, OK, USA
| | - Donald A. Wilson
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric ResearchOrangeburg, NY, USA
- Behavioral and Cognitive Neuroscience Program, City University of New YorkNew York, NY, USA
- Department of Biology, University of OklahomaNorman, OK, USA
- Department of Child and Adolescent Psychiatry, New York University Langone School of MedicineNew York, NY, USA
| |
Collapse
|
18
|
Dunn FA, Della Santina L, Parker ED, Wong ROL. Sensory experience shapes the development of the visual system's first synapse. Neuron 2014; 80:1159-66. [PMID: 24314727 DOI: 10.1016/j.neuron.2013.09.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2013] [Indexed: 11/16/2022]
Abstract
Specific connectivity patterns among neurons create the basic architecture underlying parallel processing in our nervous system. Here we focus on the visual system's first synapse to examine the structural and functional consequences of sensory deprivation on the establishment of parallel circuits. Dark rearing reduces synaptic strength between cones and cone bipolar cells, a previously unappreciated effect of sensory deprivation. In contrast, rod bipolar cells, which utilize the same glutamate receptor to contact rods, are unaffected by dark rearing. Underlying the physiological changes, we find the localization of metabotropic glutamate receptors within cone bipolar, but not rod bipolar, cell dendrites is a light-dependent process. Furthermore, although cone bipolar cells share common cone partners, each bipolar cell type that we examined depends differentially on sensory input to achieve mature connectivity. Thus, visual experience differentially affects maturation of rod versus cone pathways and of cell types within the cone pathway.
Collapse
Affiliation(s)
- Felice A Dunn
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
19
|
Fletcher ML, Bendahmane M. Visualizing olfactory learning functional imaging of experience-induced olfactory bulb changes. PROGRESS IN BRAIN RESEARCH 2014; 208:89-113. [PMID: 24767480 DOI: 10.1016/b978-0-444-63350-7.00004-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The anatomical organization of sensory neuron input allows odor information to be transformed into odorant-specific spatial maps of mitral/tufted cell glomerular activity. In other sensory systems, neuronal representations of sensory stimuli can be reorganized or enhanced following learning or experience. Similarly, several studies have demonstrated both structural and physiological experience-induced changes throughout the olfactory system. As experience-induced changes within this circuit likely serve as an initial site for odor memory formation, the olfactory bulb is an ideal site for optical imaging studies of olfactory learning, as they allow for the visualization of experience-induced changes in the glomerular circuit following learning and how these changes impact of odor representations with the bulb. Presently, optical imaging techniques have been used to visualize experience-induced changes in glomerular odor representations in a variety of paradigms in short-term habituation, chronic odor exposure, and olfactory associative conditioning.
Collapse
Affiliation(s)
- Max L Fletcher
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Mounir Bendahmane
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
20
|
Xiang D, Zheng Y, Duan W, Li X, Yin J, Shigdar S, O'Connor ML, Marappan M, Zhao X, Miao Y, Xiang B, Zheng C. Inhibition of A/Human/Hubei/3/2005 (H3N2) influenza virus infection by silver nanoparticles in vitro and in vivo. Int J Nanomedicine 2013; 8:4103-13. [PMID: 24204140 PMCID: PMC3817021 DOI: 10.2147/ijn.s53622] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Silver nanoparticles (AgNPs) have attracted much attention as antimicrobial agents and have demonstrated efficient inhibitory activity against various viruses, including human immunodeficiency virus, hepatitis B virus, and Tacaribe virus. In this study, we investigated if AgNPs could have antiviral and preventive effects in A/Human/Hubei/3/2005 (H3N2) influenza virus infection. Madin-Darby canine kidney cells infected with AgNP-treated H3N2 influenza virus showed better viability (P<0.05 versus influenza virus control) and no obvious cytopathic effects compared with an influenza virus control group and a group treated with the solvent used for preparation of the AgNPs. Hemagglutination assay indicated that AgNPs could significantly inhibit growth of the influenza virus in Madin-Darby canine kidney cells (P<0.01 versus the influenza virus control). AgNPs significantly reduced cell apoptosis induced by H3N2 influenza virus at three different treatment pathways (P<0.05 versus influenza virus control). H3N2 influenza viruses treated with AgNPs were analyzed by transmission electron microscopy and found to interact with each other, resulting in destruction of morphologic viral structures in a time-dependent manner in a time range of 30 minutes to 2 hours. In addition, intranasal AgNP administration in mice significantly enhanced survival after infection with the H3N2 influenza virus. Mice treated with AgNPs showed lower lung viral titer levels and minor pathologic lesions in lung tissue, and had a marked survival benefit during secondary intranasal passage in vivo. These results provide evidence that AgNPs have beneficial effects in preventing H3N2 influenza virus infection both in vitro and in vivo, and demonstrate that AgNPs can be used as potential therapeutics for inhibiting outbreaks of influenza.
Collapse
Affiliation(s)
- Dongxi Xiang
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Jiang M, Yang M, Yin L, Zhang X, Shu Y. Developmental reduction of asynchronous GABA release from neocortical fast-spiking neurons. ACTA ACUST UNITED AC 2013; 25:258-70. [PMID: 23968835 DOI: 10.1093/cercor/bht236] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Delayed asynchronous release (AR) evoked by bursts of presynaptic action potentials (APs) occurs in certain types of hippocampal and neocortical inhibitory interneurons. Previous studies showed that AR provides long-lasting inhibition and desynchronizes the activity in postsynaptic cells. However, whether AR undergoes developmental change remains unknown. In this study, we performed whole-cell recording from fast-spiking (FS) interneurons and pyramidal cells (PCs) in prefrontal cortical slices obtained from juvenile and adult rats. In response to AP trains in FS neurons, AR occurred at their output synapses during both age periods, including FS autapses and FS-PC synapses; however, the AR strength was significantly weaker in adults than that in juveniles. Further experiments suggested that the reduction of AR in adult animals could be attributable to the rapid clearance of residual Ca(2+) from presynaptic terminals. Together, our results revealed that the AR strength was stronger at juvenile but weaker in adult, possibly resulting from changes in presynaptic Ca(2+) dynamics. AR changes may meet the needs of the neural network to generate different types of oscillations for cortical processing at distinct behavioral states.
Collapse
Affiliation(s)
- Man Jiang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Mingpo Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Luping Yin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Xiaohui Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Yousheng Shu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| |
Collapse
|
22
|
Odor-specific, olfactory marker protein-mediated sparsening of primary olfactory input to the brain after odor exposure. J Neurosci 2013; 33:6594-602. [PMID: 23575856 DOI: 10.1523/jneurosci.1442-12.2013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Long-term plasticity in sensory systems is usually conceptualized as changing the interpretation of the brain of sensory information, not an alteration of how the sensor itself responds to external stimuli. However, here we demonstrate that, in the adult mouse olfactory system, a 1-week-long exposure to an artificially odorized environment narrows the range of odorants that can induce neurotransmitter release from olfactory sensory neurons (OSNs) and reduces the total transmitter release from responsive neurons. In animals heterozygous for the olfactory marker protein (OMP), this adaptive plasticity was strongest in the populations of OSNs that originally responded to the exposure odorant (an ester) and also observed in the responses to a similar odorant (another ester) but had no effect on the responses to odorants dissimilar to the exposure odorant (a ketone and an aldehyde). In contrast, in OMP knock-out mice, odorant exposure reduced the number and amplitude of OSN responses evoked by all four types of odorants equally. The effect of this plasticity is to preferentially sparsen the primary neural representations of common olfactory stimuli, which has the computational benefit of increasing the number of distinct sensory patterns that could be represented in the circuit and might thus underlie the improvements in olfactory discrimination often observed after odorant exposure (Mandairon et al., 2006a). The absence of odorant specificity in this adaptive plasticity in OMP knock-out mice suggests a potential role for this protein in adaptively reshaping OSN responses to function in different environments.
Collapse
|
23
|
Abstract
Cortical pyramidal cells store multiple features of complex synaptic input in individual dendritic branches and independently regulate the coupling between dendritic and somatic spikes. Branch points in apical trees exhibit wide ranges of sizes and shapes, and the large diameter ratio between trunk and oblique dendrites exacerbates impedance mismatch. The morphological diversity of dendritic bifurcations could thus locally tune neuronal excitability and signal integration. However, these aspects have never been investigated. Here, we first quantified the morphological variability of branch points from two-photon images of rat CA1 pyramidal neurons. We then investigated the geometrical features affecting spike initiation, propagation, and timing with a computational model validated by glutamate uncaging experiments. The results suggest that even subtle membrane readjustments at branch points could drastically alter the ability of synaptic input to generate, propagate, and time action potentials.
Collapse
|
24
|
Gribaudo S, Bovetti S, Friard O, Denorme M, Oboti L, Fasolo A, De Marchis S. Transitory and activity-dependent expression of neurogranin in olfactory bulb tufted cells during mouse postnatal development. J Comp Neurol 2013; 520:3055-69. [PMID: 22592880 DOI: 10.1002/cne.23150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neurogranin (Ng) is a brain-specific postsynaptic calmodulin-binding protein involved in synaptic activity-dependent plasticity. In the adult olfactory bulb (OB), Ng is expressed by a large population of GABAergic interneurons in the granule cell layer. We show here that, during postnatal development, Ng is also expressed by OB neurons in the superficial external plexiform layer (sEPL) and glomerular layer (GL). These Ng-positive neurons display morphological and neurochemical features of superficial and external tufted cells. Ng expression in these cells is transient during OB development: few elements express Ng at postnatal day (P) 5, increasing in number and reaching a peak at P10, then progressively decreasing. At P30, Ng is rarely detectable in these neurons. Ng expression in developing tufted cells is also modulated at the cellular level: at earlier stages, Ng labeling is distributed throughout the cell body and dendritic arborization in the GL, but, at P20, when the glomerular circuits are fully matured, Ng becomes restricted to the soma and proximal portion of tufted cell apical dendrites. We show that olfactory deprivation at early postnatal stages induces a strong increase in Ng-positive tufted cells from P10 to P20, whereas no changes have been observed following olfactory deprivation in adult mice. These findings demonstrate that Ng expression in sEPL-GL is restricted to developmental stages and indicate its activity-dependent regulation in a time window critical for glomerular circuit development, suggesting a role for Ng in maturation and dendritic remodeling of tufted cells.
Collapse
Affiliation(s)
- S Gribaudo
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy.
| | | | | | | | | | | | | |
Collapse
|
25
|
Functional properties of cortical feedback projections to the olfactory bulb. Neuron 2013; 76:1175-88. [PMID: 23259952 DOI: 10.1016/j.neuron.2012.10.028] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2012] [Indexed: 11/22/2022]
Abstract
Sensory perception is not a simple feed-forward process, and higher brain areas can actively modulate information processing in "lower" areas. We used optogenetic methods to examine how cortical feedback projections affect circuits in the first olfactory processing stage, the olfactory bulb. Selective activation of back projections from the anterior olfactory nucleus/cortex (AON) revealed functional glutamatergic synaptic connections on several types of bulbar interneurons. Unexpectedly, AON axons also directly depolarized mitral cells (MCs), enough to elicit spikes reliably in a time window of a few milliseconds. MCs received strong disynaptic inhibition, a third of which arises in the glomerular layer. Activating feedback axons in vivo suppressed spontaneous as well as odor-evoked activity of MCs, sometimes preceded by a temporally precise increase in firing probability. Our study indicates that cortical feedback can shape the activity of bulbar output neurons by enabling precisely timed spikes and enforcing broad inhibition to suppress background activity.
Collapse
|
26
|
Xie AX, Sun MY, Murphy T, Lauderdale K, Tiglao E, Fiacco TA. Bidirectional scaling of astrocytic metabotropic glutamate receptor signaling following long-term changes in neuronal firing rates. PLoS One 2012; 7:e49637. [PMID: 23166735 PMCID: PMC3499417 DOI: 10.1371/journal.pone.0049637] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 10/16/2012] [Indexed: 11/19/2022] Open
Abstract
Very little is known about the ability of astrocytic receptors to exhibit plasticity as a result of changes in neuronal activity. Here we provide evidence for bidirectional scaling of astrocytic group I metabotropic glutamate receptor signaling in acute mouse hippocampal slices following long-term changes in neuronal firing rates. Plasticity of astrocytic mGluRs was measured by recording spontaneous and evoked Ca2+ elevations in both astrocytic somata and processes. An exogenous astrocytic Gq G protein-coupled receptor was resistant to scaling, suggesting that the alterations in astrocyte Ca2+ signaling result from changes in activity of the surface mGluRs rather than a change in intracellular G protein signaling molecules. These findings suggest that astrocytes actively detect shifts in neuronal firing rates and adjust their receptor signaling accordingly. This type of long-term plasticity in astrocytes resembles neuronal homeostatic plasticity and might be important to ensure an optimal or expected level of input from neurons.
Collapse
Affiliation(s)
- Alison X. Xie
- Graduate Program in Neuroscience, University of California Riverside, Riverside, California, United States of America
| | - Min-Yu Sun
- Graduate Program in Cellular, Molecular, and Developmental Biology, University of California Riverside, Riverside, California, United States of America
| | - Thomas Murphy
- Graduate Program in Neuroscience, University of California Riverside, Riverside, California, United States of America
| | - Kelli Lauderdale
- Graduate Program in Neuroscience, University of California Riverside, Riverside, California, United States of America
| | - Elizabeth Tiglao
- Undergraduate Neuroscience Major, University of California Riverside, Riverside, California, United States of America
| | - Todd A. Fiacco
- Department of Cell Biology and Neuroscience and Center for Glial-Neuronal Interactions, University of California Riverside, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
27
|
Kass MD, Pottackal J, Turkel DJ, McGann JP. Changes in the neural representation of odorants after olfactory deprivation in the adult mouse olfactory bulb. Chem Senses 2012; 38:77-89. [PMID: 23125347 DOI: 10.1093/chemse/bjs081] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Olfactory sensory deprivation during development has been shown to induce significant alterations in the neurophysiology of olfactory receptor neurons (ORNs), the primary sensory inputs to the brain's olfactory bulb. Deprivation has also been shown to alter the neurochemistry of the adult olfactory system, but the physiological consequences of these changes are poorly understood. Here we used in vivo synaptopHluorin (spH) imaging to visualize odorant-evoked neurotransmitter release from ORNs in adult transgenic mice that underwent 4 weeks of unilateral olfactory deprivation. Deprivation reduced odorant-evoked spH signals compared with sham-occluded mice. Unexpectedly, this reduction was equivalent between ORNs on the open and plugged sides. Changes in odorant selectivity of glomerular subpopulations of ORNs were also observed, but only in ORNs on the open side of deprived mice. These results suggest that naris occlusion in adult mice produces substantial changes in primary olfactory processing which may reflect not only the decrease in olfactory stimulation on the occluded side but also the alteration of response properties on the intact side. We also observed a modest effect of true sham occlusions that included noseplug insertion and removal, suggesting that conventional noseplug techniques may have physiological effects independent of deprivation per se and thus require more careful controls than has been previously appreciated.
Collapse
Affiliation(s)
- Marley D Kass
- Behavioral and Systems Neuroscience Section, Department of Psychology, Rutgers, The State University of New Jersey, USA
| | | | | | | |
Collapse
|
28
|
Abstract
Persistent alterations in network activity trigger compensatory changes in excitation and inhibition that restore neuronal firing rate to an optimal range. One example of such synaptic homeostasis is the downregulation of inhibitory transmission by chronic inactivity, in part through the reduction of vesicular transmitter content. The enzyme glutamic acid decarboxylase 67 (GAD67) is critical for GABA synthesis, but its involvement in homeostatic plasticity is unclear. We explored the role of GAD67 in activity-dependent synaptic plasticity using a mouse line (Gad1(-/-)) in which GAD67 expression is disrupted by genomic insertion of the green fluorescent protein (GFP). Homozygous deletion of Gad1 significantly reduced miniature inhibitory postsynaptic current (mIPSC) amplitudes and GABA levels in cultured hippocampal neurons. The fractional block of mIPSC amplitude by a low affinity, competitive GABA(A) receptor antagonist was higher in GAD67-lacking neurons, suggesting that GABA concentration in the synaptic cleft is lower in knockout animals. Chronic suppression of activity by the application of tetrodotoxin (TTX) reduced mIPSC amplitudes and the levels of GAD67 and GABA. Moreover, TTX reduced GFP levels in interneurons, suggesting that GAD67 gene expression is a key regulatory target of activity. These in vitro experiments were corroborated by in vivo studies in which olfactory deprivation reduced mIPSC amplitudes and GFP levels in glomerular neurons in the olfactory bulb. Importantly, TTX-induced downregulation of mIPSC was attenuated in Gad1(-/-) neurons. Altogether, these findings indicate that activity-driven expression of GAD67 critically controls GABA synthesis and, thus, vesicular filling of the transmitter.
Collapse
|
29
|
Studies of olfactory system neural plasticity: the contribution of the unilateral naris occlusion technique. Neural Plast 2012; 2012:351752. [PMID: 22690343 PMCID: PMC3368527 DOI: 10.1155/2012/351752] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/01/2012] [Accepted: 03/19/2012] [Indexed: 01/18/2023] Open
Abstract
Unilateral naris occlusion has long been the method of choice for effecting stimulus deprivation in studies of olfactory plasticity. A significant body of literature speaks to the myriad consequences of this manipulation on the ipsilateral olfactory pathway. Early experiments emphasized naris occlusion's deleterious and age-critical effects. More recent studies have focused on life-long vulnerability, particularly on neurogenesis, and compensatory responses to deprivation. Despite the abundance of empirical data, a theoretical framework in which to understand the many sequelae of naris occlusion on olfaction has been elusive. This paper focuses on recent data, new theories, and underappreciated caveats related to the use of this technique in studies of olfactory plasticity.
Collapse
|
30
|
Hagiwara A, Pal SK, Sato TF, Wienisch M, Murthy VN. Optophysiological analysis of associational circuits in the olfactory cortex. Front Neural Circuits 2012; 6:18. [PMID: 22529781 PMCID: PMC3329886 DOI: 10.3389/fncir.2012.00018] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/26/2012] [Indexed: 02/04/2023] Open
Abstract
Primary olfactory cortical areas receive direct input from the olfactory bulb, but also have extensive associational connections that have been mainly studied with classical anatomical methods. Here, we shed light on the functional properties of associational connections in the anterior and posterior piriform cortices (aPC and pPC) using optophysiological methods. We found that the aPC receives dense functional connections from the anterior olfactory nucleus (AON), a major hub in olfactory cortical circuits. The local recurrent connectivity within the aPC, long invoked in cortical autoassociative models, is sparse and weak. By contrast, the pPC receives negligible input from the AON, but has dense connections from the aPC as well as more local recurrent connections than the aPC. Finally, there are negligible functional connections from the pPC to aPC. Our study provides a circuit basis for a more sensory role for the aPC in odor processing and an associative role for the pPC.
Collapse
Affiliation(s)
- Akari Hagiwara
- Akari Hagiwara, Faculty of Medicine, Department of Biochemistry, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan. e-mail:
| | | | | | | | - Venkatesh N. Murthy
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, CambridgeMA, USA
| |
Collapse
|
31
|
The effects of unilateral naris occlusion on gene expression profiles in mouse olfactory mucosa. J Mol Neurosci 2011; 47:604-18. [PMID: 22187364 DOI: 10.1007/s12031-011-9690-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/01/2011] [Indexed: 12/13/2022]
Abstract
Unilateral naris occlusion has been the method of choice for effecting stimulus deprivation in studies of olfactory plasticity. Early experiments emphasized the deleterious effects of this technique on the developing olfactory system while more recent studies have pointed to several apparently "compensatory" responses. However, the evidence for deprivation-induced compensatory processes in olfaction remains fragmentary. High-throughput methods such as microarray analysis can help fill the deficits in our understanding of naris occlusion as a mode of stimulus deprivation. Here we report for young adult mice the effects of early postnatal naris occlusion on the olfactory mucosal transcriptome using microarray analysis with RT-PCR confirmation. The transcripts of key genes involved in olfactory reception, transduction, and transmission were up-regulated in deprived-side olfactory mucosa, with opposite effects in non-deprived-side mucosa, compared to controls. Results support the hypothesis that odor environment triggers a previously unknown homeostatic control mechanism in olfactory receptor neurons designed to maximize information transfer.
Collapse
|
32
|
Abstract
The Drosophila antennal lobe is organized into glomerular compartments, where olfactory receptor neurons synapse onto projection neurons. Projection neuron dendrites also receive input from local neurons, which interconnect glomeruli. In this study, we investigated how activity in this circuit changes over time when sensory afferents are chronically removed in vivo. In the normal circuit, excitatory connections between glomeruli are weak. However, after we chronically severed receptor neuron axons projecting to a subset of glomeruli, we found that odor-evoked lateral excitatory input to deafferented projection neurons was potentiated severalfold. This was caused, at least in part, by strengthened electrical coupling from excitatory local neurons onto projection neurons, as well as increased activity in excitatory local neurons. Merely silencing receptor neurons was not sufficient to elicit these changes, implying that severing receptor neuron axons is the relevant signal. When we expressed the neuroprotective gene Wallerian degeneration slow (Wld(S)) in receptor neurons before severing their axons, this blocked the induction of plasticity. Because expressing Wld(S) prevents severed axons from recruiting glia, this result suggests a role for glia. Consistent with this, we found that blocking endocytosis in ensheathing glia blocked the induction of plasticity. In sum, these results reveal a novel injury response whereby severed sensory axons recruit glia, which in turn signal to central neurons to upregulate their activity. By strengthening excitatory interactions between neurons in a deafferented brain region, this mechanism might help boost activity to compensate for lost sensory input.
Collapse
|
33
|
Deeg KE, Aizenman CD. Sensory modality-specific homeostatic plasticity in the developing optic tectum. Nat Neurosci 2011; 14:548-50. [PMID: 21441922 PMCID: PMC3415229 DOI: 10.1038/nn.2772] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 02/01/2011] [Indexed: 11/09/2022]
Abstract
We found a previously unknown form of homeostatic synaptic plasticity in multisensory neurons in the optic tectum of Xenopus laevis tadpoles. Individual tectal neurons are known to receive converging inputs from multiple sensory modalities. We observed that long-term alterations in either visual or mechanosensory activity in vivo resulted in homeostatic changes specific to each sensory modality. In contrast with typical forms of homeostatic synaptic plasticity, such as synaptic scaling, we found that this type of plasticity occurred in a pathway-specific manner that is more reminiscent of hebbian-type plasticity.
Collapse
Affiliation(s)
- Katherine E Deeg
- Brown University, Department of Neuroscience, Providence, Rhode Island, USA
| | | |
Collapse
|
34
|
Angely CJ, Coppola DM. How does long-term odor deprivation affect the olfactory capacity of adult mice? Behav Brain Funct 2010; 6:26. [PMID: 20500833 PMCID: PMC2889841 DOI: 10.1186/1744-9081-6-26] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Accepted: 05/25/2010] [Indexed: 11/30/2022] Open
Abstract
Background Unilateral naris occlusion (UNO) has been the most common method of effecting stimulus deprivation in studies of olfactory plasticity. However, despite the large corpus on the effects of this manipulation, dating back to the 19th century, little is known about its behavioral sequela. Here we report the results of standard olfactory habituation and discrimination studies on adult mice that had undergone perinatal UNO followed by adult contralateral olfactory bulbectomy (bulb-x). Methods The olfactory performance of UNO mice was compared to matched controls that had unilateral bulb-x but open nares. Both habituation and discrimination (operant) experiments employed a protocol in which after successful dishabituation or discrimination to dilute individual odors (A = 0.01% isoamyl acetate; B = 0.01% ethyl butyrate; each v/v in mineral oil), mice were challenged with a single odor versus a mixture comparison (A vs. A + B). In a series of tests the volume portion of Odor B in the mixture was systematically decreased until dishabituation or discrimination thresholds were reached. Results For the habituation experiment, UNOs (n = 10) and controls (n = 9) dishabituated to a 10% mixture of Odor B in Odor A after being habituated to A alone, while both groups failed to show differential responding to a 2% mixture of B in A. However, the UNO group's increased investigation durations for the 2% mixture approached significance (p < 0.06). A replication of this study (7 controls & 8 UNOs) confirmed that controls did not differentiate Odor A and a 2% mixture of B in A but UNOs did not (p < 0.05). For the discrimination experiment, 4 UNOs and 4 controls were shaped to dig in one of two containers of sand that contained the S+ odor (Odor B) to obtain sugar pellet rewards. As in the habituation experiment, UNOs displayed greater olfactory capacity than controls on this task. Controls and UNOs had an average mixture discrimination threshold of 1.6% (± 0.4) and 0.22% (± 0.102) respectively, a difference that was statistically significant (p < 0.02). Conclusions Adult mice relying on an olfactory system deprived of odor by naris occlusion from near the time of birth display enhanced olfactory capacity compared to control mice. This counterintuitive result suggests that UNO is neither an absolute method of deprivation nor does it diminish olfactory capabilities. Enhanced olfactory capacity, as observed in the current study, that is a consequence of deprivation, is consistent with recent molecular and physiological evidence that stimulus deprivation triggers compensatory processes throughout the olfactory system.
Collapse
Affiliation(s)
- Cathy J Angely
- Department of Biology, Randolph-Macon College, Ashland, VA 23005, USA
| | | |
Collapse
|
35
|
Ruthazer ES, Aizenman CD. Learning to see: patterned visual activity and the development of visual function. Trends Neurosci 2010; 33:183-92. [PMID: 20153060 DOI: 10.1016/j.tins.2010.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 01/08/2010] [Accepted: 01/14/2010] [Indexed: 11/17/2022]
Abstract
To successfully interact with their environments, developing organisms need to correctly process sensory information and generate motor outputs appropriate to their size and structure. Patterned sensory experience has long been known to induce various forms of developmental plasticity that ultimately shape mature neural circuits. These same types of plasticity also allow developing organisms to respond appropriately to the external world by dynamically adapting neural circuit function to ongoing changes in brain circuitry and sensory input. Recent work on the visual systems of frogs and fish has provided an unprecedented view into how visual experience dynamically affects circuit function at many levels, ranging from gene expression to network function, ultimately leading to system-wide functional adaptations.
Collapse
Affiliation(s)
- Edward S Ruthazer
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada.
| | | |
Collapse
|
36
|
Nanowire transistor arrays for mapping neural circuits in acute brain slices. Proc Natl Acad Sci U S A 2010; 107:1882-7. [PMID: 20133836 DOI: 10.1073/pnas.0914737107] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Revealing the functional connectivity in natural neuronal networks is central to understanding circuits in the brain. Here, we show that silicon nanowire field-effect transistor (Si NWFET) arrays fabricated on transparent substrates can be reliably interfaced to acute brain slices. NWFET arrays were readily designed to record across a wide range of length scales, while the transparent device chips enabled imaging of individual cell bodies and identification of areas of healthy neurons at both upper and lower tissue surfaces. Simultaneous NWFET and patch clamp studies enabled unambiguous identification of action potential signals, with additional features detected at earlier times by the nanodevices. NWFET recording at different positions in the absence and presence of synaptic and ion-channel blockers enabled assignment of these features to presynaptic firing and postsynaptic depolarization from regions either close to somata or abundant in dendritic projections. In all cases, the NWFET signal amplitudes were from 0.3-3 mV. In contrast to conventional multielectrode array measurements, the small active surface of the NWFET devices, approximately 0.06 microm(2), provides highly localized multiplexed measurements of neuronal activities with demonstrated sub-millisecond temporal resolution and, significantly, better than 30 microm spatial resolution. In addition, multiplexed mapping with 2D NWFET arrays revealed spatially heterogeneous functional connectivity in the olfactory cortex with a resolution surpassing substantially previous electrical recording techniques. Our demonstration of simultaneous high temporal and spatial resolution recording, as well as mapping of functional connectivity, suggest that NWFETs can become a powerful platform for studying neural circuits in the brain.
Collapse
|
37
|
Yuan Q. Theta bursts in the olfactory nerve paired with beta-adrenoceptor activation induce calcium elevation in mitral cells: a mechanism for odor preference learning in the neonate rat. Learn Mem 2009; 16:676-81. [PMID: 19858361 DOI: 10.1101/lm.1569309] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Odor preference learning in the neonate rat follows pairing of odor input and noradrenergic activation of beta-adrenoceptors. Odor learning is hypothesized to be supported by enhanced mitral cell activation. Here a mechanism for enhanced mitral cell signaling is described. Theta bursts in the olfactory nerve (ON) produce long-term potentiation (LTP) of glomerular excitatory postsynaptic potentials (EPSPs) and of excitatory postsynaptic currents (EPSCs) in the periglomerular (PG) and external tufted (ET) cells. Theta bursts paired with beta-adrenoceptor activation significantly elevate mitral cell (MC) calcium. Juxtaglomerular inhibitory network depression by beta-adrenoceptor activation appears to increase calcium in MCs in response to theta burst stimulation.
Collapse
Affiliation(s)
- Qi Yuan
- University of California at San Diego, La Jolla, California 92093, USA.
| |
Collapse
|
38
|
Maffei A, Fontanini A. Network homeostasis: a matter of coordination. Curr Opin Neurobiol 2009; 19:168-73. [PMID: 19540746 DOI: 10.1016/j.conb.2009.05.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 05/12/2009] [Accepted: 05/27/2009] [Indexed: 11/29/2022]
Abstract
Brain circuits undergo distributed rearrangements throughout life: development, experience and behavior constantly modify synaptic strength and network connectivity. Despite these changes, neurons and circuits need to preserve their functional stability. Single neurons maintain their spontaneous firing rate within functional working ranges by regulating the efficacy of their synaptic inputs. But how do networks maintain a stable behavior? Is network homeostasis a consequence of cell autonomous mechanisms? In this article we will review recent evidence showing that network homeostasis is more than the sum of single-neuron homeostasis and that high-order network stability can be achieved by coordinated inter-cellular interactions.
Collapse
Affiliation(s)
- Arianna Maffei
- Department of Neurobiology and Behavior, SUNY - Stony Brook, Stony Brook, NY 11794, United States.
| | | |
Collapse
|
39
|
Krofczik S, Khojasteh U, de Ibarra NH, Menzel R. Adaptation of microglomerular complexes in the honeybee mushroom body lip to manipulations of behavioral maturation and sensory experience. Dev Neurobiol 2008; 68:1007-17. [PMID: 18446779 DOI: 10.1002/dneu.20640] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Worker honeybees proceed through a sequence of tasks, passing from hive and guard duties to foraging activities. The underlying neuronal changes accompanying and possibly mediating these behavioral transitions are not well understood. We studied changes in the microglomerular organization of the mushroom bodies, a brain region involved in sensory integration, learning, and memory, during adult maturation. We visualized the MB lips' microglomerular organization by applying double labeling of presynaptic projection neuron boutons and postsynaptic Kenyon cell spines, which form microglomerular complexes. Their number and density, as well as the bouton volume, were measured using 3D-based techniques. Our results show that the number of microglomerular complexes and the bouton volumes increased during maturation, independent of environmental conditions. In contrast, manipulations of behavior and sensory experience caused a decrease in the number of microglomerular complexes, but an increase in bouton volume. This may indicate an outgrowth of synaptic connections within the MB lips during honeybee maturation. Moreover, manipulations of behavioral and sensory experience led to adaptive changes, which indicate that the microglomerular organization of the MB lips is not static and determined by maturation, but rather that their organization is plastic, enabling the brain to retain its synaptic efficacy.
Collapse
Affiliation(s)
- Sabine Krofczik
- Institut für Biologie - Neurobiologie, Freie Universität Berlin, Königin-Luise Str. 28-30, 14195 Berlin, Germany
| | | | | | | |
Collapse
|
40
|
Abstract
Habituation is one of the simplest forms of memory, yet its neurobiological mechanisms remain largely unknown in mammalian systems. This review summarizes recent multidisciplinary analyses of the neurobiology of mammalian odor habituation including in vitro and in vivo synaptic physiology, sensory physiology, behavioral pharmacology, and computational modeling approaches. The findings show that a metabotropic glutamate receptor–mediated depression of afferent synapses to the olfactory cortex is necessary and perhaps sufficient to account for cortical sensory adaptation and short-term behavioral habituation. Furthermore, long-term habituation is an N-methyl-d-aspartate (NMDA) receptor–dependent process within the olfactory bulb. Thus there is both a pharmacological and anatomical distinction between short-term and long-term memory for habituation. The differential locus of change underlying short- and long-term memory leads to predictable differences in their behavioral characteristics, such as specificity.
Collapse
|
41
|
Functional maturation of the first synapse in olfaction: development and adult neurogenesis. J Neurosci 2008; 28:2919-32. [PMID: 18337423 DOI: 10.1523/jneurosci.5550-07.2008] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The first synapse in olfaction undergoes considerable anatomical plasticity in both early postnatal development and adult neurogenesis, yet we know very little concerning its functional maturation at these times. Here, we used whole-cell recordings in olfactory bulb slices to describe olfactory nerve inputs to developing postnatal neurons and to maturing adult-born cells labeled with a GFP-encoding lentivirus. In both postnatal development and adult neurogenesis, the maturation of olfactory nerve synapses involved an increase in the relative contribution of AMPA over NMDA receptors, and a decrease in the contribution of NMDA receptors containing the NR2B subunit. These postsynaptic transformations, however, were not mirrored by presynaptic changes: in all cell groups, paired-pulse depression remained constant as olfactory nerve synapses matured. Although maturing cells may therefore offer, transiently, a functionally distinct connection for inputs from the nose, presynaptic function at the first olfactory connection remains remarkably constant in the face of considerable anatomical plasticity.
Collapse
|
42
|
Hamilton KA, Parrish-Aungst S, Margolis FL, Erdélyi F, Szabó G, Puche AC. Sensory deafferentation transsynaptically alters neuronal GluR1 expression in the external plexiform layer of the adult mouse main olfactory bulb. Chem Senses 2008; 33:201-10. [PMID: 18184638 DOI: 10.1093/chemse/bjm079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Altered distribution of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor subunit GluR1 has been linked to stimulation-dependent changes in synaptic efficacy, including long-term potentiation and depression. The main olfactory bulb (OB) remains plastic throughout life; how GluR1 may be involved in this plasticity is unknown. We have previously shown that neonatal naris occlusion reduces numbers of interneuron cell bodies that are immunoreactive for GluR1 in the external plexiform layer (EPL) of the adult mouse OB. Here, we show that immunoreactivity of mouse EPL interneurons for GluR1 is also dramatically reduced following olfactory deafferentation in adulthood. We further show that expression of glutamic acid decarboxylase (GAD) 65, 1 of 2 GAD isoforms expressed by adult gamma-aminobutyric acidergic interneurons, is reduced, but to a much smaller extent, and that in double-labeled cells, immunoreactivity for the Ca(2+)-binding protein parvalbumin (PV) is also reduced. In addition, GluR1 expression is reduced in presumptive tufted cells and interneurons that are negative for GAD65 and PV. Consistent with previous reports, sensory deafferentation resulted in little neuronal degeneration in the adult EPL, indicating that these differences were not likely due to death of EPL neurons. Together, these results suggest that olfactory input regulates expression of the GluR1 AMPA receptor subunit by tufted cells that may in turn regulate GluR1 expression by interneurons within the OB EPL.
Collapse
Affiliation(s)
- Kathryn A Hamilton
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Karpuk N, Hayar A. Activation of postsynaptic GABAB receptors modulates the bursting pattern and synaptic activity of olfactory bulb juxtaglomerular neurons. J Neurophysiol 2007; 99:308-19. [PMID: 18032562 DOI: 10.1152/jn.01086.2007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Olfactory bulb glomeruli are formed by a network of three major types of neurons collectively called juxtaglomerular (JG) cells, which include external tufted (ET), periglomerular (PG), and short axon (SA) cells. There is solid evidence that gamma-aminobutyric acid (GABA) released from PG neurons presynaptically inhibits glutamate release from olfactory nerve terminals via activation of GABA(B) receptors (GABA(B)-Rs). However, it is still unclear whether ET cells have GABA(B)-Rs. We have investigated whether ET cells have functional postsynaptic GABA(B)-Rs using extracellular and whole cell recordings in olfactory bulb slices. In the presence of fast synaptic blockers (CNQX, APV, and gabazine), the GABA(B)-R agonist baclofen either completely inhibited the bursting or reduced the bursting frequency and increased the burst duration and the number of spikes/burst in ET cells. In the presence of fast synaptic blockers and tetrodotoxin, baclofen induced an outward current in ET cells, suggesting a direct postsynaptic effect. Baclofen reduced the frequency and amplitude of spontaneous EPSCs in PG and SA cells. In the presence of sodium and potassium channel blockers, baclofen reduced the frequency of miniature EPSCs, which were inhibited by the calcium channel blocker cadmium. All baclofen effects were reversed by application of the GABA(B)-R antagonist CGP55845. We suggest that activation of GABA(B)-Rs directly inhibits ET cell bursting and decreases excitatory dendrodendritic transmission from ET to PG and SA cells. Thus the postsynaptic GABA(B)-Rs on ET cells may play an important role in shaping the activation pattern of the glomeruli during olfactory coding.
Collapse
Affiliation(s)
- Nikolay Karpuk
- Deptepartment of Neurobiology and Developmental Sciences, Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | |
Collapse
|